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Abstract 

In this study, an empirical predictive model was developed based on the quantitative relationships 

between blend properties, critical quality attributes (CQA) and critical process parameters (CPP) 

related to blending  and tableting. The blend uniformity and API concentration in the tablets were 

used to elucidate challenges related to the processability as well as the implementation of PAT tools. 

Thirty divergent ternary blends were evaluated on a continuous direct compression line (ConsiGma™ 

CDC-50). The trials showed a significant impact of the impeller configuration and impeller speed on 

the blending performance, whereas a limited impact of blend properties was observed. In contrast, 

blend properties played a significant role during compression, where changes in blend composition 

significantly altered the tablet quality. The observed correlations allowed to develop an empirical 

predictive model for the selection of process configurations based on the blend properties, reducing 

the number of trial runs needed to optimize a process and thus reducing development time and costs 

of new drug products. Furthermore, the trials elucidated several challenges related to blend 

properties that had a significant impact on PAT implementation and performance of the CDC-

platform, highlighting the importance of further process development and optimization in order to 

solve the remaining challenges. 

 

Keywords 

Continuous manufacturing; Continuous direct compression; CDC-50; Predictive modeling; 

Multivariate data-analysis; PAT 

 

List of abbreviations 
#BP Number of blade passes 
#RMB1 Number of radial mixing blades of the main blender 
API Active pharmaceutical ingredient 
API_sd Spray dried API 
BRT Bulk residence time 
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BU Blend uniformity 
C_P Caffeine anhydrous powder 
CDC Continuous direct compression 
CU Content uniformity 
DCP Dicalcium phosphate / Emcompress AN 
FD Fill depth 
HM1/HM2 Hold-up mass main blender/Hold-up mass lubricant blender 
Imp1 Impeller speed main blender 
LC Percentage label claim 
MCF Main compression force 
MCH Main compression height 
MgSt Magnesium stearate/Ligamed MF-2-V 
MPT_µ Metoprolol micronized 
NIR Near infrared 
P_µ Paracetamol micronized 
P_DP Paracetamol dense powder 
P_P Paracetamol powder 
PAT Process Analytical Technology 
PC Principle component 
PCA Principle component analysis 
PCD Pre-compression displacement 
PCF Pre-compression force 
PCH Pre-compression height 
PH101 Microcrystalline cellulose / Avicel PH-101 
PH200 Microcrystalline cellulose / Avicel PH-200 
PLS Partial least squares 
Q² Goodness of prediction 
R²Y Goodness of fit 
rpm Revolutions per minute 
RSDTW Relative standard deviation of tablet weight 
RMSEcv Root mean squared error of cross validation 
SD100 Mannitol / Pearlitol 100 SD 
T80 Lactose / Tablettose 80 
T_P Theophylline anhydrous powder 

Force Main compression force variability 

PCD Variability in pre-compression displacement 
 

1 Introduction 

 In recent years the pharmaceutical industry invested a lot in the application of continuous 

manufacturing as the main production technique to increase the efficiency and flexibility of 

manufacturing (Lee et al., 2015). Improvements in lead-time, in-line process control, process 

understanding and equipment footprint are some of the advantages of switching from batch to 

continuous manufacturing (Ierapetritou et al., 2016; Nasr et al., 2017; Schaber et al., 2011). 

Compression, a widely used production technique in the pharmaceutical industry, is one of the 

frontrunners in the shift to a fully integrated continuous process. Its inherent continuous nature, 

combined with the potential of the preceding unit operations (i.e. feeding and blending) to be 
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performed in a continuous fashion, were the basis for the development of several continuous direct 

compression (CDC) – lines. Manual dispensing transformed into loss-in-weight (LIW) feeding, while 

batch blenders evolved into linear convective paddle blenders. These steps resulted in 2014 in the 

development of the first fully integrated continuous direct compression (CDC) line by GEA (i.e. 

ConsiGma® CDC-50), with many customized lines being implemented in several companies (e.g. 

Vertex Pharmaceuticals, Janssen, Merck, Pfizer,…). Shortly after, Glatt and Fette Compacting 

combined their expertise in order to develop, in 2017, a CM line where a linear continuous Glatt 

blender was combined with a Fette FE35 rotary tablet press (Manufacturing Chemist, 2017). 

Furthermore, L.B. Bohle developed the QbCon® 25 platform, containing a direct compression unit, 

combining Gericke feeders and blenders with a Korsch Tablet press (L.B. Bohle, 2019). This 

emergence of equipment for continuous manufacturing of solid dosage forms already resulted in the 

FDA approval of seven drug products manufactured in a continuous manner. The first ever 

continuously manufactured product Orkambi®, produced by Vertex Pharmaceuticals, saw its 

approval in July 2015. Soon after, Johnson & Johnson successfully switched Prezista® from batch to 

continuous through an intensive collaboration between J&J, Rutgers University and the University of 

Puerto Rico (Pharmaceutical Technology, 2016). In 2017, Eli Lilly’s Verzenio® received its approval to 

be manufactured in a continuous way (Eli Lilly, 2018). The following year was a very fruitful year for 

continuous manufacturing with the approval of two products manufactured by Pfizer (i.e. Daurismo® 

and Lorbrena®) and the second approved drug product from Vertex Pharmaceuticals (Portier et al., 

2020; U.S. Food and Drug Administration, 2018a; U.S. Food and Drug Administration, 2018b; U.S. 

Food and Drug Administration, 2018c). Finally, Vertex Pharmaceuticals registered their third 

continuously manufactured drug product Trikafta® (2019) (U.S. Food and Drug Administration, 2019). 

 Due to the criticality of each unit operation, a growing body of literature was developed by 

several research groups. During the first unit operation (i.e. continuous feeding), any occurring 

deviation or problem could be passed down through the line, potentially affecting the final product 

quality. Therefore, extensive experimental work was performed where the feeding of raw materials 

was investigated and optimized (Engisch and Muzzio, 2014; Van Snick et al., 2019; Bostijn et al., 

2019; Bekaert et al., 2021a,c). For the blending step, both experimental and modeling work has been 

done, investigating the influence of material properties, process settings and blender configurations 

on the blending performance (Pernenkil and Cooney, 2006; Portillo et al., 2008; Gao et al., 2011; 

Osorio et al., 2016; Bekaert et al., 2021b). The final and important compaction step, used both in 

batch and continuous, has been investigated extensively resulting in large numbers of literature 

reports ranging from experimental to conceptual topics (Patel et al., 2006; Peeters et al., 2018; Van 

Snick et al., 2018). Furthermore, the implemented Process Analytical Technology (PAT) tools could 

increase process knowledge as well as enable real-time release testing through continuous product 
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quality monitoring (i.e. blend/content uniformity) (Pawar et al., 2016). Next to the literature 

describing each unit operation separately, a handful of papers reported work on an integrated from 

powder-to-tablet CDC line (Järvinen et al., 2013a; Järvinen et al., 2013b; Simonaho et al., 2016; Van 

Snick et al., 2017a; Van Snick et al., 2017b; García-Muñoz et al., 2017; Roth et al. 2017; Galbraith et 

al., 2020; Karttunen et al., 2020).  

 Based on the available literature, most of the knowledge regarding continuous direct 

compression comes from research performed on one specific unit operation. The studies 

investigating an integrated from powder-to-tablet CDC line most often focused on a specific 

formulation and did not quantify specific correlations between the materials and CDC responses. 

Furthermore, up-to-now no empirical predictive models have been developed for a fully integrated 

CDC line for a wide variety of materials. Therefore, 30 ternary blends were processed on a fully 

integrated CDC line with the aim of finding quantitative relationships between blend properties, 

critical quality attributes (CQA) and critical process parameters (CPP) related to blending (i.e. hold-up 

mass, residence time, strain, impeller speed, impeller configuration) and tableting (i.e. tablet weight 

variability, fill depth, tablet press settings) performance. Based on Partial Least Squares (PLS) 

regression, an empirical predictive model was developed in order to select process configurations for 

a specific formulation based on the blend properties. Furthermore, blend and content uniformity 

measurements helped to determine the processability challenges of divergent blends as well as 

challenges related to the implementation of PAT equipment into a continuous line. This study is an 

extension of the long-term feeding paper discussing the data generated during these trials (Bekaert 

et al., 2021c). 
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2 Materials 

 Table 1 gives an overview of the selected materials, including the supplier information and 

references to the abbreviations used in the paper. 

 

3 Equipment 

 The study was performed on a ConsiGma® CDC-50 (GEA, Wommelgem, Belgium). The fully 

integrated continuous line consists of material handling, loss-in-weight (LIW) feeding, two 

consecutive continuous blenders (i.e. main and lubricant blender), a rotary tablet press and in-line 

NIR equipment (Figure 1), which has been extensively described by Van Snick et al. (2017a,b). 

 

3.1 Material handling and loss-in-weight feeding 

 The ConsiGma® CDC-50 is equipped with Compact Feeders (CF) which can be integrated at 

blender inlet 1 (i.e. main blender) and blender inlet 2 (i.e. lubricant blender). Feeders at the main 

blender inlet (i.e. 6 available locations) are used for materials requiring intensive mixing, while the 

lubricant blender inlet (i.e. 2 available feeder locations) can be used for shear-sensitive materials or 

materials requiring limited mixing. In total, 6 feeders can be active at the same time (e.g. 5 at the 

main blender inlet and 1 at the lubricant blender inlet). 

 Each LIW feeder is equipped with a dedicated material handling unit consisting of either a 

conical hopper with a level sensor (3.2 L) or a cylindrical feed tube (7 L), used for vacuum or gravity-

controlled top-ups respectively. The gravity-controlled material handling unit is preferred for highly 

cohesive powders or powders that are sensitive to triboelectric charging during the vacuum 

transport. Furthermore, the material handling unit is equipped with a pneumatic vibrator (Volkmann, 

Soest, Germany) to improve the processability of adhesive or poorly flowing materials. A rotating 

bowl-valve with adjustable volumes (i.e. 0.4; 0.8; 1.2 or 1.6L) is installed at the bottom of the 

material handling unit in order to control the hopper refill of the Compact Feeder.  

 

3.2 Blending unit 

 The blending unit consists of two consecutive cylindrical dry powder blenders. Both the main 

and lubricant blender contain a rotating impeller positioned in an upwards tilted angle of 15°. The 

impeller consists of a central shaft with 60 adjustable blades. Depending on the position of the 

blades, they can function as either transport or radial mixing blades. Transport blades are oriented at 

45° along the axis of the shaft, while radial mixing blades have an angle of 0° along the axis of the 

shaft. The impeller speed can be varied between 45 and 450 rpm. 
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3.3 Rotary tablet press 

 After blending, the blend moves through a feed tube into the feed frame of the tablet press 

(MODUL™ S, GEA, Halle, Belgium). Inside the feed tube a level sensor is installed, maintaining a 

constant fill level during manufacturing. A fiber optic contact probe (Lighthouse™ probe, GEA, 

Wommelgem, Belgium) connected with an NIR spectrometer (Tidas P analyser, J&M Analytik, 

Essingen, Germany) was integrated just above the feed frame inlet, allowing the collection of spectra 

every second. The MODUL™ S tablet press was equipped with moving rollers at the pre-compression 

station and fixed rollers at the main compression station. 

 

4 Methods 

4.1 Blend selection and characterization 

 Thirty ternary blends were selected, containing an API (9.93 % w/w), a filler (89.32 % w/w) and 

magnesium stearate (MgSt) as a lubricant (0.75 % w/w). The APIs and fillers comprising the blends 

were picked based on the selection as described in a previous paper on long-term feeding 

characterization from our group (Bekaert et al., 2021c). In order to challenge the blend uniformity 

while maintaining NIR sensitivity (i.e. lowest possible API concentration that is still accurately 

measured via NIR), a 10/90 API/filler ratio was chosen. The blend ratio for blends containing Pearlitol 

100 SD (SD100) was changed in order to increase the down-stream tabletability (i.e. 9.93/88.82/1.25 

– ratio). An overview of the ternary blends is given in Table 2.  

 The off-line prepared blends (blending protocol: 25 min at 25 rpm for the API/filler-mixture, 

followed by 5 min at 15 rpm for the API/filler/MgSt mixture, using a tumble blender (Inversina, 

Bioengineering, Wald, Switzerland)), were characterized for a selection of potentially relevant 

descriptors during the blending and tableting step of continuous direct compression. The different 

characterization methods were performed using the protocols described by Van Snick et al. (2018). 

Table 3 displays the descriptors, their abbreviation and applied characterization methods.  

 

4.2 CDC-50 trial runs 

4.2.1 Experimental setup 

 The impact of varying blend compositions on the processability at different main blender 

configurations (i.e. shear zone in the middle of the impeller with 4, 10 or 16 radial mixing blades) and 

speeds (i.e. 200, 300 or 400 rpm) was studied. The throughput (i.e. 20 kg/h), lubricant blender 

configuration (i.e. no radial mixing blades) and impeller speed (i.e. 200 rpm) remained fixed 

throughout the study. The MODULTM S tablet press was equipped with 38 flat-face bevel-edge 8 mm 

EURO B punches with breaking line and the turret speed was set at 50 rpm, resulting in a target 

tablet weight of 175 mg. The speed of the paddles in the feed frame were kept at a fixed value 
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throughout the experiments (i.e. 58 rpm and 70 rpm for paddle 1 and 2, respectively). A pre-

compression force (PCF) of 1.5kN with minimal displacement (PCD) (i.e. 0.1 mm) and a main 

compression force (MCF) of 5kN were applied. Tablet press control loops were deactivated, hence 

adjustments to the fill depth (FD) and compression roller heights were required to reach the 

setpoints.  

 Prior to start-up, the feeders were primed (i.e. filling of the screws for 5 to 10 seconds) and the 

top-up systems filled. During the start-up phase (± 15 minutes), tablet press settings (i.e. fill depth, 

pre-compression and main compression height) were adjusted in order to reach the required tablet 

weight and compression forces. Once steady state conditions were reached, the process was run for 

15 minutes to obtain sufficient blend uniformity measurements. Steady state was achieved when 

limited feed tube level variability was seen, meaning that the blenders reached a stable fill level and 

the feeders and tablet press had a matching flow rate. Furthermore during steady state, tablets were 

collected for 6 minutes and 40 seconds according to a sample plan. The sample plan consisted of 40 

grab samples, each with 10 seconds sampling. Afterwards, the steady state process was stopped 

instantaneously and the shut-off valves at the end of each blender were closed. The remaining 

powder in each of the blenders was collected pneumatically in order to determine the hold-up mass. 

Datalogging was performed by the integrated CDC-50 software (GEA, Wommelgem, Belgium) and 

external NIR software (SentroPAT FO, Sentronic, Dresden, Germany). 

 

4.2.2 CDC-50 responses 

 Data was collected from each unit operation with an overview of the different unit operations 

and NIR tools, their corresponding responses and abbreviations given in Table 4. 

 

4.2.2.1 Feeding responses 

 Every second, feeder data was recorded by the data recording system of the GEA compact 

feeder. The feeder screw speed (rpm), net weight (g), mode of operation (volumetric or gravimetric), 

mass flow rate (g/s) and feed factor (g/revolution) were used to investigate the gravimetric feeding 

performance. The results and conclusions of the acquired data are discussed in detail in Bekaert et al. 

(2021c). 

 

4.2.2.2 Blending responses 

 The CDC line was instantaneously stopped during steady state in order to collect the powder 

present in both blenders. Based on the amount of powder in the blenders, the hold-up mass for the 

main and lubricant blender (HM1 and HM2, respectively) was determined. Using Equation 1 (Eq.1) 
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and 2 (Eq.2), the bulk residence time (BRT) and strain experienced by the powder in the blender 

(number of blade passes; #BP) were calculated: 

 

         
      

            
 

 
 
 (Eq.1) 

 

          
                    

  
 (Eq.2) 

 

4.2.2.3 Compression responses 

 Once the tablet press settings were optimized to reach the required tablet weight and 

compression force, the values for fill depth, pre-compression and main compression height (PCH and 

MCH) were collected. During steady state conditions, values for the pre-compression displacement, 

the variability in the displacement value (PCD) and main compression force variability (Force) were 

collected via the CDC-50 data-logging system.  

 The tablet grab samples taken during steady state were used to determine the tablet weight (g), 

hardness (N), thickness (mm) and diameter (mm). 20 tablets were randomly taken from each sample 

bag and analyzed using a semi-automatic tablet tester (SmartTest 50, Sotax, Basel, Switzerland). 

Based on these values, the tablet weight variability (RSDTW) (Eq.3) and tablet porosity (Tablet) (Eq.4) 

was calculated: 

 

           
√∑        ̅̅̅̅ ̅̅    

 
  

  
       (Eq.3) 

 

with   ̅̅ ̅̅ ̅ (g) the average tablet weight.  

 

          
    

     
 (Eq.4) 

 

with app the apparent density (i.e. tablet weight divided by its volume) andtrue the true density of 

the blend. 

 

4.2.3 Predictive model 

 Empirical predictive models were developed via Partial Least Squares (PLS) regression using the 

SIMCA 16 software (Umetrics, Umeå, Sweden). Two separate models were made in order to increase 

the goodness of fit (R²) and predictive ability (Q²). The first model, describing the long-term 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



gravimetric feeding responses, was developed and discussed in a previous paper (Bekaert et al., 

2021c). The second model regressed the CDC responses of the remaining unit operations (i.e. 

blending and compression) against the blend properties and process configurations for all processed 

blends. Prior to regression, unit variance (UV) scaling and mean centering was performed on the 

dataset and non-normally distributed responses were log transformed. 

 The model predictivity was externally validated with four additional ternary blends (Table 5). 

Two blends (i.e. F31 and F32) were composed of a new API (i.e. 9.93% theophylline anhydrous 

powder) combined with a cohesive or a dense filler (i.e. 89.32% PH101 or DCP, respectively) and 

0.75% MgSt. The new API was chosen in order to investigate if the model was able to make 

predictions for unknown materials. The other two additional ternary blends (i.e. F33 and F34) had a 

known blend composition (i.e. P_DP/PH101/MgSt or P_DP/PH200/MgSt), but in a different ratio (i.e. 

49.625/49.625/0.75%). This ratio was picked to challenge the model with blends where the higher 

API content could influence the processability. Prior to processing on the CDC-50, the off-line 

prepared blends were characterized for the same descriptors as the trial blends. Based on these 

values, the developed model predicted the required process settings and responses for the main 

blender and rotary tablet press. Next, the blends were processed at different main blender speeds 

(i.e. 200, 300 or 400 rpm) with a fixed impeller configuration (i.e. 10 radial mixing blades). Finally, a 

comparison between the predicted and observed values was made to determine how well the model 

could predict the required process settings and resulting responses. The comparison was performed 

by calculating the absolute and relative difference between the observed and predicted values (i.e. 

ErrorAbs and ErrorRel, respectively). 

 

4.3 Blend uniformity 

4.3.1 Blend uniformity measurement 

 The blend uniformity (BU) was measured at two separate timepoints during continuous direct 

compression. The Lighthouse™ probe monitored the micro-mixing performance of the blenders in 

the feed tube at the outlet of the lubricant blender. The Lighthouse™ probe collected spectra every 

second in the spectral region from 1091 to 2107 nm with a pixel dispersion of 3.97 nm. Each 

spectrum was the average of 7 scans with an integration time of 60 ms. Considering the blend 

movement in the feed tube and estimated penetration depth of 0.5 mm (i.e. average measured 

penetration depth, taking changes in blend movement speed and density differences of the blends 

into consideration), each measurement corresponded with a sample size between 25 and 29 mg. The 

SentroPAT FO probe, integrated at the die filling position in the feed frame of the tablet press (i.e. via 

a fixed external frame with caliper to accurately set the 1 mm distance from the paddle wheel 
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fingers) determined the blend uniformity just before the blend was compressed into tablets. Similar 

to the Lighthouse™ probe measurement, spectra were collected every second in the spectral region 

from 1091 to 2107 nm with a pixel dispersion of 3.97 nm. Each spectrum was the average of 10 scans 

with a 7 ms integration time. The fast moving and dense powder inside the feed frame, combined 

with a maximum penetration depth of approximately 1mm, allowed to measure a sample size of 

approximately one unit dose (i.e. 175 mg). The collected spectra were loaded into the corresponding 

calibration models in order to get a prediction of the API content over time. Based on the predicted 

API concentrations, the label claim (LC) (%) was calculated (Eq.5): 

 

        
                      

                   
      (Eq.5) 

 

4.3.2 Blend uniformity calibration models 

 PLS regression models for each processed blend were constructed for both implemented NIR 

probes (i.e. SentroPAT FO and Lighthouse™ probe) allowing in-line monitoring of the API 

concentration during continuous direct compression. Five calibration standards for each blend (i.e. 

4.97; 7.45; 9.93; 12.41; 14.9%) were measured using both probes, generating spectra used for the 

model development via SIMCA 16 software (Umetrics AB, Umeå, Sweden). The root mean squared 

error of cross validation (RMSEcv) of the models was used as an indicator for the model 

performance.  

 

4.3.2.1 Lighthouse™ probe 

 The calibration standards were measured in-line through the addition of the standards to the 

feed tube above the feed frame inlet, mimicking the blend movement in the feed tube. The 

Lighthouse™ probe collected spectra every second in the spectral region from 1091 to 2107 nm with 

a pixel dispersion of 3.97 nm. Each spectra was the average of 7 scans with an integration time of 60 

ms. The models were built by regressing the collected spectra (i.e. 5 calibration standards x 30 

spectra) with the corresponding API concentration. 

 

4.3.2.2 SentroPAT FO probe 

 The calibration standards for the SentroPAT FO probe were measured off-line by inserting the 

probe in bags containing the calibration standards. Every second spectra were collected in the 

spectral region from 1091 to 2107 nm with a pixel dispersion of 3.97 nm. Each spectrum was the 

average of 10 scans with a 7 ms integration time. Approximately 50 spectra, at different spots in the 

bag, were measured for each calibration standard, generating 250 off-line collected and pre-
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processed spectra. The calibration models were developed by regressing the measured spectra with 

their corresponding API concentration.  

4.4 Content uniformity 

4.4.1 Content uniformity measurement 

 The content uniformity (CU) was determined on a subset of sample bags collected during the 

trials (i.e. uneven numbered sample bags). Three random tablets from each sample bag (i.e. 3 x 20 

sample bags) were measured using NIR transmission and loaded into the corresponding calibration 

models.  

 Content uniformity calibration models were developed using the calibration standards from the 

blend uniformity calibration models. The calibration standards were tableted using a Modul™ P 

tablet press (GEA, Halle, Wommelgem) at similar tablet press settings (i.e. PCD, PCF and MCF) seen 

during the trials. Each calibration tablet was made in three different thicknesses (i.e. based on the 

minimal, average and maximal tablet thickness for each formulation, seen during the CDC-trials) in 

order to take the variability in tablet thickness into consideration. The thickness was varied by 

adjusting FD. Five tablets from each set of calibration tablets were measured using NIR transmission 

(Antaris™ II FT-NIR Analyzer, Thermo Fisher Scientific, Waltham, USA) in the spectral region from 

833.47 to 1333.16 nm with a spacing of 3.86 nm. Each spectrum was collected using 16 scans without 

attenuator and a detector gain of 100. In total 75 pre-processed spectra (5 calibration standards x 5 

tablets/calibration standard x 3 thicknesses) were regressed with their corresponding concentration 

via PLS regression using SIMCA 16 software (Umetrics AB, Umeå, Sweden). The root mean squared 

error of cross validation (RMSEcv) was used as an indicator for the model performance. 

 

4.4.2 Off-line verification 

 Off-line UV-VIS and HPLC analysis was performed on a subset of tablets as an analytical 

reference method to verify the API concentrations determined via in-line NIR (i.e. SentroPAT FO and 

Lighthouse™ probe) and off-line NIR transmission spectroscopy (i.e. Antaris™ II FT-NIR Analyser). The 

subset of tablets were selected at random from both good (i.e. F9 and F15) and poorly (i.e. F7 and 

F13) flowing blends as well as tablets from runs with API_sd (i.e. F5, F11, F17, F23 and F29). An in-

house HPLC method was applied for the analysis of tablets containing API_sd. Tablets containing a 

paracetamol grade (i.e. P_P, P_DP, P_µ) were analyzed via UV-VIS analysis. One tablet (i.e. 175 mg) 

was homogenized in 50 mL distilled water, diluted 1/50 and measured at a wavelength of 243 nm 

using a UV spectrophotometer with a 1 cm cell (Shimadzu UV-1650PC, Shimadzu Corporation, Kyoto, 

Japan). The API concentration was determined via calibration curves which were developed through 

the analysis of the calibration standards of the selected blends (cf. 4.3.2 Blend uniformity calibration 

models). 
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5 Results and discussion 

5.1 Blend selection and characterization 

 The blend characterization resulted in a principle component analysis (PCA) model with a 

goodness of fit (R²X) and prediction (Q²) of 85.4 % and 69.2%, respectively. Based on the blend 

properties, the relationship of the blends to each other is depicted by the scores plot (Figure 2a) and 

correlations between the blend properties are revealed in the loadings plot (Figure 2b). Both plots 

can be superimposed, revealing that blends with a similar location as properties on the loadings plot 

have high values for that property and low values for those at the opposite side of the origin. The 

clustering of the blends in the scores plot suggested a high contribution from the filler properties. In 

each cluster, a separation (i.e. along the x-axis; principle component 1) could be seen for the blends 

containing the highly cohesive and compressible APIs (i.e. MPT_µ and P_µ), indicating the impact of 

highly cohesive and compressible APIs on the overall blend. Blends containing DCP as filler (i.e. green 

dots) showed a clear separation from the other blends along the y-axis (i.e. principle component 2), 

suggesting that density was an important differentiator.  

 Overall, the chosen descriptors could be used to make differentiations between the blends, 

where principle component 1 (PC1) explained the variability in flowability and compressibility, while 

principle component 2 (PC2) showed the effect of the permeability and density of a blend. 

 

5.2 CDC-50 trials 

5.2.1 Blend processability 

 The CDC-50 trials revealed some challenges regarding the processability of the materials in 

different unit operations. During the feeding process several difficulties/limitations were observed 

when the process was run for longer periods of time (e.g. bridging, layering…), which had a negative 

impact on the down-stream unit operations. These problems were mainly related to the flowability 

and compressibility of the raw materials. These processability issues and their correlations with the 

material properties were described by Bekaert et al. (2021c). 

 For the blending step, both the main and lubricant blender exhibited limited processability 

difficulties for most of the selected blends. However, layering of the paddles for cohesive materials 

(i.e. P_µ, MPT_µ, C_P and P_P) was observed throughout the process (Figure 3). The degree of 

layering was dependent on the cohesivity of the materials in the blend, where blends containing P_µ 

and MPT_µ exhibited the highest layering potential. This layering could manifest problems related to 

blend uniformity for blends with a low content of the layered material, due to the relatively higher 

API loss on the paddles. 
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 During the tableting process several problems were observed related to the blend composition, 

which required an adjustment in composition or ultimately the removal of several blends from the 

experimental plan. Firstly, the ratio of blends containing Pearlitol 100 SD (SD100) was adjusted to a 

higher lubricant concentration (i.e. from 0.75% to 1.25%) in order to reduce the capping potential of 

the tablets. Capping (Figure 4a) occurred due to the high ejection forces which was caused by the 

brittle fracture nature of mannitol (Mohan et al., 2012). Brittle particles will break up, creating new 

unlubricated particle surfaces, which can induce higher ejection forces. Therefore, an increase in 

lubricant concentration should cover more unlubricated surfaces (Mohan et al., 2012). Secondly, the 

cohesive nature of particular blends (i.e. F6 – MPT_µ + SD100; F12 – MPT_µ + DCP; F24 – MPT_µ + 

T80) led to their removal from the experimental plan, since it was not possible to make tablets. 

Punch-sticking of MPT_µ combined with the brittle nature of SD100 and T80 resulted in broken 

tablets at the ejection chute. Furthermore, the low target tablet weight (i.e. 175 mg) generated thin 

tablets when dense fillers (i.e. DCP) were used (Figure 4b). This phenomenon combined with punch-

sticking of MPT_µ led to tablets that were broken easily during ejection. However, the punch-sticking 

phenomenon of MPT_µ was reduced through the addition of plastically deforming fillers (i.e. PH101 

and PH200), making it possible to produce tablets. 

 

5.2.2 Predictive model 

 The CDC-50 trials generated both blending (i.e. HM1, BRT1 and #BP1) and compression (i.e. FD, 

PCH, MCH, Force, PCD and RSDTW) responses which were included into one PLS model with three 

principle components (PC) and a goodness of fit (R²Y) and prediction (Q²) of 78.7% and 77.7%, 

respectively. Blend and content uniformity responses were not included due to their limited 

goodness of fit and predictive performance (i.e. R²Y < 16% and Q² < 12%). Additionally, data from the 

blends F6, F12 and F24 were excluded due to processability issues. The R²Y and Q² for each response 

is displayed in Table 6. Any correlation between the blend properties, process settings and process 

responses were established through the scores and loadings plots (i.e. PC1 vs. PC2 and PC1 vs. PC3) 

depicted in Figure 5. The scores-plot showed that the data corresponding to blend F7 (i.e. P_µ + DCP) 

were outside the 95% confidence level. However, these datapoints were not excluded in order to 

increase the predictive performance of the model. Additionally, coefficient plots were used to gain a 

better insight into the significance of the correlations using a 95% confidence level. 

 

5.2.2.1 Blending responses 

 High R²Y and Q² values were observed for the three collected blending responses (i.e. HM1, BRT1 

and #BP1) (Table 6), suggesting a high predictive performance of the model. A close correlation 

between the responses was observed (i.e. located close to each other on the loadings plot) since the 
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equations for BRT1 (Eq.1) and #BP1 (Eq.2) were both derived from HM1. Looking at the loadings plot 

for PC1 vs PC2 (Figure 5b), the blending response cluster and process settings (i.e. number of radial 

mixing blades (#RMB1); and impeller speed (Imp1)) were located relatively close to the origin and 

away from the blend property descriptors. This indicated that a limited correlation with the material 

properties, which was confirmed by the coefficient plot for BRT1 where the density-related 

descriptors (i.e. b, t, CBD) and porosity exhibited a direct and inverse correlation, respectively. 

These correlations could be explained by the fact that a certain blender fill level was required for the 

impeller blades to transport the material. Therefore, dense materials will have a larger hold-up mass 

for the same blender fill level compared to a less dense material.  

 The separation between blend properties and process settings was clearly visualized by the 

loadings plot for PC1 vs PC3 (Figure 5c). The blending process was mainly correlated with the number 

of radial mixing blades (#RMB1) and impeller speed (Imp1). The positive correlation with #RMB1 was 

caused by an increase in radial mixing potential due to the higher number of radial mixing blades, 

while less transport blades were available to push the blend forward. Therefore, more material was 

present in the blender at the same time, increasing the hold-up mass. Furthermore, the inverse 

correlation with Imp1 was attributed to the increased powder movement at higher impeller speed. A 

faster powder movement resulted in less material in the blender and consequently a lower hold-up 

mass. 

 Overall, these observations elucidated that the blending responses of divergent blends in the 

fully optimized and integrated CDC-50 blender setup was mainly dependent on process parameters 

(i.e. impeller speed) and equipment configurations (i.e. number of radial mixing blades). 

Furthermore, only limited blend properties (i.e. density-related descriptors) could be varied in order 

to change the blending responses. 

 

5.2.2.2 Compression responses 

 Based on the location on the loadings plot (Figure 5b), two clusters related to the compression 

step were found. The first comprised the tablet press settings (i.e. FD, PCH and MCH) needed to 

reach a tablet weight of 175 mg, pre-compression force of 1.5 kN and main compression force of 5 

kN at a throughput of 20 kg/h. The location of the required fill depth (FD) at the positive side of PC1 

(right side) indicated a positive correlation with the blend properties describing a poorly flowing (i.e. 

Cohesion, UYS), highly compressible (i.e. C_15kPa), friction generating (i.e. e, sf) and porous () 

blend. The irregular flow behavior of such blends resulted in a poor and inconsistent die filling of the 

narrow die cavities, requiring a larger fill depth in order to cope with the variability (Mehrotra et al., 

2009; Mendez et al., 2012; Peeters et al., 2015; Sinka et al., 2004; Sun, 2010; Van Snick et al., 2017a; 
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Van Snick et al., 2018; Yaginuma et al., 2007). Blends with high porosity were also highly 

compressible, resulting in an inconsistent die filling. Therefore, properties describing a consistent die 

filling (i.e. high flowability; ffc, ffp and FR) were located at the opposite side along PC1. The density 

(i.e. b, t, true and CBD) of a blend also impacted the fill depth: smaller fill depths were sufficient 

for denser materials to reach the specified tablet weight. The positive correlation of permeability (i.e. 

k_15kPa) along PC2 (y-axis) was attributed to the larger volume of highly permeable blends, thus 

requiring a larger fill depth. Furthermore, an inverse relationship of wall friction (i.e. WFA) was seen 

which could be attributed to the fact that highly porous materials tended to have a lower WFA (i.e. 

PH101 and PH200). Similar observations were seen for the remaining tablet press settings (i.e. MCH 

and PCH) located close to FD, indicating a close correlation with each other. This correlation was 

attributed to the dependency of MCH and PCH to the fill depth, since an adjustment in fill depth 

required a change in PCH and MCH in order to reach the required compression forces. Furthermore, 

no influence from the blending process was observed, based on the location of the blending 

descriptors (i.e. #RMB1 and Imp1) close to the origin in the loadings plot for PC1 vs PC2 (Figure 5b) 

and through their separation in the loadings plot for PC1 vs PC3 (Figure 5c). 

 The second cluster contained the compression (i.e. Force, PCD) and tablet (i.e. RSDTW) responses 

(Figure 5b). These responses described the variability introduced by the blends during the 

compression process once the target settings (i.e. tablet weight, PCD, PCF and MCF) were achieved. 

A limited and insignificant impact of the blending descriptors (i.e. located close to the origin) was 

observed, whereas the die filling consistency could be seen as the main contributor for the 

compression and tablet responses. Therefore, all responses in the cluster showed similar correlations 

with the blend properties related to die filling: flowability (ffc, ffp and FR), cohesion (cohesion, UYS, 

MPS), friction (e, sf), compressibility (C_15kPa), density (b, t, true and CBD), porosity () and 

WFA. A lower variability (i.e. inverse correlation; at the opposite side of the loadings plot) was 

observed for good flowing and dense blends since these exhibit an easy and consistent die filling 

potential. On the other hand, materials with a high cohesivity, friction and compressibility reduced 

the powder flow. Similar observations were made by Van Snick et al. (2018) where batch-wise 

blending was performed prior to compression instead of continuous blending, thus confirming their 

conclusions on the impact of die filling on the compression step.  

 Overall, the descriptors for the compression step had a high goodness of fit (R²Y) and predictive 

ability (Q²) (Table 6), which was calculated via internal cross validation. These observations 

elucidated the potential to predict the processability of a new blend on the CDC-50. 

 

5.2.3 Model validation 
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 The four new ternary blends (Table 5) were characterized for the same descriptors as the trial 

blends and included into the blend characterization PCA model (Figure 2). The data from the 

processed validation blends on the CDC-50 were compared with the values predicted by the model. 

An overview of the observed and predicted values, combined with the calculated prediction errors, is 

given in Table 7. The table could be divided into three sections: process settings (i.e. FD, PCH and 

MCH), blender responses (i.e. HM1, BRT1 and #BP1) and compression (Force, PCD) and tablet 

responses (i.e. RSDTW). 

 Blend F31 (i.e. T_P + PH101 + MgSt) which was the blend with a new API in the same API ratio as 

the trial blends, exhibited a high predictive performance (i.e. < 30% ErrorRel) for the process settings 

and the blender responses (i.e. HM1, BRT1 and #BP1). However, an overprediction for the 

compression and tablet responses was seen, resulting in a larger predictive error (30% < ErrorRel < 

60%). The larger error could originate from the variability in tablet weight during compression. 

Theoretically, the tablet weight was fixed at 175 mg, but during steady state small changes in powder 

flow/die filling could result in an altered tablet weight. These changes in tablet weight influence the 

compression and tablet responses and are unpredictable, thus reducing the prediction of these 

responses. Blend F32 exhibited larger predictive errors for the process settings and blender 

responses compared to blend F31. Additionally a very poor predictive performance for the 

compression and tablet responses was observed. These observations could be explained by the fact 

that, compared to the location of F31 inside the overall blend cluster, F32 was located between both 

filler clusters in an untested region (Figure 2), hence the developed prediction model does not 

contain sufficient data to make accurate predictions. Therefore, continuous model learning has to be 

applied where the gaps in the model (e.g. blends outside of the blend space; blends located inside 

the blend space, but in areas with little to no available data) are filled through the addition of new 

experimental data. The need for continuous model learning was also visible for the blends with an 

altered blend-ratio (i.e. F33 and F34) for which similar prediction error values were observed.  

 Overall, a good predictability for the process settings and blending step was achieved for new 

blends with the same API ratio located inside the PCA cluster. Based on the larger prediction errors 

for blends in untested areas of the PCA cluster or blends with different ratios, additional dedicated 

experimental trials are required using divergent blend compositions. The reduced predictive 

performance (i.e. larger prediction errors) is a typical disadvantage of the empirical models used 

during this study. This could be improved by applying pure mechanistic models. However, such 

models make a lot of assumptions (Nestorov et al., 1999). An additional disadvantage for both 

models is the inability to cope with non-linear phenomena which could be solved using neural 

networks (Thakur et. al, 1991; Wong et al., 2018). Taking the different modeling techniques into 

consideration combined with continuous model learning could further improve the predictive 
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performance for the blending and compression step. However, based on the current predictive 

ability of the model, time needed to optimize the CDC-50 process could be reduced. 
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5.3 Blend uniformity 

 Figure 6 gives an overview of the average blend uniformity label claim (LC) for each performed 

trial run measured by both NIR probes (i.e. Lighthouse™ and SentroPAT FO probe). Some datapoints 

are missing due to processability issues such as punch sticking and tablet capping. Based on the 

standard deviation of the measurement (i.e. 1.0 to 15.0%) and the relative prediction error of the 

calibration models (i.e. 2.0 to 20.0%), most trial runs were able to contain the target concentration 

within their error bars. Furthermore, no statistically significant impact from the blender 

configurations and blender speeds on the label claim and its variability was observed, indicating a 

highly robust setup and confirming similar observations by Van Snick et al. (2017a). 

 Generally, the error bars of the SentroPAT FO predictions were larger compared to the 

Lighthouse™ probe, which could be attributed to the prediction error of the calibration models. 

Higher prediction errors were found for the SentroPAT FO models, since these were developed via 

off-line static measurements compared to the dynamic in-line models of the Lighthouse™ probe. 

Dynamic measurements take the powder flow and density changes during sample presentation into 

consideration, enhancing the predictive ability (i.e. lower prediction error) (Ph.Eur. 6.0, 20240, 

01/2005). The absence of these phenomena during the development of the static calibration models 

of the SentroPAT FO probe could generate a larger variability in the BU measurement as well as 

result in under- or overpredictions of the actual blend uniformity. Due to the inaccessibility to the 

blender outlet during the process, no samples were taken of the blend. Therefore, under- or 

overpredictions were investigated via CU of the tablets (Figure 6). Small differences between BU and 

CU could be due to further (de)mixing by the feed frame, but this would have a limited influence on 

the SentroPAT FO values, since BU was measured just before die-filling. An example of an 

underprediction can be seen for the blends containing P_DP and DCP where a significant difference 

was observed between the online measured BU and off-line measured CU via UV-VIS (Figure 6c). This 

phenomenon could be explained by the combination of highly dense and good flowing powders, 

causing density changes during the BU measurement.  

 Furthermore, a formulation-dependent effect on the BU variability was observed where an 

increase in variability was present for blends containing a cohesive component (i.e. P_µ, P_P and 

MPT_µ blends; Figure 6a,b,f). The cohesiveness of such formulations resulted in powder adhesion to 

the probe (i.e. window fouling) which artificially increased or decreased the concentration of the 

blend, resulting in a larger variability. Window fouling was visually observed throughout the 

experimental runs and could be resolved through frequent cleaning of the probes. 

 The phenomena of window fouling and changes in sample presentation (e.g. density changes, 

flow changes) indicate the need for proper implementation of the sensors in order to achieve a 

consistent and representative measurement. Therefore, further dedicated experiments are required 
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to optimize the implementation of PAT-tools depending on the pharmaceutical process and 

processed powders. 

 

5.4 Content uniformity 

 Based on the prediction error (i.e. 2.0 to 7.0%) and the standard deviation from the 

measurement (i.e. 1.0 to 14%), the error bars for most of the grab samples overlapped with the 

required content uniformity and could be linked to the blend uniformity measured just before die-

filling (i.e. SentroPAT FO probe measurements). Due to the absence of window fouling, lower 

prediction errors were achieved. However, as depicted in Figure 7a, the content uniformity of tablets 

containing API_sd suggested that their API concentration was too high even though the blend 

uniformity indicated otherwise (Figure 6e). In order to determine if the predictions were correct, off-

line HPLC analysis was performed to determine the actual concentration in the tablets. Based on the 

off-line analysis (Figure 6e and 7a), the tablets contained a lower concentration (i.e. similar to the BU 

measurement) than predicted. These observations indicated that the calibration model did not 

accurately predict the API concentration and a formulation-dependent CU measurement is needed.  

 Tablets containing highly cohesive materials (i.e. P_µ + PH101 and MPT_µ blends) exhibited a 

larger variability in API content (Figure 7b) which could be attributed to punch-sticking (i.e. the 

cohesive API sticks to the punches) and/or inconsistent die-filling where a variable amount of 

cohesive material is filled into the die (Van Snick et al., 2018). The effect of inconsistent die-filling 

was elucidated in Figure 7b where the runs with a high RSD_TW, which is related to inconsistent die-

filling, also exhibited larger CU variabilities.  

 Off-line UV-VIS analysis for tablets with the correct API content, confirmed that NIR transmission 

measurements were capable of predicting the actual content uniformity (Figure 6a and 7b). 
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6 Conclusion 

 Formulations with cohesive/adhesive properties impacted the processability during both 

blending (i.e. impeller paddle layering) and compression (i.e. punch sticking) phases, resulting in the 

need for blend composition changes. In addition, the brittle nature of some blends resulted in low 

quality tablets (i.e. capping). Quantitative relationships between blend properties and 

blending/compression CQAs and CPPs were established through PLS regression and were used to 

develop a predictive model. Clear correlations were found between the blending responses and 

blender configuration (i.e. #RMB1 and Imp1), suggesting a large freedom in configuration adjustments 

in order to acquire the desired blending responses. On the other hand, only limited correlations with 

the blend properties (i.e. density) were observed, indicating a robust blending setup with limited 

impact of blend properties. The compression step exhibited significant correlations with the blend 

properties related to a consistent die-filling process (i.e. flowability, compressibility, density and 

permeability) where an adjustment in blend composition could significantly alter the tablet quality. 

Secondly, further model optimization and learning is required in order to allow for more accurate 

predictions of deviating and challenging blends (e.g. blends at the edges of the model). Overall, the 

predictive model could reduce the number of trial runs needed to optimize a process (e.g. reduction 

or elimination of trial-and-error runs to determine the tablet press settings, such as FD, PCH and 

MCH, through the correlation between these parameters and the die-filling properties), this reducing 

the development time and cost of new drug products. Finally, blend and content uniformity 

measurements gave insights into the robustness of the process. Larger prediction errors as well as 

under- and overpredictions were seen for the BU measurements due to challenges regarding the 

probe implementation (i.e. inconsistent sample presentation and window fouling), resulting in 

measurements with a higher uncertainty. Furthermore, CU and off-line UV-VIS/HPLC analysis 

elucidated that a higher tablet weight variability (i.e. inconsistent die-filling) and the occurrence of 

punch sticking had a negative impact on CU. 
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Table 1: Overview of selected materials. 

Material Supplier Code 

 Paracetamol powder  Mallinckrodt  P_P 

 Paracetamol dense powder  Mallinckrodt  P_DP 

 Paracetamol micronized  Mallinckrodt  P_µ 

 Caffeine anhydrous powder  BASF  C_P 

 Metoprolol tartrate micronized  Utag  MPT_µ 

 Theophylline anhydrous powder  Siegfried  T_P 

 Spray dried API  Janssen  API_sd 
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 Pearlitol 100 SD  Roquette  SD100 

 Emcompress AN  JRS  DCP 

 Avicel PH-101  FMC  PH101 

 Avicel PH-200  FMC  PH200 

 Tablettose 80  Meggle  T80 

 Ligamed MF-2-V  Peter Greven  MgSt 
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Table 2: Overview of the ternary blends. 

Blend API Filler Lubricant 

F1 P_µ 

SD100 MgSt 

F2 P_P 

F3 P_DP 

F4 C_P 

F5 API_sd 

F6 MPT_µ 

F7 P_µ 

DCP MgSt 

F8 P_P 

F9 P_DP 

F10 C_P 

F11 API_sd 

F12 MPT_µ 

F13 P_µ 

PH101 MgSt 

F14 P_P 

F15 P_DP 

F16 C_P 

F17 API_sd 

F18 MPT_µ 

F19 P_µ 

T80 MgSt 

F20 P_P 

F21 P_DP 

F22 C_P 

F23 API_sd 

F24 MPT_µ 

F25 P_µ 

PH200 MgSt 

F26 P_P 

F27 P_DP 

F28 C_P 

F29 API_sd 

F30 MPT_µ 
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Table 3: Overview of blend descriptors and their respective abbreviation, adopted from Van Snick 

et al. (2018). 

Characterization 
method 

Descriptor 
Abbrevia

tion 

Flowpro Flow through an orifice (= Flowrate) FP 

FT4 powder 
rheometer 

Compressibility (at 15 kPa), b from Kawakita equation 
C_15kPa, 

b 

Conditioned bulk density CBD 

Permeability at 15 kPa k_15kPa 

Susceptibility of permeability to Compressibility Index (slope) k_CI_Sus 

Helium 
pycnometry 

True density, porosity true,  

Tapping device 
Bulk and tapped density b, t 

Compressibility Index CI 

Ring shear tester 

Angle of internal friction, angle of internal friction steady state flow, 
effective angle of internal friction 

lin, sf, 

e 

Cohesion c 

Consolidated density-weighed flow ff 

Flow function coefficient, major principal stress, unconfined yield 
stress 

ffc, MPS, 
UYS 

Wall friction angle WFA_S 
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Table 4: Overview of CDC-50 unit operations and NIR tools, their corresponding responses and 

used abbreviation. 

Unit operation Response Abbreviation 

LIW feeder 

Screw speed (rpm) SS 

Powder net weight (g) nw 

Mass flow rate (g/s) MF 

Feed factor (g/revolution) FF 

Main and lubricant blender 

Main blender hold-up mass (g), lubricant blender hold-up mass (g)  HM1, HM2 

Bulk residence time main blender (s) BRT1 

Number of blade passes main blender #BP1 

  Fill depth (mm) FD 

Compression station 

Main compression height (mm), pre-compression height (mm) MCH, PCH 

Main compression force variability (%) Force 

Pre-compression displacement variability (%) PCD

Tablet weight variability (%) RSDTW 

Tablet porosity Tablet 

SentroPAT FO 
probe/Lighthouse™ probe 

Blend uniformity (%), Label claim (%) BU, LC 

Blend uniformity variability (%) RSDBU 

Antaris™ II FT-NIR Analyzer Content uniformity (%), content uniformity variability (%) CU, RSDCU 
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Table 5: Ternary blends used for external validation. 

          

Blend API Filler Lubricant API/filler/lubricant (%) 

F31 T_P PH101 
MgSt 9.93/89.32/0.75 

F32 T_P DCP 

F33 P_DP PH101 
MgSt 49.625/49.625/0.75 

F34 P_DP PH200 
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Table 6: Overview of the constructed PLS model. R²Y and Q² are given for the overall model and all 
responses. 

Overal model 

#PC R²Y Q² 

1 0.307 0.303 

2 0.524 0.512 

3 0.787 0.777 

Blending responses 

Name R²Y Q² 

HM1 0.856 0.842 

BRT1 0.856 0.842 

#BP1 0.827 0.818 

Compression responses 

FD 0.804 0.801 

PCH 0.856 0.848 

MCH 0.601 0.594 

force 0.736 0.714 

PCD 0.811 0.803 

RSDTW 0.729 0.715 
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Table 7: Overview of the observed versus predicted values and corresponding prediction error for 

the model validation. 

 

Compression and tablet responses 

                      

Process settings 

 
Blen

d 
Imp

1 

FD (mm) PCH (mm) MCH (mm) 
 

Observe
d 

Predicte
d 

Error 
(%) 

Observe
d 

Predicte
d 

Error 
(%) 

Observe
d 

Predicte
d 

Error 
(%)  

F31 

200 9.80 9.74 0.58 5.67 5.73 0.97 4.77 4.93 3.38 
 

300 9.94 9.93 0.12 5.67 5.76 1.65 4.75 4.92 3.62 
 

400 9.80 10.12 3.23 5.63 5.80 3.05 4.75 4.91 3.43 
 

F32 

200 3.99 3.82 4.37 4.37 4.86 11.19 4.11 4.53 10.12 
 

300 3.96 3.89 1.81 4.40 4.90 11.30 4.13 4.52 9.37 
 

400 3.92 3.96 1.07 4.37 4.94 12.94 4.11 4.51 9.68 
 

F33 

200 6.52 7.60 16.54 5.59 5.46 2.40 4.95 4.81 2.82 
 

300 6.61 7.74 17.14 5.57 5.49 1.36 4.93 4.80 2.61 
 

400 6.67 7.89 18.29 5.59 5.53 1.02 4.94 4.79 2.99 
 

F34 

200 6.05 7.75 28.04 5.61 5.73 2.23 4.94 5.03 1.86 
 

300 6.05 7.89 30.47 5.61 5.77 2.91 4.94 5.02 1.67 
 

400 6.12 8.04 31.43 5.58 5.81 4.15 4.92 5.01 1.90 
 

Blender responses  

 
Blen

d 
Imp

1 

HM1 (g) BRT1 (s) #BP1  

Observe
d 

Predicte
d 

Error 
(%) 

Observe
d 

Predicte
d 

Error 
(%) 

Observe
d 

Predicte
d 

Error 
(%)  

F31 

200 332.3 303.1 8.77 59.8 54.6 8.77 199.4 244.8 22.80 
 

300 241.6 211.5 12.46 43.5 38.1 12.46 217.4 178.5 17.92 
 

400 182.0 147.6 18.92 32.8 26.6 18.92 218.4 130.1 40.43 
 

F32 

200 1034.0 662.0 35.97 186.1 119.2 35.97 620.4 512.2 17.44 
 

300 273.4 461.9 68.95 49.2 83.1 68.95 246.1 373.4 51.73 
 

400 162.8 322.3 97.95 29.3 58.0 97.95 195.4 272.2 39.31 
 

F33 

200 840.0 425.1 49.39 151.2 76.5 49.39 504.0 334.3 33.68 
 

300 459.2 296.6 35.41 82.7 53.4 35.41 413.3 243.7 41.04 
 

400 247.1 206.9 16.26 44.5 37.3 16.26 296.5 177.6 40.10 
 

F34 

200 907.3 496.4 45.29 163.3 89.4 45.29 544.4 384.9 29.30 
 

300 284.2 346.3 21.86 51.2 62.3 21.86 255.8 280.6 9.68 
 

400 122.1 241.6 97.89 22.0 43.5 97.90 146.5 204.5 39.58 
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Blend Imp1 
Force (%) PCD (%) RSDTW (%) 

Observed Predicted Error (%) Observed Predicted Error (%) Observed Predicted Error (%) 

F31 

200 0.50 0.71 41.99 1.44 2.17 50.62 2.23 3.49 56.26 

300 0.54 0.73 34.83 1.65 2.24 35.94 2.33 3.55 52.05 

400 0.55 0.75 35.76 1.65 2.32 40.59 2.26 3.61 59.46 

F32 

200 0.23 0.53 132.45 0.77 1.70 121.18 0.84 2.33 177.40 

300 0.22 0.55 149.22 0.75 1.76 134.83 0.77 2.37 208.10 

400 0.25 0.56 124.91 0.75 1.82 142.85 0.74 2.41 225.05 

F33 

200 0.53 0.68 27.70 1.90 2.12 11.32 2.26 3.24 43.41 

300 0.66 0.69 5.16 1.66 2.19 31.77 2.09 3.29 57.34 

400 0.80 0.71 11.03 2.11 2.26 7.21 2.12 3.35 58.15 

F34 

200 0.13 0.29 119.97 0.40 0.66 65.99 0.55 1.25 128.78 

300 0.13 0.29 125.58 0.35 0.69 96.18 0.57 1.27 124.85 

400 0.18 0.30 67.08 0.34 0.71 108.85 0.55 1.29 133.90 

Figure 1: Flowsheet of the CDC-50. Material handling (■), loss-in-weight feeding (■), main blender 

(■), lubrication (■), feed tube (■), in-line NIR equipment (■) and rotary tablet press (■). Figure 

reprinted from Van Snick et al. (2017a) with permission of Elsevier. 

 

Figure 2: PC 1 vs PC 2 scores (a) and loadings (b) plot of the characterized blends. Blends are colored 

according to their filler. External validation blends are marked with a black diamond. 

 

Figure 3: Layering of P_P on the impeller shaft and paddles. 

 

Figure 4: (a) Tablets produced with blend F2 (i.e. P_P + SD100) during the CDC-50 trials exhibiting 

capping. (b) Thin tablets produced with blend F9 (i.e. P_DP + DCP) which were prone to breakage.  

 

Figure 5: Scores and loadings plots of the overall PLS model with: (a) PC 1 vs PC 2 scores and (b) 

loadings plot; (c) PC 1 vs PC 3 loadings plot. Blends are colored according to their filler. The naming 

consists of the blend name followed by the #RMB1 and Imp1 (e.g. _10_300 = 10 RMB at 300 rpm). 

Score plot labels were removed to increase visibility. The enlargement of one cluster is a 

representation of the location for each trial run in a cluster. 

 

Figure 6: Overview of the average BU label claim measured with the SentroPAT FO (left) and 

Lighthouse™ (right) probe for the trial runs with blends containing: (a) P_µ; (b) P_P; (c) P_DP; (d) 

C_P; (e) API_sd; (f) MPT_µ. Blends are colored according to the filler with in each color cluster from 

left to right the experimental run: 10_300; 16_200; 16_400; 4_200; 4_400. The different markings 

stand for:     = label claim;    = Off-line analysis.  
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Figure 7: Overview of the average CU label claim measured with the Antaris™ II FT-NIR Analyzer for 

the trial runs with blends containing: (a) API_sd and (b) P_µ. Blends are colored according to the 

filler with in each color cluster from left to right the experimental run: 10_300; 16_200; 16_400; 

4_200; 4_400. The different markings stand for:     = label claim;    = RSD_TW;    = Off-line analysis. 
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