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Abstract

Electrospraying (ES) is a state-of-the-art processing technique with the promise of achieving key 
nanotechnology and contemporary manufacturing needs. As a versatile technique, ES can 
produce particles with different sizes, morphologies, and porosities by tuning a list of experiment 
parameters. However, this level of precision demands an exhaustive trial-and-error approach, at 
high costs and heavily relies on processing expertise. The present study demonstrates how 
machine learning (ML) can expedite the optimization process by accurately predicting particle 
diameter, for both nano- and micron-sized particles. This was achieved by constructing an 
informative electrospraying database containing 445 records from the literature, followed by the 
development of predictive ML models. Feature engineering techniques were explored, where 
ultimately it was found that solvent physiochemical properties as the molecular representation 
and data with imputation provided models the highest performance. The top two models were 
XGBoost and Random Forest (RF), which yielded root-mean-squared errors (RMSE) of 3.91 μm 
and 6.19 μm evaluated by 5-fold cross-validation (CV), respectively. These models were 
experimentally validated in-house with different combinations of experiment parameters, where 
RMSE between the predicted and actual particle size was found to be 1.30 μm for the XGBoost 
model and 1.62 μm for the RF model. Therefore, it was concluded that data generated by the ES 
literature, in addition to being both cost- and material-free, can yield high-performing ML models 
for predicting particle size. The ML models were also consulted to determine the key processing 
parameters that govern particle size, where it was concluded that the models learnt similar 
attributes identified by scaling laws.

Keywords:  continuous manufacturing; nanomedicines & nanomaterials; digital fabrication 
technologies; in silico modelling; artificial intelligence.
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1. Introduction
Electrospray (ES) is a powder fabrication technique expected to be a key driver in the 
nanotechnology sector for its ability to seamlessly produce nano-sized particles [1–5]. Whilst 
other technologies provide limited control over particle size and morphology, ES has been 
successfully demonstrated to produce various morphologies, including nanorods, nanofibers, and 
nanoribbons[6–8]. In addition, the fast-drying nature and one-step procedure of ES presents an 
opportunity for the technology to be integrated into continuous manufacturing applications [9–
15]. Furthermore, ES allows for mild processing conditions where no high heat treatment nor 
high pressure are required throughout the process, which is especially favoured in the drug 
delivery and tissue engineering research for the production of particles loaded with sensitive 
materials [16–18]. Collectively, these traits of ES provide it with the potential to address unmet 
needs in a variety of fields, and thus a fabrication method of topical significance [19–23]. 

The versatility of ES stems from a range of tuneable parameters that provides users with the 
flexibility to achieve varying particle properties, making it a favourable fabrication technique. 
However, this versatility becomes a double-edged sword in the designing phase. This is because 
the process of finding out a suitable combination of interrelated parameters to achieve the 
desired properties is highly complicated. On the one hand, the number of possible combinations 
of parameters grows exponentially with the number of variables associated with the ES 
processing. Furthermore, the extra time and efforts to characterize the products, which are 
normally in the nano and microscale, make it a time- and resource-consuming process to optimize 
ES products. Therefore, there is a pressing need for tools that enable real-time prediction of the 
ideal parameters to expedite processing of the desired products.

A standard ES setup design contains a high voltage power source, a syringe pump, a metal 
collector, tubing and a syringe with a metal nozzle [24]. During the ES process, a viscous solution 
is pumped to the metal nozzle and charged by the electric field. The presence of high voltage will 
lead to the formation of liquid jets and these jets further break down into tiny liquid droplets. 
Then, the solvent in these droplets will evaporate in situ, which subsequently forms solid particles 
comprising solutes [25,26]. The processing parameters include the applied voltage, the flow rate 
of the liquid, the collection distance between the nozzle and the plate, and the diameter of the 
metal nozzle [27]. Other than processing parameters, the properties of the ES solution can also 
affect the product. For example, the type of solvent and the concentration of the solute determines 
the evaporation rate, viscosity, and other solution properties. These solution parameters will 
impact the behaviour of liquid droplets and eventually change the properties of particles. 
Furthermore, environmental parameters like temperature and humidity during spraying can 
shift the evaporation speed of the liquid and likewise affect the formation of particles.

Currently, the parameter selection process relies heavily on prior experiences and is conducted 
through trial-and-error, which is costly, time consuming and resource intensive. The problem is 
further compounded when expensive materials, such as poly(lactic-co-glycolic acid) (PLGA) are 
being processed. Thus, methods that can reduce cost, material expenditure and time will 
accelerate ES product developments. Alternative to this empirical approach is to leverage in silico 
tools to diminish the number of experiments needed to achieve the desired products [28–31]. An 
emerging in silico tool is machine learning (ML), a subfield of artificial intelligence (AI), which 
uses historical data to predict future outcome. As a computational tool, ML offers several 
advantages that other computational methods lack, such as handling high-dimensional data, large 
datasets, and computing a range of data formats, including numeric, texts and images [32–34]. 
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Moreover, in comparison to numerical modelling techniques, ML is computationally fast, which 
obviates the need for high-end computers. Collectively, these attributes explain why ML has 
attracted considerable attention across many sectors.

While ML has gained fame in many areas including autopilot cars, face recognition, and online 
translation, as well as outperforming clinicians in diagnostic tests, its application in fabrication 
technologies remains thoroughly underexplored [35–37]. When it comes to fabrication 
processes, ML was exploited to predict the product properties of three-dimensional (3D) printing 
and electrospinning [38–40]. These studies have reported that ML has the potential to accelerate 
developments. Nevertheless, fewer than a handful of applications using ML to assist ES particle 
fabrication can be found in previous literature [41,42]. A challenge with ML is the need for 
sufficient data for ML algorithms to learn the patterns associated between the input and output 
variables. In material science, data collection can be costly, time consuming and resource 
intensive. Even for people who are willing to build ML models from scratch to expedite their 
research, the cost is undesirable and prohibitive, let alone other users in the ES community who 
only need a tool to guide experiment design. Despite previous studies provided some ready-to-
use ML models for ES, these models are only applicable to the specific formulation from which 
the model was trained. Thus, there is an unmet need for a model that is able to consider various 
formulations used by different researchers for different purposes. This again exacerbate the 
difficulty of data generation. Fortunately, the scientific literature contains copious data that can 
be extracted by researchers to begin developing ML models. Recently it was revealed that a large 
number of formulations, over 900, can be extracted from the literature, which was subsequently 
used to develop ML models [43]. The authors of the study reported that the literature presented 
with a greater number of formulations than what was available within their in-house dataset. 
Moreover, the data was generated by several research groups, which reduces experimental bias 
and consequently results in ML models with better generalisability. Overall, the researchers 
concluded that the literature was a viable approach to rapidly gain a large dataset for developing 
effective ML models. 

To that end, the present work investigated exploiting the literature to build ML models to predict 
ES particle size, as the technology remains a nascent powder fabrication technology. The largest 
ES product database to date was compiled, with 445 data records by extracting information from 
45 selected previous publications on ES. The database covered 5 commonly used polymers in 13 
different solvent systems and was enriched with detailed documentation of experiment 
parameters. From the database, records with PLGA as the polymer was selected to benchmark 
the performance of several ML models with different feature engineering techniques in the task 
of predicting the product’s particle diameter. The study concluded by applying the best trained 
ML models to predict PLGA particle sizes produced via an in-house ES setup. For the first time, it 
was demonstrated that ML successfully learnt the correct ES processing features as traditional 
mechanistic models, and in the process yielded highly-accurate predictions when paired with 
literature-acquired data. The study highlights the promise of ML in the design of automated ES 
technologies, thereby facilitating the manufacturing process.
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2. METHODS

2.1. Data Acquisition
All articles used for data extraction were retrieved from the Web of Science Core Collection by 
querying the search engine with the following term ‘(ALL=((ELECTROSPRAY* OR 
(ELECTROHYDRODYNAMIC ATOMIZATION)) AND (MICROSPHERE OR PARTICLE)))’. The results 
were refined by limiting the year of publication to after 2000 and excluding publications in the 
analytical chemistry field. In addition, only articles reporting experiments with PLGA, 
polycaprolactone (PCL), poly(lactic acid) (PLA), chitosan (CS), and polyvinylpyrrolidone (PVP) 
were included. Manual data extraction was conducted to construct the ES database. In short, the 
experiment parameters along with the yielded particle diameters were collected in a spreadsheet.  
Experiment parameters were divided into three parts: 1) processing parameters including the 
applied voltage, flow rate, collection distance, and needle diameter, 2) solution parameters such 
as the type of the polymer and solvent, the concentration of the polymer and the properties of the 
solution, and 3) environmental parameters including temperature and humidity during the 
experiment. For mixed solvent systems, only the primary solvent with the highest volume ratio 
were recorded. All units were converted to the same in the database. For incomplete reports of 
experiment parameters in the articles, the missing value was left blank for further processing. 
Two examples of data records in the database were shown in Table S1. Data visualization was 
carried out on the whole database using statistical data visualization library Seaborn (v0.11.2). 

2.2. Feature Engineering
PLGA was selected as the model polymer to carry out feature engineering and ML model building 
due to the abundance of data when compared with other polymers. Since some parameters had 
insufficient records, only six parameters were chosen to be the input of the ML models: the 
concentration of the polymer, the type of the solvent, the flow rate, the voltage applied, the 
diameter of the needle, and the collection distance. Noteworthy, techniques in cheminformatics 
were applied to represent the type of the solvent in a computer-understandable way, details of 
which will be further explained in the following section. And a flow chart of procedures in feature 
engineering is shown in Figure 1.
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Figure 1. A flow chart of procedures in feature engineering. The raw data collected from 
previous publications were categorized by the type of polymer and only the records using PLGA 
was selected. Only six selected parameters (the “features”) and the product mean diameter (the 
“label”) were used for ML. The type of solvent was further represented by molecular 
featurization techniques before standardization was carried out. Finally, features and labels 
were concatenated, imputed, and shuffled.

2.3. Solvent Featurization
All other input parameters (“features”) except the type of solvents can be expressed by numerical 
values, which can be easily processed by ML algorithms. However, the type of solvents, normally 
represented by their chemical names, are texts that cannot be understood by computers unless 
ML algorithms for texts are used [37]. In order to represent different molecules, in 
cheminformatics, molecular featurization techniques were developed [44,45]. These techniques 
are widely applied in various ML applications in drug development and quantitative structure-
property relationship (QSPR) modelling [46,47]. Briefly, molecular featurization techniques use 
a series of numbers that describes the property of a molecule (e.g., molecular weight, number of 
acid groups, and number of electron donors) as the representation of the molecule. In this study, 
four molecular featurizations were performed through the DeepChem (v2.5.0) Python library: 
Mol2Vec, Mordred, RDKit, and ECFP. A detailed introduction of these featurization techniques can 
be found in their documentations, respectively [48–51]. In addition, two extra featurization 
methods were implemented manually: EHDProperties and one-hot featurization. The 
EHDProperties featurization used 8 important solvent properties collected from PubChem 
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including boiling point, density, dipole moment, dielectric constant, viscosity, surface tension, 
relative evaporation rate (where Butyl acetate=1), and the Hansen solubility distance calculated 
with respect to PLGA [52,53]. For one-hot featurization, a vector consisting of 13 entries 
(corresponding to 13 solvents) was used to represent a solvent where the presence of the solvent 
was indicated by 1 of that specific entry and the rest of other entries were filled by 0. To address 
the problem of high dimensionality, principal component analysis (PCA) was performed on the 
features generated by molecular featurization techniques. The dimension of different 
featurizations were all compressed to 8 for comparison.

2.4. Data Standardization, Transformation, and Imputation
Standardization was performed on features to remap the distribution, which could help 
accelerate training [54]. This was achieved by:

𝑥𝑠𝑡𝑑 =
𝑥 ― 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
Equation 1

where  is the value before standardization and  is the value after standardization. In addition, 𝑥 𝑥𝑠𝑡𝑑
the particle’s diameter, denoted as the prediction “label” of an experiment record, was 
transformed into logarithmic form. Then, all features including polymer concentration, flow rate, 
applied voltage, needle diameter, collection distance, and the type of solvent (represented by 
molecular featurization techniques after PCA dimensionality reduction) were concatenated into 
a long vector denoted as “features” for an experiment record. Furthermore, data extracted from 
previous publications contained missing values due to incomplete reporting of parameters. The 
intentionally-left-blank values in the spreadsheet were filled by “NaN” as the identification of 
missing data. Four different strategies were implemented to handle the missing values. Two of 
them were actively filling the blank values through different data imputation techniques provided 
by the Python library Sci-kit learn (v0.24.2) [55]. By using the k-nearest neighbour (kNN) 
algorithm, the kNN method imputed the missing values with the average of k-th most “similar” 
experiment. The Mean method, as suggested by its name, used the mean value of that variable in 
the database to fill the blank. The rest two strategies didn’t deal with the missing values as 
controls. The None method directly deleted all records that contained missing values for 
comparison of performance. The leave_empty method left the records with missing values as 
“NaN” in the database without any processing. Although most of ML methods cannot hanle data 
with missing values, certain algorithms are capable of utilizing these incompelete information to 
build the model. Thus, the leave_empty method was used as a control for these models in this 
study. Finally, the sequence of experiment records consisting of (features, label) pairs was 
shuffled randomly for further model building.

2.5. Model Building
The whole PLGA dataset (n=248) was treated as the full dataset for ML. To compare the 
performances of different ML models on the PLGA dataset, seven ML algorithms with different 
specializations were chosen for benchmarking. The models included Support Vector Regression 
(SVR), Kernel Ridge Regression (KRR), kNN, Multilayer Perceptron (MLP), RF, XGBoost, and Light 
Gradient Boosting Machine (LGBM). The XGBoost model used py-xgboost library (v1.3.3) [56]. 
And LGBM used lightgbm Python library (v3.1.1) [57]. The other six models were implemented 
through Sci-kit learn library (v0.24.2). Performances of ML models were evaluated through 5-
fold CV, which allowed better representation of model performances in a small dataset [58,59]. 
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RMSE, mean absolute percentage error (MAPE), and coefficient of determination (R2)were set as 
the metrics. They were calculated by:

𝑅𝑀𝑆𝐸 =  
∑𝑁

𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)2

𝑁
Equation 2

𝑀𝐴𝑃𝐸 =
1
𝑁 

𝑁

∑
𝑖 = 1

|𝑦𝑖 ― 𝑦𝑖|
|𝑦𝑖|

Equation 3

𝑅2 =  
∑𝑁

𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)2

∑𝑁
𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)2

Equation 4

where  is the ground truth value obtained from articles,  is the predicted value provided by 𝑦𝑖 𝑦𝑖
the ML model, and N is the total number of samples. Hyperparameter tuning was also carried out 
for all models through randomized searching 100 times in the parameter space. The potential 
parameters are listed in Table S2. 

2.6. Model interpretation
For interpretable models like RF and XGBoost, feature importance assigned by the model can be 
plotted to understand the relationship between the particle diameter and experiment 
parameters. In our study, PCA dimensionality in the feature engineering step was not carried out 
for better interpretability for EHDProperties and one-hot featurization in the model interpretation 
step. For other molecular featurization techniques like Mol2Vec, Mordred, RDKit, and Extended-
connectivity fingerprints (ECFP), the representation of molecules was usually in very high 
dimensions that were difficult to interpret. Thus, PCA was applied to the representation to reduce 
them to only 1 dimension during the training for model interpretation purposes.

2.7. Experiments 

2.7.1.Materials
PLGA (50:50, PURASORB PDLG 5002) was provided by Corbion (Amsterdam, Netherlands). 
Solvents, including acetone, dimethylacetamide (DMA), dichloromethane (DCM), were purchased 
from Sigma-Aldrich (Poole, UK).

2.7.2.Preparation of the ES solution
The ES solutions were prepared by dissolving PLGA powders in acetone, DMA, DCM at 2, 4, and 
8% (w/v), respectively. Magnetic stirring was applied for 1 h to dissolve the polymer.

2.7.3.Electrospraying
To better explore the validation space with least number of experiments, orthogonal experiment 
design was used. Four factors with each at three levels were filled in an L9 table as shown in Table 
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1 (Experiment No. 1-9). Briefly, the polymer concentration factor was chosen from 2, 4 and 8% 
(w/v). The solvent factor was chosen from acetone, DMA, and DCM. The flow rate was running at 
2, 4, or 8 L/min. The applied voltage was set at 10, 12.5, or 15 kV. Other experiment parameters 
were fixed: the collection distance was maintained at 195 mm and the gauge used was 22G with 
an outer diameter of 0.7 mm. The flow rate was controlled by a syringe pump (World Precision 
Instruments). A voltage generator (Genvolt) provided electric potential between the metal needle 
and the collection plate. In addition, experiment No. 10-13 were carried out to evaluate the 
generalisability of the model. The experiments were conducted at ambient temperature (22-23 
°C) and relative humidity around 50%. Each experiments were carried out two times (n=3). And 
the particles were collected on glass slides for further characterizations. 

Table 1. Orthogonal design of validation 9 experiments and an extra of 4 experiments to 
evaluate generalisability of ML models

No.

PLGA 
Concentration 
(% (w/v))

Flow rate 
(μL/min)

Applied 
Voltage 
(kV) Solvent

1 2 2 10 Acetone

2 4 4 15 Acetone

3 8 8 12.5 Acetone

4 2 8 15 DCM

5 4 2 12.5 DCM

6 8 4 10 DCM

7 2 4 12.5 DMA

8 4 8 10 DMA

9 8 2 15 DMA

10 2 2 7 Acetone

11 2 8 8 Acetone

12 4 4 7 Acetone

13 8 8 7 Acetone

2.7.4.Particle Characterization
The diameters of the particles produced by ES were characterized by a benchtop scanning 
electron microscopy (SEM; Phenom Pro, Phenomworld). Images obtained were further analyzed 
by ImageJ (National Institute of Health, USA) software. A collection of SEM images can be found 
in the Supplementary Materials (Figure S1). 
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3. Results and Discussion

3.1. Data Acquisition
After a comprehensive examination of the publication literature retrieved from the Web of 
Science (WOS) Core Collection, 45 publications that satisfied requirements were chosen for 
manual data extraction. From these articles, 442 experiment records were successfully extracted 
as the ES database. The database contained 248 records with PLGA, 114 records with PCL, 16 
records of PLA, 3 records of CS, 12 records of PVP, and 49 failed experiment records that 
produced no particles. To the best of authors’ knowledge, the database of ES experiments herein 
is the largest to date in the field (Table S3). Furthermore, the study collated a broad collection of 
various solvent information retrieved from previous publications, which enabled us to construct 
more generalized models that are applicable to different solvent systems, and also to further 
analyze the effect of solvents via model interpretation. 

A bar plot of records using different solvents is presented in Figure 2 (failed experiment records 
were excluded). Notably, 56 out of 393 successful records used mixed solvent systems. Here, only 
the primary solvent which owned the highest volume ratio was considered. It can be observed 
from the plot that chloroform is the most popular solvent in ES which had 97 records. Some 
specific solvents were used for polymers. For example, CS and PVP are electrosprayed in ethanol-
based solvent systems (15 records). When examining the PLGA records, it appeared that 
halogenated solvents like DCM (48 records), chloroform (43 records), and trifluoroethanol (TFE, 
35 records) were favoured. Also, acetone (40 records) acetonitrile (ACN, 35 records), and 
tetrahydrofuran (THF, 27 records) were used in PLGA electrospraying. These balanced records 
of solvents for PLGA data made it potentially possible for the ML algorithm to capture the effect 
of solvents. When it comes to PCL records, halogenated solvents were also preferred (chloroform: 
38 records and DCM: 37 records), whereas other solvents had limited records (ACN: 2 records 
and THF: 2 records).

 

Figure 2. Solvents recorded in electrospraying database. (Solvents used in electrospraying in 
extracted data. (EtOH: ethanol, EA: ethyl acetate, and DMC: dimethyl carbonate)
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Data distribution of experiment parameters in the database was visualized by histograms and 
kernel density estimation (KDE) plots (Figure 3). As depicted in the figure, some outliers existed 
in the database. For example, the majority of needle diameters chosen for ES fell in the range 
between 0.2-1.5 mm (outer diameter, O.D.) and most of the collection distances were between 
75-200 mm. However, several records used large needle gauges above 2 mm and long collection 
distances around 400 mm. Other than experiment parameters, particle diameters of all the 
records were also plotted in (Figure 3(f)). The KDE plot of particle diameter had a skewed 
normal distribution spreading from 10-2 to 102 μm with a peak around 10 μm. 

Figure 3. Data distributions of (a) needle O.D., (b) collection distance, (c) polymer 
concentration, (d) applied voltage, (e) flow rate, and (f) particle diameter.

An interesting observation from Figure 3 is that the voltage used for ES, as indicated by the KDE 
plot, formed a sharp peak around 10-12 kV. This specific voltage seems to be a “safe” choice that 
suits most ES applications. Nevertheless, considering the electrical properties of different 
solvents, a “one-size-fits-all” choice of voltage is only workable, but not optimized [60]. As 
suggested by Borra et al., the optimized voltage range for spraying is indeed between 11-20 kV 
but varies largely depending on the solvent conductivity [60]. Therefore, for acetone which has a 
conductivity around 0.48 μS/cm (with PLGA 2%) and ACN which has a more than 20 times higher 
conductivity at 18.1 μS/cm (with PCL 3%), an ES voltage between 10-12 kV should not be an 
optimized value for both solutions. The relationship between the type of solvents and ES voltage 
was also studied and similar conclusions could be found in another study by Zhang et al. [61]. 
These results suggested that finding the optimized voltage for ES empirically through 
experiments is not practical in this wide range, highlighting the need for modelling techniques to 
assist the experiment process to find optimized experiment conditions.

A more detailed observation of particle diameter was conducted by plotting its distribution over 
different solvents and polymers, as shown in Figure 4. Strip and box plots intuitively portray the 
distribution and the statistical summary of the data. Here, each scatter point in the plot represents 
a record in the database. The plot portrayed a clear evidence of data deficiency for several less-
explored solvents like toluene and DMF. In addition, the particle diameter distribution varied 
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between different polymers. Since the particle diameter was used as the prediction target in 
further ML tasks, data distribution with good quantity and quality were both desired. CS, PVP, 
and PLA all had limited number of records. Thus, they were not preferred for ML developments. 
The PCL data concentrated between its first quartile (6.01 μm) and third quartile (16.5 μm), 
whereas PLGA records spread within a larger range between first quartile (1.29 μm) and third 
quartile (10.0 μm) after logarithm transformation. Therefore, considering the quantity and 
quality of the data, PLGA was chosen as the model polymer for further ML processing.

Figure 4. Strip and box plots of particle diameter distribution of solvents and polymers.

3.2. Preliminary Modelling
In this study, several feature engineering techniques were implemented, including different 
solvent featurization to determine the optimal means to compute solvent information. 
Furthermore, data imputation methods were tested to address the lack of some datapoints. 
Therefore, the study carried out preliminary modelling to determine a good combination of 
feature engineering options before commencing ML model benchmarking. As a starting point, 
XGBoost was selected due to its ability to handle small dataset. A baseline model using XGBoost 
was trained on features with one-hot solvent featurization, feature standardization, Mean data 
imputation and no label logarithm transformation. This model reached an R2 of 0.81 and an RMSE 
of 6.09 in 5-fold CV. With this baseline, a series of experiments using different solvent 
featurization techniques, feature standardization, data imputation, and label logarithm 
transformation was done to choose a preliminary “best” combination of feature engineering 
techniques (data not included). Finally, the combination of EHDProperties solvent featurization, 
feature standardization, kNN data imputation, and label logarithm transformation achieved the 
best result with an R2 of 0.87 and an RMSE of 4.57 under 5-fold CV.  Hence, such set of feature 
engineering techniques were chosen as the default in the following model benchmarking and 
hyperparameter optimizing process.

3.3. Model Benchmarking
Seven ML models were tested for the task of predicting particle diameters, including SVR, KRR, 
kNN, MLP, RF, XGBoost, and LGBM. These models were trained and evaluated through 5-fold CV 
with the feature engineering techniques determined in the preliminary study. Firstly, 
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hyperparameter optimization of each model was conducted with randomized searching in the 
parameter space as shown in Table S2. The optimized hyperparameters were listed in Table S4. 
With the optimized model hyperparameter, we were able to compare the performance of the 
model at their best condition (Figure 5). XGBoost model had the best performance with an R2 of 
0.91, an RMSE of 3.91 μm and a MAPE of 0.50. Other tree-based models also had comparable 
performance. For example, RF had an R2 of 0.84, an RMSE of 6.19 μm and an MAPE of 0.61. KRR 
and kNN produced less satisfying results indicated by higher RMSE and lower R2 values. 
Interestingly, SVR possessed the best MAPE of 0.42, but performed weaker in other metrics. 
Considering all three metrics, XGBoost possessed the best performance, and was selected for 
further optimization.

In this study, linear modelling techniques, like multiple linear regression, were not examined 
since previous studies already suggested poor performances of linear models on similar tasks 
[62]. Of seven ML models studied here, SVR and KRR are regression models based on kernel 
methods, kNN is a local regression model based on similar cases in the training set, MLP is a 
neural-network-based model, and RF, XGBoost, and LGBM are all tree-based models. With 
different learning mechanisms, these models have their own specializations and perform 
differently in tasks. As shown in Figure 5, tree-based models had the best performance when 
compared with other models. The better performance of tree-based algorithms agrees well with 
previous research of ML in other areas where limited amount of data is available [63]. These tree-
based models own various merits including shorter training time, better interpretability, and the 
capability of dealing with missing values (only for XGBoost and LGBM). These advantages made 
them widely used in other areas [32,64,65]. However, previous studies listed in Table S3 only 
chose a handful of algorithms like MLP and SVR to set up their ML model. According to these 
observations, it is recommended future modelling studies of ES and other fabrication techniques 
to incorporate and evaluate tree-based models like XGBoost and RF. 

Moreover, the result in Figure 5 also emphasized the importance of using CV for model 
evaluation. The high variance between folds in our study could be resulted from anomalies and 
outliers in the data. CV is known to address the problem of data containing outliers, where 
outliers are detrimental to model learning [58]. When CV was included in the evaluation phase, 
all data was portioned equally into several parts after random shuffling and one part was treated 
as the test/evaluation set and the remaining parts were used as the training set at a time. The 
model training and evaluation was carried out several times after all data had been treated as the 
test set. It was noted that by including CV the effect of outliers in the evaluation procedure was 
reduced by averaging the performance on different test sets. It is commonly recommended to 
implement CV for small data ML tasks, particularly in material science and medical data [66,67]. 
In addition to benchmarking various ML methods, it is also highly recommended to perform CV 
to better evaluate the model performance for ML practices for ES and other small data learning 
scenarios [67].
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Figure 5. Model performance evaluated with 5-fold CV by (a) RMSE, (b) R2, and (c) MAPE. Error 
bars obtained from 5-fold CV.

3.4. Reviewing Feature Engineering Techniques
Albeit nominal feature engineering techniques were determined at the beginning of the study, 
after selecting the best ML model with XGBoost, a review of these parameters and feature 
engineering techniques was necessary. In Figure 6, performances of different data imputation 
and solvent featurization methods were plotted. Regarding data imputation, it can be seen from 
the plot that data imputation did affect model performance. Since XGBoost model could handle 
data with missing values, the leave_empty method was applied here for comparison. A reduction 
in performance, as indicated by increased RMSE and decreased in R2, could be found in the None 
group where all data records with missing values were deleted. This result highlighted the 
importance of data imputation. For other ML methods like SVR, RF, KRR, kNN, and MLP which are 
not able to handle missing values, the only two choices to treat these blanks were either to use 
imputation methods or directly delete all records with missing values. The present research 
demonstrated that using data imputation methods could help with the model performance. 
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Molecular featurization techniques were introduced in this study to determine the optimal means 
to representing solvents for ML applications. Six different featurization approaches were 
investigated. One-hot featurization essentially records the solvents by their name, and thus lacks 
generalizability. Herein, there were 13 solvents in the database. Therefore, one-hot featurization 
represented each solvent as a vector with 13 elements (a “1” and twelve “0”s). However, if the 
user wishes to apply the model to predict for a new solvent system outside these 13 solvents (e.g., 
chloroethane), this 13-element vector will not be able to represent new solvents. This greatly 
reduced the capability of the model to generalize to new formulations. From a chemistry 
viewpoint, chloroform is similar to DCM than it is to water, both in molecular structure and 
physico-chemical properties. Hence, other featurization methods were investigated to allow the 
model to achieve generalizability by capturing solvent chemical and physico-chemical properties 
[68]. The features Mol2Vec, Mordred, RDKit, ECFP, and EHDProperties represents the solvents by 
their chemical structure and/or physico-chemical properties, using information such as 
molecular weight, number of acid groups and number of rings. 

It was revealed that the six solvent featurization methods had comparable performance (Figure 
6). One-hot featurization did not result in any noticeable effect on model performance. One 
potential explanation is that the model automatically assigned weights to these categorically 
represented solvents, and these weights compensated for the differences of solvents, which was 
confirmed in the feature importance analysis below. Such differences in weights when using one-
hot featurization is believed to help models differentiate between molecules (which were actually 
treated as separate “features” in model inputs). Thus, although one-hot featurization is not 
chemically meaningful, it still can generate comparable results as other featurization techniques, 
as can be seen in this study and also in other research [69]. More importantly, however, is that 
the use of molecular featurization methods did not diminish model performance in comparison 
to One-hot featurization. Therefore, using molecular features allows for both high prediction 
performance and generalizability. 
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Figure 6. Model performances of XGBoost model with different molecular featurization 
techniques and data imputation methods evaluated by (a) RMSE and (b) R2. Error bars obtained 
from 5-fold CV.

3.5. Model Validation
To validate the model, 13 new formulations were tested with our in-house ES setup.  Nine of these 
formulations were carried out with varying polymer concentration, flow rate, applied voltage, 
and solvent type. An additional four experiments were conducted to test the generalizability of 
the model, by testing formulations at voltages below values previously used in the literature for 
the solvents examined. As the best performing model, XGBoost was used for model validation, 
using kNN Imputation, EHDProperties for the solvent features and label logarithm transformation. 
Figure 7(a) presents the results of XGBoost when applied to the literature database,  where the 
training data and test data were split in to an 80/20 ratio from the original dataset as a 
comparison with the in-house experimental validation results, which are given in Figure 7(b). 
XGBoost successfully predicted both nanoand micro particle sizes for the training set (Figure 
7(a)); whereas the test set was marginally less accurate. Nevertheless, this provided confidence 
to apply the models to the in-house experiments. For experiments No. 1-9, the XGBoost model 
achieved an RMSE and MAPE of 1.30 μm and 0.33, respectively. For experiments No. 10-13, the 
values were 3.94 m and 0.43, respectively. This revealed that the accuracy decreased when 
extrapolating the prediction to new voltage values, inferring model overfitting or poor 
generalizability. The assumption was confirmed by the observation of a decreased RMSE (Table 
S5) by raising the regularization hyperparameter “reg_lambda” to 1.4 (previously was 1.1 in the 
optimized model) and reducing the “max_depth” to 3 (previously was 5 in the optimized model). 
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These modifications were suggested by the XGBoost documentation to help reduce the overfitting 
of the XGBoost model [56]. 

To further test the hypothesis, the predictions of RF to the experimental ground truth were also 
compared (Figure 7(b)), where not RF is known to avoid overfitting [70]. RF was found to 
perform worse than XGBoost in experiments No. 1-9 but surprisingly better in experiments No. 
10-13, which highlighted that RF was capturing the underlying mechanisms instead of noises 
(e.g., human errors and random fluctuations in experiments) in the data. The results suggest that 
avoiding overfitting yields better predictions when extrapolating to new processing parameters. 
Overall, the in-house experimental validation results revealed that ML models trained on 
previously published data can be readily applied to in-house ES setups without tuning or prior 
empirical experiments. Most predictions of experiments fell in the range of 25% relative error 
range. Only two experiments, No. 8 and No. 9 both with DMA as the solvent, had relatively high 
deviation. This might be due to limited training data for the solvent and could be improved with 
a larger dataset. For commonly used solvents DCM and acetone, the XGBoost model gave 
satisfying predictions with very low RMSE (0.71 μm for DCM group and 0.23 μm for acetone 
group). 

 

Figure 7. (a) Predictions given by XGBoost model based on the data records in the literature 
database. (b) Experiment results and predictions given by XGBoost and RF model. Dots and 
triangles pointing upwards are predictions for experiment No. 1-9 with XGBoost and RF model, 
respectively. Hexagons and triangles pointing downwards are predictions for extra experiments 
No. 10-13 with XGBoost and RF model, respectively. In both figures, solid line shows perfect 
perditions where the ground truth values equal to predictions. Dashed lines and the coloured 
area indicate relative error range (±20% and ±50%) for the predictions.

3.6. Model Interpretation
Interpreting the model provides valuable insights into its learning characteristics. Feature 
importance learnt by the RF model was plotted to represent the ML’s interpretation of the ES 
(Figure 8). Three solvent feature sets were examined for now, which were the Mordred, one-hot 
encoding and EHDProperties. PCA dimensionality reduction was used to reduce the Mordred 
solvent features, which were over 1600 features, into one single feature called “solvent” in Figure 
8(a). Since ECFP and Mordred, RDKit and Mol2Vec methods yielded identical feature importance 
results, here feature importance given by Mordred was displayed. In addition, the feature 
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importance when EHDProperties was used as the solvent featurization was plotted in Figure 
8(b). And the feature importance of the RF model trained on one-hot featurization was plotted in 
Figure 8(c). All these plots promoted flow rate as the dominating factor in ES, followed by 
polymer concentration, and needle diameter. 

Interestingly, the feature importance plot from Figure 8(a) suggested the limited influence of 
solvents on the particle diameter produced from ES. Indeed, Faramarzi and colleagues revealed 
that the type of solvents had a more significant effect on particle morphology, while the size of 
the particle was dominated by the flow rate [71]. In Figure 8(b), the importance of different 
solvents varied from each other. It confirmed the hypothesis previously discussed herein about 
molecular featurizations that the model assigned different weights for the one-hot featurization 
method automatically to distinguish different solvents. Thus, it performed as well as other 
featurization methods herein. In Figure 8(c), the plot demonstrated the dominating effect of flow 
rate over solvent properties. This result could be confirmed by research into scaling laws for ES. 
Gañán-Calvo et al. proposed a scaling law of droplets produced by ES in 1997 and Hartman et al. 
reported a similar scaling law in 1999 [72,73]. These laws related droplet diameter with various 
experiment parameters. Coincidentally, in both laws, the flow rate had the power of 1/2 whereas 
solution properties like conductivity, density, and surface tension all owned the power of 1/6. 
This evidently demonstrated the importance of flow rate on droplet diameter and confirmed the 
RF were learning the correct attributes established by these laws.

Figure 8. Feature Importance assigned by RF with (a) Mordred, (b) One-hot, and (c) 
EHDProperties as the molecular featurization technique. Error bars obtained from 5-fold CV.

The dipole moment and dielectric constant of the solvent stood out as two important solvent 
factors (Figure 8(c)). A study by Luo et al. on the choice of electrospinning solvents noted a 
strong correlation between solvent dielectric constant and the fibre produced through 
electrospinning [74].

3.7. Study Implications
A salient finding of this study was the successful application of literature-extracted data for 
building effective ML models to predict electrosprayed-particle sizes. Data availability in material 
science, and other fields, has been a key issue, hence the recent concerted effort to find ML 
algorithms that require a small dataset [67]. While research into ML algorithms for low datasets 



18

continues, the present study pragmatically presented a different approach to developing 
predictive tools utilising well-established ML algorithms but placing emphasis on the means of 
data generation. Herein, the data generation method led to 248 PLGA formulations, which is a 
data size greater than previous applications of ML for ES (Table S3). Thus, trained models were 
provided with more instances to learn and predict PLGA particle sizes. ML models are known to 
be more effective as the size of the data grows [75]. Moreover, collecting information from the 
literature and from different research teams is expected to result in less bias, as different research 
teams use different ES machines and setups. Furthermore, literature-extracted data is both a cost- 
and resource-effective process in comparison to experimentally generating the formulation data.

An additional impact of the study will be realized in the ES domain, as well as the wider 
electrohydrodynamic processes (EHDP). While the experiment setup of ES is relatively simple, 
there has been a recent effort to expand the versatility of the system through the incorporation 
of, for example, multi-axial nozzles [76]. Moreover, EHDP are being integrated with other 
technologies, such as additive manufacturing, to enrich the latter’s product performance [77–79]. 
While such systems are warranted, they will undoubtedly expand the processing search space, 
consequently prolonging development. Hence, there will be a need for ML to reduce the number 
of experiments needed to optimize these contemporary hybrid technologies. 

4. Conclusion
In this study, the modelling relationship between ES product diameter and key experiment 
parameters were established. Several predictive ML models were trained on data extracted from 
previous publications. Different molecular featurization, data imputation, and ML models were 
benchmarked to identify the model with the best model performance evaluated by 5-fold CV. 
Notably, these models trained from published data were validated with wet-lab experiments. The 
study demonstrated outstanding prediction performance for particles at both micron and 
submicron scales without any prior tuning or experience. It was determined that the XGBoost 
model using kNN data imputation and EHDProperties molecular featurization stood out with the 
RMSE of 4.24 μm and an R2 of 0.91 evaluated with CV on the published data. In addition, it was 
observed that the RF model performed better model generalizability in broader experiment 
parameter ranges. Furthermore, model interpretation revealed ML learns similarly to previously 
established mechanistic models. The study demonstrated ML as a promising tool for integrating 
with ES manufacturing, to enable precise control over process parameters and improve the 
manufacturability of ES technologies through automation.
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Highlights

 Machine learning models predicting electrospraying particle size were developed from a 

literature database of 445 records.

 XGBoost and Random Forest (RF) models yielded root-mean-squared errors (RMSE) of 

3.91 μm and 6.19 μm evaluated by 5-fold cross-validation (CV).

 In-house experiments validated the models, revealing an accuracy of ± 1.3 µm and 

providing insight into model generalisation capability.

 Models successfully predicted electrospray processing attributes governing particle size, 

as previously identified by scaling laws.



28


