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Abstract: Commercially available dry powder inhalers (DPIs) are usually devices in a fixed combi-
nation with the intended formulation, and a change in medication by the physician often forces the
patient to use a different device, requiring the patient to relearn how to use it, resulting in lower
adherence and inadequate therapy. To investigate whether DPIs can achieve successful outcomes
regardless of the formulation and flow rate used, a novel DPI and two commercially available de-
vices were compared in vitro for their deagglomeration behavior for different binary blends and a
spray-dried particle formulation. The results demonstrate that the novel device achieved the highest
fine particle fraction (FPF) regardless of the formulations tested. In the binary mixtures tested, the
highest emitted fraction was obtained by shaking out the powder due to the oscillating motion of
the capsule in the novel device during actuation. For DPIs with high intrinsic resistance to airflow,
similar FPFs were obtained with the respective DPI and formulation, regardless of the applied flow
rate. Additionally, the development and use of binary blends of spray-dried APIs and carrier particles
may result in high FPF and overcome disadvantages of spray-dried particles, such as high powder
retention in the capsule.

Keywords: capsule-based dry powder inhaler; capsule oscillation movement; high-performance
device; binary blends; spray-dried particle formulation

1. Introduction

Dry powder inhalers (DPIs) are widely used for the therapy of lung diseases such as
asthma, chronic obstructive pulmonary disease (COPD), or bacterial infections [1,2]. To
achieve a sufficient therapeutic effect by deposition of the powder in the lower respiratory
tract, the powder particles should have an aerodynamic diameter of <5 µm [3]. For this
purpose, special manufacturing processes such as jet-milling of the active pharmaceutical
ingredient (API) are used in the pharmaceutical industry to produce micronized particles
in the inhalable size range [4–6]. However, increasing the total particle surface area by this
technology often results in very cohesive particles that have poor aerosolization efficiency
and flowability [7]. To overcome this problem and produce flowable and deagglomerable
powder formulations, various formulation techniques are used, such as mixing the jet-
milled particles with large carrier particles (e.g., lactose) to form interactive blends [8,9].
This method of formulation is preferred in the pharmaceutical industry due to the result-
ing high storage stability of the crystalline APIs [10]. In the case of particle engineered
approaches, such as spray-dried particle formulations, the device should overcome the
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cohesive particle interactions during inhalation [11]. Apart from the formulation’s charac-
teristics, it is known that the success of therapy with passive breath-actuated DPIs depends
mainly on the physiological conditions of the patient and the inhalation profiles gener-
ated [12]. Inhalation performed with insufficient respiratory force and duration results in
an unintentionally low emitted dose with insufficient powder deagglomeration and thus
insufficient therapeutic success [13,14]. Since a COPD patient cannot achieve the same inspi-
rational flow profile as a healthy person, this leads to decreased deposition of the powder in
the lungs. To counteract this problem, high intrinsic resistance devices are being developed
that should deliver the same amount of aerosol regardless of airway resistance and applied
inhalation flow rate [2,15,16]. In addition to the aforementioned inhalation properties of
the patient, the delivered powder fraction and the resulting aerodynamic properties of the
aerosol are also related to the device properties, which include the opening mechanism of
the capsule being used, the movement of the capsule (vibration, rotation, shaking), and
the interaction between the powder, the capsule, and the inhaler wall [17]. The size and
position of the holes pierced in the capsule also influence the aerosol properties [18].

Since the success of inhalation depends on many factors, as described, marketed
delivery systems are designed as combination products consisting of the formulation and
the DPI to minimize the number of potential sources of error. The formulation and the
device are designed to work together to achieve a satisfactory therapeutic effect [19,20].
This results in a marketed formulation being prescribed by the physician only with the
inhaler intended for it and patients having to relearn how to use a different inhaler when
they change medications, which could affect treatment adherence [21]. Since different
inhalers result in different deagglomeration of the same powder, developing and marketing
a generic device is challenging.

To investigate what the current market looks like, the study compared three capsule-
based DPIs. Due to geometry and airflow, each unit has a different capsule motion and
consequently a different mechanism for deagglomerating the powder. The study was
designed to show which deagglomeration unit provides the highest fine particle frac-
tion (FPFTD/EF = fraction of particles with an aerodynamic diameter < 5 µm of the total
dose/emitted fraction) regardless of the formulation tested and actuation conditions used.
To determine the influence of capsule movement on powder ejection and the number of par-
ticles that can potentially reach the lungs, devices with axial capsule vibration (Handihaler®

(Boehringer Ingelheim, Ingelheim am Rhein, Germany)), capsule rotation (Lupihaler®

(Lupin Limited, Mumbai, India)) = RS01 equivalent device), and oscillating capsule move-
ment (Presspart prototype DPI = PP-DPI) were compared (Figure 1) [22,23]. While the
Handihaler® and Lupihaler® DPI are marketed devices that are well-known and exten-
sively described, the Presspart prototype DPI is a novel capsule-based device. In order to
analyze the “applicability of the devices for different formulations”, a series of drug formu-
lations developed with different formulation techniques were tested. While the marketed
formulation Cyclocaps® (PB Pharma GmbH, Meerbusch, Germany) is an interactive blend
of micronized albuterol sulfate and alpha lactose monohydrate, a spray-dried rifampicin
formulation was also tested [1,24]. To demonstrate the potential use of carrier particles for
spray-dried API particles, a spray-dried batch of amoxicillin was mixed with Inhalac 251®

(MEGGLE GmbH & Co. KG, Wasserburg am Inn, Germany) (ratio 1:24) in a further step to
form a binary mixture, which was aerosolized using the above inhalers. To demonstrate
the potentially flow-profile-independent deagglomeration behavior of the selected DPIs for
the tested formulations, 50 L/min was selected as the low flow rate and 100 L/min as the
high flow rate. These settings were also chosen because they closely approximate the actual
flow rates of the low (Lupihaler) or high intrinsic resistance (PP-DPI, Handihaler) devices
used in this study at a pressure drop of 4. To analyze the deagglomeration behavior of the
devices for each formulation, in addition to the relative powder deposition in each stage,
the FPFTD/EF was compared.
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Figure 1. Schematic representation of the tested dry powder inhalers (DPIs) and the possible capsule
movements that can be achieved in the various DPIs during inhalation. Modified from [22,23].

2. Materials and Methods
2.1. Materials

The albuterol sulfate–alpha lactose monohydrate formulation (Cyclocaps®) (PB Pharma
GmbH, Meerbusch, Germany) was purchased from a pharmacy. For spray-drying, ri-
fampicin and amoxicillin were ordered from TCI (Tokyo, Japan). Except for water, which
was purified in-house (Merck-Millipore Biocel A10, Burlington, MA, USA), all other sol-
vents were HPLC grade. Inhalac 251® was a kind gift from MEGGLE GmbH & Co. KG
(Wasserburg am Inn, Germany). The Lupihaler® devices (Lupin Limited, Mumbai, India)
were purchased from a pharmacy in India. The Handihaler® and Presspart prototype DPI
inhalers were gifts from Boehringer Ingelheim (Ingelheim am Rhein, Germany) and H&T
Presspart (Blackburn, United Kingdom), respectively.

2.2. Spray-Drying of the Rifampicin and Amoxicillin APIs

Rifampicin was spray-dried as described in [24]. Briefly summarized, the drug was
suspended in ethanol (38 mg/mL) and sonicated in an ultrasonic bath (Typ DT 106, Bandelin
electronic, Berlin, Germany) under controlled temperature conditions (25 ◦C) for 10 min.
To keep the temperature constant during the water change, a thermostat (DC 10, Haake
Technik GmbH, Vreden, Germany) was used. A B-290 spray-dryer equipped with a high-
performance cyclone, a B-296 dehumidification unit, a B-295 (all Buchi, Flawil, Switzerland)
inert loop, and an anemometer (AF89-AD1AA13C0AA, Fluid components Intl. San Marcos,
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CA, USA) was used for spray-drying under inert atmosphere (N2). A modified three-fluid
nozzle (Buchi, inner channel blocked) was used to atomize the suspension. During the
entire manufacturing process, the suspension was constantly stirred.

For spray-drying of amoxicillin, the same spray-drying equipment was used. Prior to
the spray process, 2 g of the API was dissolved in 185 mL MeOH, and the solution obtained
was spray-dried (Table S1).

2.3. Mixing the Amoxicillin—Lactose Binary Blend

To generate the binary mixture, the spray-dried active ingredient was mixed with the
carrier lactose monohydrate (Inhalac 251) in a ratio of 1:24. For this purpose, both materials
were mixed in a sequential mixing process using a Turbula Mixer (Willy A. Bachofen,
Muttenz, Schweiz) at 46 rpm for 5 min per mixing step until the mentioned mixing ratio
was achieved.

2.4. Airflow Resistance of the Various DPIs

In order to measure the pressure drop across the devices and calculate the intrinsic
resistance to airflow, each DPI was connected with a suitable adapter to a Dosage Unit
Sampling Apparatus (DUSA), and that was connected with a flow meter (DFM 2000), a
critical flow controller (CFC) (TPK 2100-R) and two vacuum pumps (HCP 5, all Copley
Scientific Limited, Nottingham, UK). The pressure port of the DUSA was connected to the
pressure port of the CFC. Measurements were made with a pressure drop from 1 to 8 kPa,
and the specific resistance to airflow was calculated from the linear relationship between
the square root of the pressure drop and the resulting flow rate (Figure S1).

2.5. Test Procedure for the Aerosol Classification with the Next-Generation Impactor

While the Cyclocaps capsules (albuterol sulfate–lactose) were purchased ready dosed,
5 mg of the rifampicin formulation and 30 mg of the amoxicillin–lactose blend formulation
was filled into size 3 gelatine capsules. A Next-Generation Impactor (NGI) (Copley Scientific
Limited, Nottingham, United Kingdom) was used to characterize the aerosol properties
of the different formulations actuated with the different devices. Prior to the experiments,
each cup was coated with a 1% glycerol-methanol (m/v) solution, and 15 mL of the diluent
was placed in the preseparator unit. For analyzing the powder deagglomeration behavior
of the DPIs, the particles were dissolved from each stage (capsule–MOC). While a water–
methanol mixture (1:1% v/v) was used for albuterol sulfate and amoxicillin, rifampicin
was dissolved in a solution of ascorbic acid in methanol (0.5% m/v). Flow rates of 50 and
100 L/min and an actuation volume of 4 L were used to compare the different devices
in terms of aerosolization properties for the respective formulation. Unless otherwise
reported, all experiments were performed in triplicate.

2.6. Scanning Electron Microscopy (SEM)

The samples were sputter-coated with gold for two cycles of two minutes each after be-
ing fixed with carbonaceous conductive paste on an aluminum sample holder. Subsequent
imaging of the different formulations was performed in a high vacuum using a Hitachi
SU-3500 SEM (Hitachi Ltd., Tokyo, Japan). While the magnification and working distance
for each sample were set as needed and are reported in the SEM images, the accelerating
voltage was set to 5 kV for all samples.

2.7. High-Performance Liquid Chromatography Analysis

Quantification of the active compounds deposited in the different NGI stages was
performed by high-performance liquid chromatography (HPLC) analysis (Shimadzu, LC-
2030C 3D Plus, Kyoto, Japan) using an RP18 column (Lichrospher 100 RP 18-5µ EC,
250 × 4.6 mm). To detect the APIs, the photodiode array detector was set to 337 nm
for rifampicin, 275 nm for albuterol sulfate, and amoxicillin was detected at a wavelength of
230 nm. The mobile phase for both binary mixtures consisted of phosphate buffer/methanol
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(80:20 v/v (%)), and the buffer was adjusted to pH 3.0 in the case of albuterol sulfate and pH
4.0 for the amoxicillin. An isocratic flow of 1.4 mL/min (albuterol sulfate) or 1.0 mL/min
(amoxicillin) was applied. For rifampicin, a flow rate of 1 mL/min of a mixture of a
phosphate buffer pH 5.2/methanol/acetonitrile (33/50/17% v/v/v) was set. With the
exception of rifampicin, which had a column temperature of 25 ◦C during quantification,
the other active ingredients were analyzed at 40 ◦C. The limit of detection (LOD) and limit
of quantification (LOQ) were calculated using the values of the intercepts and the slope
of the calibration curve. For albuterol sulfate, the LOD and LOQ were determined to be
0.36 µg/mL and 1.08 µg/mL, whereas, for amoxicillin, the LOD and LOQ were calculated
to be 0.97 µg/mL and 2.94 µg/mL. For rifampicin, the LOD was 0.30 µg/mL, and the LOQ
was 0.90 µg/mL [24].

2.8. Statistics and Data Processing

To determine statistically significant differences in relative powder deposition in the
different stages of the NGI (capsule–MOC) after actuation with different DPIs, results
were compared using rank-sum ANOVA followed by Dunn’s test (p < 0.05) (Prism 8.0.2,
GraphPad software). The choice of a non-parametric test was mainly based on the rather
limited sample size of n = 3 in order to increase the robustness of the statistical decision,
although all data were normally distributed. The NGI plots show the relative powder de-
position in the different stages. The error bars indicate one standard deviation. Cumulative
undersize plots from S1 to MOC were created and linearized by log transformation of the
stage boundaries and probit transformation of the relative abundances. For calculating the
fine particle fraction, a linear regression model was used (FPFTD/EF (fraction of particles
with an aerodynamic diameter < 5 µm of the total dose/emitted fraction)), as described in
USP <601> [25].

3. Results

The Presspart prototype DPI can be classified into a top and a bottom unit. While the
upper unit consists of a mouthpiece, a mesh, and a classifier, the lower unit is composed
of the capsule chamber, the air inlet, and two buttons, each with a needle for piercing
the capsule and the housing. Similar to the RS01 equivalent device, the capsule is placed
horizontally in the capsule chamber and pierced from both sides, creating centered holes at
the top and bottom of the capsule body. The air inlet is located below the capsule chamber,
and a separator in the center of the inlet divides the airflow into two separate flow paths
that flow past the top of the capsule or the side of the body. This results in an oscillating
movement of the capsule with an axial rotation and vibration during actuation, which
causes the powder to exit the capsule. After passing the classifier inlet, which sets the
powder and the air stream into a cyclonic, dynamic airflow, a straight flow behavior is
achieved by a subsequent mesh in combination with a vortex breaker in the mouthpiece
until it exits the device (Figure S2).

To classify the new device as having low or high intrinsic resistance, the specific
resistance to airflow was calculated from the linear relationship between ∆p and the
resulting flow rate (L/min). The inspiratory resistance of the novel DPI was determined as
0.044 kPa0.5 L/min; the inspiratory flow rate at a pressure drop of 4 kPa was 45 L/min. The
device can be categorized as a DPI with medium–high intrinsic resistance to airflow. The
intrinsic resistance of 0.018 kPa0.5 L/min and the flow rate of 111 L/min at a pressure drop
of 4 kPa, which was determined for the RS01 equivalent DPI, are in agreement with values
found in the literature. This DPI is a low intrinsic resistance device. Due to the intrinsic
resistance of 0.046 kPa0.5 L/min, the Handihaler can be classified as DPI with high intrinsic
resistance to airflow (Figure 2) [16].
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Figure 2. Relationship between the square root of pressure drop and the flow rate (L/min) across the
novel (Presspart prototype dry powder inhaler (PP-DPI)) and both marketed DPIs (n = 3, mean ± SD).

SEM pictures in Figure 3 show the size and shape of the particles of the formulations
used. In the case of rifampicin, flocculent, platelet-shaped microparticles were seen. In
the amoxicillin–lactose mixture, the spray-dried active ingredient, which had a spherical
shape with a particle size in the lower micrometer range, was adsorbed onto the larger
lactose carriers.

Testing the albuterol sulfate formulation with the different devices at 50 L/min resulted
in a high powder deposition in the preseparator in every case (Figure 4a). While powder
retention in the capsule was not affected by the different flow rates, there was less deposition
in the device at the higher flow rate, regardless of the DPI used. The lower powder retention
in the Handihaler, as well as the lower powder deposition in the induction port (IP) after
using the Presspart prototype DPI, resulted in a higher FPF than with the Lupihaler (Table 1).
While powder deposition in the preseparator was similar for each DPI used when operated
at 50 L/min, operation at 100 L/min for the Presspart prototype DPI resulted in a lower
deposition in the preseparator compared to the other two DPIs (Figure 4b).

For the binary amoxicillin blend, the lowest powder retention in the capsule combined
with the lowest powder deposition in the IP was observed after actuation with the Presspart
prototype DPI, regardless of the flow rate applied (Figure 5). Comparing the influence of
the inhalation airflow (50, 100 L/min) on the aerosolization of the powder actuated with
the same device, no differences could be observed in the stages (capsule to preseparator).
These resulted in similar FPFs of the emitted- or the total dose for both flow rates. While
the Handihaler and the Lupihaler showed similar deagglomeration behavior for this
formulation, with the exception of powder deposition within the capsule, the device, and
the IP, the Presspart prototype DPI achieved the highest fine particle fraction (Table 1).



Pharmaceutics 2022, 14, 1185 7 of 14

Figure 3. Scanning electron microscopy (SEM) images of the different formulations in different
magnifications. (A,B) Cyclocaps [albuterol sulfate—lactose blend]; (C) amoxicillin; (D) amoxicillin–
lactose blend; (E,F) rifampicin.

Table 1. Fine particle fraction of the emitted (FPFEF) or total dose (FPFTD) for the different formula-
tions (AS* = albuterol sulfate–actose binary blend; amoxi–lactose blend* = amoxicillin–lactose blend;
rifampicin) tested with various devices.

Flow Rate Formulation PP-DPI Lupihaler Handihaler

[L/min] FPFEF[%] FPFTD[%] FPFEF[%] FPFTD[%] FPFEF[%] FPFTD[%]

50
AS* 34.7 ± 2.1 30.5 ± 1.8 25.1 ± 1.6 20.6 ± 1.3 27.2 ± 1.3 25.2 ± 1.2

Amoxi–lactose* 66.4 ± 2.1 57.2 ± 1.8 50.3 ± 2.0 42.4 ± 1.7 45.2 ± 1.8 39.3 ± 1.6
Rifampicin 73.0 ± 3.2 56.9 ± 2.5 66.3 ± 5.5 58.4 ± 4.8 47.8 ± 4.2 44.1 ± 3.8

100

AS* 41.3 ± 2.4 37.4 ± 2.2 27.3 ± 1.6 23.9 ± 1.4 29.6 ± 2.0 27.6 ± 1.9
Amoxi–lactose* 68.8 ± 1.2 60.3 ± 1.1 55.2 ± 1.1 48.1 ± 1.0 52.5 ± 1.0 46.1 ± 0.9

Rifampicin 63.5 ± 4.2 55.2 ± 3.6 53.7 ± 4.2 49.2 ± 3.8 46.6 ± 4.1 44.4 ± 3.9
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Figure 4. NGI results of the albuterol sulfate formulation actuated with different devices at different
flow rates. (a) 50 L/min; (b) 100 L/min, (capsule = cps; dry powder inhaler = DPI; induction port = IP;
preseparator = Pres), (* p < 0.05).
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Figure 5. NGI results of the amoxicillin–lactose formulation actuated with different devices at
different flow rates. (a) 50 L/min; (b) 100 L/min, (capsule = cps; dry powder inhaler = DPI; induction
port = IP; preseparator = Pres), (* p < 0.05).

The results in Figure 6 show that rifampicin powder retention in the capsule was the
highest when using the Presspart prototype DPI. This powder retention was independent
of the flow rate applied. Of all the devices tested, the Handihaler had the lowest powder
deposition in the DPI but also the highest powder deposition in the IP. Compared to the
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other units tested, this DPI exhibited similar powder deposition in the various stages of the
NGI at both flow rates. This is underpinned by the consistent FPFEF/TD (Table 1). Due to
the high powder deposition in the IP, a lower FPF was achieved compared to that of the
Lupihaler or Presspart prototype DPI.

Figure 6. NGI results of the spray-dried rifampicin formulation actuated with different devices at
different flow rates. (a) 50 L/min; (b) 100 L/min, (capsule = cps; dry powder inhaler = DPI; induction
port = IP; preseparator = Pres), (* p < 0.05).
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While the Handihaler and Lupihaler showed similar deagglomeration behavior for
the binary mixtures tested, resulting in similar powder deposition on S1–MOC, differences
were evident for rifampicin between all devices tested. When comparing the powder
deposition on the mentioned stages for the tested flow rate of 50 L/min, it is noticeable
that with the Handihaler, the highest powder deposition was observed in stages S2–S3.
While a high amount of API was deposited on S2–S4 when using the Lupihaler device,
the Presspart Prototype DPI achieved a high powder deposition on the stages S4 and S5
(Figure 6a). At 100 L/min, a high amount of powder was deposited on S2–S4 for each DPI
used (Figure 6b). Instead of the high powder deposition in the preseparator observed for
both binary mixtures, regardless of the device used and the flow rate applied, a higher
powder deposition in the IP was observed when actuating the rifampicin formulation.

At the tested flow rate of 50 L/min, the highest FPFEF/TD was achieved with the
rifampicin formulation, regardless of the DPI used. Due to the high powder retention
in the capsule when using the Presspart prototype DPI, the FPFTD was similar to that of
the Lupihaler. The results of the 100 L/min data set showed a decrease in FPF for this
formulation, which is due to the higher powder deposition in the IP, so the amoxicillin–
lactose mixture had the best deagglomeration properties (Table 1).

4. Discussion

Since there are currently insufficient data on different DPIs and their ability to aerosolize
different formulations not developed for the particular DPI, the idea arose to conduct a
comparative study showing the advantages and disadvantages of selected DPIs in terms of
deagglomeration and aerosolization of different drug formulations developed using differ-
ent manufacturing techniques. These results could be used to derive state of the art in DPI
development and indicate which deagglomeration mechanism offers potential for future
development. This knowledge could be used for future commercialization of generic DPIs.
To compare the different deagglomeration mechanisms, which are also influenced by the
different movements of the capsule, a new capsule-based DPI with oscillating capsule move-
ment was tested in addition to the two known commercially available DPIs (Handihaler,
Lupihaler).

Classifying the novel device as a DPI with low or high intrinsic resistance to airflow
and determining the pressure drop as a function of flow rate is an important parameter for
verifying test conditions for conducting future studies. Due to the designed geometry re-
sulting in intrinsic resistance of 0.044 kPa0.5 L/min and a flow rate of 45 L/min at a pressure
drop of 4 kPa, the new capsule-based DPI can be classified as a device with medium–high
intrinsic resistance to airflow. Based on the studies described in the introduction and
the published results for this class of DPIs, the novel device should deliver the loaded
powder uniformly to the patient regardless of the inhalation conditions, which could lead
to higher treatment adherence in vivo [26]. With regard to the design of the novel DPI,
a new approach was developed to eject the powder from the capsule by an oscillating
movement. Considering that the capsule was pierced by two needles in each device tested,
the influence of the number of needles and the resulting holes on powder output and
deagglomeration was not part of this study. Nevertheless, previous studies have shown
that the number and diameter of the needles, as well as the opening mechanism of the
capsule, could have an influence on the aerosolization of the powder [18,22]. However,
the current study focused on the influence of the device geometry, the resulting airflow
through the DPI, and the resulting capsule movement.

For both binary mixtures, oscillatory capsule motion was shown to result in a higher
emitted fraction than axial capsule vibration (Handihaler) or capsule rotation (Lupihaler),
regardless of the flow rate applied. It can be concluded that for well-flowing binary blend
formulations, the powder can be easily shaken out [4,6]. In the case of the rifampicin
formulation, the inhalation force does not seem to be sufficient to eject the powder from
the capsule, which could be due to the small particle size and the resulting increase in
total surface area after spray-drying, leading to greater adhesion and cohesion forces
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of the powder and consequently greater adherence to the inside of the capsule wall or
formation of aggregates [6]. In a previous study, it was also found that a platelet shape
of particles reduces the flowability of the powder due to the resulting strong interactions
between the individual particles [27]. Therefore, the oscillating motion of the capsule is not
sufficient to overcome these interactions. Comparing the results of the albuterol sulfate or
amoxicillin formulation obtained with the Lupihaler and the Handihaler device, it could
be seen that similar powder deposition in the preseparator was observed in both cases. In
addition, a higher API deposition in the IP was observed with the Handihaler compared
to that of the Lupihaler. Both tendencies indicate that the deagglomeration of the powder
and the detachment of the active ingredient from the carrier particles are insufficient,
leading to the deposition of the mixture in the mentioned fractions. While for the albuterol
sulfate formulation, the amount of drug deposited was independent of the flow rate
applied, for the amoxicillin mixture, higher airflow resulted in less powder deposition in
the preseparator, suggesting that this formulation was easier to deagglomerate. Comparing
these observations with the results of these two formulations obtained with the Presspart
prototype DPI, it was found that the amount of active ingredient decreased more in the
two fractions mentioned, indicating a better deagglomeration behavior and possibly due to
the high circulation speed in the classifier, which leads to a better detachment of the active
ingredient from the carrier particles [28]. While no differences in powder deposition in the
preseparator were observed for the albuterol sulfate formulation when the Lupihaler or
Handihaler were used at different flow rates, a lower amount of drug was found using the
Presspart prototype device when the flow rate was increased, which also reflects the better
deagglomeration behavior of the new DPI for binary blends.

Despite the higher powder retention of the rifampicin formulation in the capsule,
better deagglomeration of the emitted powder was observed with the Presspart prototype
DPI than with the other two DPIs. The capsule movement described above, in combi-
nation with the device design, geometry, and airflow within the DPI, promotes powder
deagglomeration so that the weak powder output from the capsule can be compensated.

Comparing the FPFTD, the Presspart prototype DPI achieved the highest FPF regard-
less of the formulation tested, and the flow rate applied, highlighting the functionality of
the deagglomeration behavior for binary blends and spray-dried particle formulations.
Since there were differences in powder deposition in the capsule–preseparator compart-
ments, this resulted in differences in FPFEF when comparing the two flow rates for a device
and the respective formulation. While whether the powder remains in the capsule or DPI
after inhalation is not important for therapeutic success, FPFTD appears to be better suited
to assess the independence of powder deagglomeration from inhalation conditions, as it
describes the amount of powder of the loaded dose that can be adequately deagglomerated
by the device and delivered to the lung in vitro, regardless of the inhalation conditions
applied. Comparing the FPFTD obtained for a formulation with the DPIs, it is noticeable
that the two DPIs with high intrinsic resistance to the airflow achieved identical values at
both flow rates, indicating that powder deagglomeration was not affected by the airflow.

From the device side, it can be summarized that the deagglomeration mechanism of
the new DPI appears to offer an advantage over the known devices tested here in terms
of powder deagglomeration, regardless of whether the formulation is a binary mixture or
a particle engineered formulation. Although a high FPF was always achieved under the
tested conditions, further development of the oscillating capsule movement mechanism
could lead to increased powder ejection, especially for spray-dried particles.

5. Conclusions

From this study, firstly, it can be concluded that progress is being made in the devel-
opment of DPIs with respect to the aerosolization behavior of various formulations not
designed for the specific device and that, for this reason, the DPI could be marketed in the
future regardless of the formulation. The development of DPIs with device geometry that
provides high intrinsic resistance to airflow could lead to powder aerosolization that is
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much more independent of inhalation conditions than is currently the case. Second, the
development of binary mixtures consisting of spray-dried active ingredients and carrier
particles could be an interesting approach for future formulations, as the advantages of
both formulation techniques can be combined to increase the number of particles that have
suitable aerodynamic particle properties to reach the lungs.
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//www.mdpi.com/article/10.3390/pharmaceutics14061185/s1, Table S1: Parameters used for spray-
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for determining the airflow resistance of the various dry powder inhalers (DPIs), (P1 = Pressure
Port1); Figure S2: Exploded-view drawing of the Presspart prototype dry powder inhaler (PP-DPI).
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