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The treatment and management of tuberculosis using
conventional drug delivery systems remain challenging due to
the setbacks involved. The lengthy and costly treatment
regime and patients’ non-compliance have led to drug-
resistant tuberculosis, which is more difficult to treat. Also,
anti-tubercular drugs currently used are poor water-soluble
drugs with low bioavailability and poor therapeutic efficiency
except at higher doses which causes drug-related toxicity.
Novel drug delivery carrier systems such as mesoporous silica
nanoparticles (MSNs) have been identified as nanomedicines
capable of addressing the challenges mentioned due to their
biocompatibility. The review discusses the sol–gel synthesis
and chemistry of MSNs as porous drug nanocarriers, surface
functionalization techniques and the influence of their physico-
chemical properties on drug solubility, loading and release
kinetics. It outlines the physico-chemical characteristics of
MSNs encapsulated with anti-tubercular drugs.
1. Introduction
Tuberculosis is one of the world’s deadliest infectious diseases
caused by Mycobacterium tuberculosis. Around 10 million people
across the globe were affected in 2020 by the disease [1]. Many
efforts have been made towards completely eradicating the
disease, but it comes with setbacks [2]. The treatment of drug-
susceptible tuberculosis involves using a lengthy and complicated
treatment regime that is costly and comes with adverse side
effects and high toxicity. It has contributed to non-compliance to
patients’ treatment regime, resulting in therapeutic failure and,
consequently, the emergence of drug-resistant tuberculosis (multi-
and extended drug-resistant tuberculosis), which is more costly

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.220013&domain=pdf&date_stamp=2022-06-08
mailto:joseph.adekoya@covenantuniversity.edu.ng
mailto:joseph.adekoya@covenantuniversity.edu.ng
http://orcid.org/
http://orcid.org/0000-0001-6280-4547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220013
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

un
e 

20
22

 

and difficult to treat. In addition, several promising anti-tubercular drugs have been developed to treat and
manage tuberculosis. Still, many of them are poorly water-soluble drugs with poor permeation and
metabolic stability [3]. Thus, having low bioavailability and poor therapeutic efficiency [4]. To overcome
the challenges encountered in treating and managing tuberculosis, more advanced drug delivery
systems need to be designed and developed to enhance the therapeutic efficiency of anti-tubercular drugs.

Through the development of nanoparticle-based drug delivery systems, nanotechnology has created
a platform for overcoming the challenges encountered in the treatment and management of diseases by
seeking to improve drug bioavailability and decrease their side effects [5]. The main aim is to minimize
drugs’ concentration and dosage frequency, thereby creating a more effective and patient-compliant
treatment regime with easy administration and improved safety [6,7]. It also has unique features
which protect drugs from enzymatic degradation and metabolism to enhance the concentrations of
drugs at their target sites. Consequently, the therapeutic efficiency of the medicines is improved [8,9].
Varieties of nanocarriers have been explored for developing nanoparticle-based drug delivery systems,
one of which is porous materials.

Porous materials belong to a distinctive class of materials. They have porous structures of low-density
solids with unique pore structures, composition and sizes, responsible for their different physico-
chemical properties [10–12]. Some of these properties include large surface areas [13], high selectivity
[14], low densities [15], excellent permeabilities [16] and low refractive coefficients [17]. Due to these
properties, their popularity in technology-driven sectors has increased as their applications cut across
energy conversion and storage, pharmaceuticals, medicine, transportation and catalysis [18,19].

Porous materials have different pore shapes such as hexagonal [20], spherical [21] and cylindrical [22].
They have internal [23] and external surfaces [24] responsible for their selective functionalization [25].
Their pore walls can interact with atoms, ions and molecules and have flexible spaces that allow the
loading and release of solid particles, liquid and gaseous molecules in a controllable manner, giving
them scientific and technological importance [26].

The porous structures of these materials can be made up of organic, inorganic and a combination of
inorganic and organic composite materials. The organic porous materials are carbon-based materials,
including carbon nanotubes such as nanofibres, graphite, single-walled and multiple-walled carbon
nanotubes. Inorganic porous materials comprise metals, metal oxide-based materials and quantum
dots (metalloid materials) such as Al, Si, Zn, Al2O3, Fe2O3, ZnO and ZnS. Inorganic and organic
composite porous materials are also known as hybrid materials and are made up of organic–
inorganic, organic–organic and inorganic–inorganic materials [27]. Inorganic nanoparticles have
gained prominence as they possess better chemical stability, mechanical strength, microbial resistance
and biocompatibility than organic nanoparticles [28].

According to the International Union of Pure and Applied Chemistry (IUPAC), porous materials can
be classified into three categories based on the diameters of their pores, which are micropores (less than
2 nm), mesopore (2–50 nm) and macropore (greater than 50 nm), respectively [29–31]. The efficient and
commonly used materials are the mesopores, as they possess properties that have made them ideal
potential candidates for nano-catalysis, nano-fabrication and nanomedicine, especially drug delivery
[32,33]. These properties include; large surface areas [34], modifiable pores [35], high porosities [36],
mechanical stability [37] and good thermal stability [38].

The review gives a brief overview of mesoporous silica nanoparticles (MSNs) as drug delivery
systems, focusing on their sol–gel synthesis, physico-chemical properties, surface functionalization,
drug loading and release methods and a summary of the physico-chemical properties of MSNs
encapsulated with anti-tubercular drugs.
2. Mesoporous silica nanoparticles
MSNs have an inorganic framework commonly synthesized by the reaction of sodium silicates or silica
tetraethyl orthosilicate (inorganic silica source) with a surfactant micelle, usually quaternary ammonium
salts [39]. Parameters such as the morphology of surfactants, a silica source, ionic strength, ageing time,
temperature and pH conditions are vital for synthesizing porous silica materials. They influence the pore
size and volume surface area structures MSNs [32].

MSNs came into the limelight in the 1990s when researchers from Mobil oil company synthesized a
silica-based material MCM-41 (mobile crystalline material) from aluminosilicate gels using a liquid-
crystal template mechanism in 1992 [40]. MCM-41 has a two-dimensional (2D) hexagonal pore
structure [41]. It is prepared using cationic surfactants under basic conditions with a pH of 8.5–12
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KIT-5
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Figure 1. Types of mesoporous silica nanoparticles.
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[42]. When the ratio of cationic surfactants to silica source is less than 1, the predominant pore shape of
the mesoporous silica material synthesized is hexagonal [43,44]. MCM-48 and MCM-50 having three-
dimensional (3D) cubic [45], and the lamellar-like [46] arrangements also were synthesized the same
way as the MCM-41 mesopores using a varying cationic surfactant to silica source ratio. When the
cationic surfactant to silica ratio was greater than 1, a cubic pore structure of MCM-48 was formed.
Upon further increase, the formation of lamellar-like pore structures of MCM-50 occurred [43].

After the invention of MCM, other mesostructured materials such as SBA-11, SBA-12, SBA-15 and
SBA-16 with cubic, 3D hexagonal, 2D hexagonal and cubic cage pore symmetry, respectively, were
synthesized using non-ionic triblock copolymers such as poly(alkylene oxide) block copolymers and
alkyl poly(ethylene oxide) (PEO) oligomeric surfactants as templates [47]. This group of highly
ordered mesoporous structures was first synthesized by the University of California, Santa Barbara,
and was named Santa Barbara amorphous (SBA) type material. Technische Universiteit Delft (TUD-1)
was developed at Technical Delft University; COK-12 from the Center for Research Chemistry and
Catalysis, KIT-5 from Korean Advanced Institute of Science and Technology and HMM-33 (Hiroshima
mesoporous material-33) are also mesoporous materials synthesized with various pore sizes and
symmetry [48,49]. The commonly used MSNs for drug delivery include MCM-41, MCM-50, SBA-15
and SBA-16 [50,51]. Figure 1 and table 1 represent some types of MSNs and a list of MSNs used for
drug delivery with their characteristic properties, respectively.

The use of mesoporous materials for drug delivery began in 2001 with the synthesis of a silica-based
mesoporous material MCM-41 for the delivery of ibuprofen [56]. MSNs have unique properties which
give them an edge over conventional drugs delivery systems, which includes:

(i) Controllable pore morphology and structures with large surface areas (700–1000 m2 g−1) and
pore volumes (0.6–1 cm3 g−1) are essential for the loading and release of an extensive range of
drug molecules [57,58].

(ii) Well-ordered pore structures (individual pore channels that do not interconnect) and modifiable
pore sizes essential for modifying drug molecules’ loading and release kinetics [59].



Table 1. List of mesoporous silica materials used for drug delivery and their characteristic properties. MCM, mobile crystalline
materials; SBA, Santa Barbara amorphous.

MSN family MSN type Pore symmetry
Pore size
(nm)

Pore volume
(cm3 g−1) References

M41S MCM-41 2D hexagonal P6 mm 1.5–8 >10 [41]

MCM-48 3D cubic Ia3d 2–5 >10 [45]

MCM-50 lamellar p2 2–5 >10 [46,52]

SBA SBA-11 3D cubic Pm3 m 2.1–3.6 0.68 [53]

SBA-12 3D hexagonal P63/mmc 3.1 0.83 [52]

SBA-15 2D hexagonal p6 mm 6–0 1.17 [54]

SBA-16 cubic Im3 m 5–15 0.91 [55]
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(iii) Their low cytotoxicity and biocompatibility with cells [51,60] due to the ability of silica to quickly
decompose into harmless silicic acid [61,62].

(iv) Host–guest interaction between silanol groups on silica surfaces of the host and an extensive
range of functional groups from guest molecules; the silanol groups present on the two
functional surfaces (cylindrical pore and exterior particle surfaces) of MSNs make selective
functionalization possible, which enhances the adsorption and release of different drug
molecules [63,64].

(v) Capable of forming metal ion complexes such as Mn–MCM 41 [65], Fe–Mn [66], Al–Mn [67] and
Au MCM [68] through conjugation with metal ions. These metal complexes help to enhance the
therapeutic profile in drug delivery and assist in diagnostics [69].

(vi) Surface areas of silica walls are hydrophilic and can trigger the fast dissolution of drug molecules
by enhancing the wetting and dispersion of the drug molecules [70]. These surfaces can also be
modified with hydrophobic functional groups for the easy adsorption of hydrophobic drugs [71].
The method can be used to prolong the release kinetics of some drug molecules by reducing the
surface wettability of the mesoporous material [72].

(vii) The inorganic matrix protects drug molecules from enzymatic denaturation, temperature and pH
variations, thereby conserving the chemical stability of the drug molecules [71].

2.1. Mesoporous silica nanocarriers: synthesis and chemistry
Various methods can be used to synthesize mesoporous silica nanocarriers with various shapes and
physico-chemical properties. The most common method used is sol–gel synthesis. It entails the
formation of a colloidal solution (sol) from hydrolysis and condensation reactions of alkoxide
monomers, which acts as a precursor for the formation of a distinct network (gel) of polymers or
particles [73,74]. The synthesis of MSNs involves the hydrolysis and condensation of silanes (Si(OX)4).
It occurs within an aqueous solution in an acidic or basic catalyst such as HCl or NH3 [75], which
aids the reaction kinetics of the two processes. Where X is usually OEt or OMe or an organosilane
([(XO)3 Si]n-R and where R belongs to an organic group, n≥ 1) [76]. Reactive silanolates species (=Si–
O–) are formed during hydrolysis and are further condensed with other silanes or organosilanes to
form covalent siloxane bonds (Si–O–Si) with increasingly bigger oligomers. Generally, the sol–gel
process can be described using three reactions stated in scheme 1.

The first reaction illustrates the formation of silanol groups (Si–OH) through the hydrolysis of
alkoxysilanes. The alkoxide group (OR) is replaced with a hydroxyl group (OH) (equation 2.1). The
reaction rate is dependent on the water to alkoxide ratio, the pH value, the solvent and catalyst
employed. The second reaction illustrates the condensation reaction of the silanol groups formed with
an alkoxide or silanol group to create siloxane bonds (Si–O–Si) and by-products alcohol (ROH)
(equation 2.2) or water (equation 2.3).

2.2. Main chemical constituents used in the synthesis of MSNs
The synthesis of MSNs requires three main components. These are inorganic silica source/precursor,
a surfactant that serves as a structure directing agent/template and a catalyst. The examples of silica



Si-OR

alkoxysilane

+ H2O
hydrolysis

re-esterification
Si-OH + ROH

Si-OH

silanol

+
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Si-OR Si-O-Si

Si-OH

silanol

+
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+ H2OSi-OH Si-OH-Si

silanol
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(2.1)

(2.2)

(2.3)

Scheme 1. General reaction scheme for sol–gel synthesis.
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Scheme 2. Chemical structures of some silica sources.
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sources include tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetra methoxy vinyl
silane (TMVS), tetrakis (2-hydroxyethyl) orthosilicate (THEOS), tetra butoxy silane (TBOS), tetra
propyl ortho-silicate (TPOS), trimethoxy silane (TMS) and sodium metasilicate (Na2SiO3) [77,78].
Schemes 2 and 3 show the chemical structures of some of these silica sources and surfactants,
respectively.

The surfactants commonly used can be classified into the following:

(i) Cationic surfactants. These have a positively charged hydrophilic head (polar group) and a non-
polar group (hydrophobic tail). The majority of these surfactants have alkali hydrophilic and
methyl ammoniums such as cetyltrimethylammonium chloride (CTAC), cetyl trimethyl
ammonium bromide (CTAB) and hexadecyltrimethylammonium (HDTMA) [79,80].

(ii) Anionic surfactants. These surfactants have a negatively charged hydrophilic head (polar head) and
long hydrocarbon tail (non-polar end). They consist of sulfated (R-OSO3Na) and sulfonated
(R-SO3Na) compounds [81].

(iii) Non-ionic surfactants. These are neutral surfactants that have a non-dissociable type of hydrophilic
head, such as amide and phenol and cannot ionize in an aqueous solution. Examples include
Triton X-100, polysorbate, Pluronic F127 and Pluronic P123 [82].

(iv) Amphoteric/zwitterionic surfactants. These surfactants have positive and negative charges
on their hydrophilic ends, which cancel out each other, producing a zero net charge
called zwitterionic. Examples include phospholipids, betaines or sulfobetaines and amino
acids [83].



N

CH3

CH3

CH3H3C(H2C)14H2C Br–

cetyltrimethyl ammonium bromide (CTAB)

H2
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CH3

CH3
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non-ionic surfactants

O
C
H2

H2
C

O
H

n = 9–10
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Scheme 3. Chemical structure of surfactants.
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The type of catalyst used for the sol–gel synthesis of MSNs can be either acid or base is depending on the
reaction (hydrolysis or condensation) that is faster than the other. Acid-catalysed reaction, which
produces numerous small silica particles or a network of gels, is used when hydrolysis is faster than
condensation reaction. By contrast, base-catalysed reaction responsible for forming larger silica
particles or solid spheres is used when condensation is faster than hydrolysis reaction [44].
Diethanolamine (DEA), triethanolamine (TEA), hydrochloric acid, ammonia and sodium hydroxide
are used commonly as catalysts [18,84–86].
2.3. Parameters considered in the synthesis of mesoporous silica nanoparticles
Various parameters such as surfactants, co-surfactants, a silica source, temperature and pH can directly
or indirectly affect the morphology and textural properties of fabricated MSNs [76,87].
2.3.1. Surfactants

Surfactants (surface active agents) have an essential role in synthesizing MSNs. They serve as templates
for the growth of mesoporous materials, and the type of surfactants used determines the structures of
the materials [44]. Surfactants capable of forming micelles above the critical micellar concentration
(CMC) such as CTAB are commonly used by material scientists. When the surfactants have high
concentrations above their CMC, the micelles change their shapes from spheres to cylinders and
hexagonal channels. Larger pores can be created with the aid of a swelling agent. Mesoporous
materials with well-defined pores can be synthesized by using a swelling agent and changing the
surfactant’s type and quality [43].
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2.3.2. Co-surfactants

Co-surfactants, majorly alcohols such as ethanol [88] and butanol [77], affect the pore size and ductility
and affect the shapes of the pores as their concentration increases. As the concentration of co-surfactants
increases, MSNs tend to lose their spherical shapes, and amorphous particles with various disordered
pore sizes are formed [89,90]. Their ability to control the morphology and pore size of MSNs
enhances the drug delivery potential of MSNs [82]. Surfactants used in synthesizing mesoporous silica
materials can also play the role of co-surfactants.

2.3.3. Solvents

Solvents also have essential roles to play in the synthesis of MSNs. The most efficient and typical
examples of alcohol include ethanol, propanol, butanol and pentanol. Alcohols enhance pore
formation and alter the sizes of mesopores. However, the morphology and shape of mesoporous
materials are minimally affected by alcohols with low evaporation rates and high molecular weights
[91]. The channel rotations of mesoporous materials are also modified by alcohols [92].

In addition, alcohols assist in the removal of surfactants after the synthesis of MSNs. Alcohol has been
used as a solvent to aid the growth of cylindrical pores during the synthesis of radial MCM-48 [92]. Those
with high boiling points have been used with solvents to remove surfactants, which prevented the
agglomeration of the synthesized mesopores [93]. Furthermore, alcohol can also be used as a co-
solvent [94]. Alcohols with long chains can be used to transit from one phase to another. For instance,
after synthesizing a hexagonal phase in MCM-41, hexanol was used by Ågren et al. [95] to create a
new lamellar phase.

2.3.4. Silica sources

The synthesis of well-ordered MSNs requires precursors such as sodium silicates, colloidal solutions and
organosilanes [96], such as TMOS, TEOS, TPOS and TMS [77]. TMS forms silicate mesoporous
structures more rapidly than other precursors [97]. As the size of the alkoxy groups in silane increases,
the rate of hydrolysis decreases due to steric hindrance (spatial effects), especially in highly branched
silica sources [98].

2.3.5. Temperature

The synthesis temperature is critical in determining MSNs’ final properties as mesoporous materials can
be synthesized between 10°C and 130°C, of which 25°C is regarded as the most appropriate [82]. Two
essential factors to consider in terms of temperature are cloud point (CP) and critical micelle
temperature (CMT). The CMT of surfactants should be lower than the temperature used during
synthesis [97].

2.3.6. pH

MSNs are either synthesized under acidic or alkaline conditions as neutral conditions do not favour the
synthesis of well-ordered mesoporous structures due to high rates of polymerization and transverse
bonding [99]. However, well-ordered mesoporous materials can be synthesized under neutral
conditions by adjusting the hydrolysis and condensation of the silica precursors and using fluorine as
catalysts [100]. The polymerization and creating adjustable silicate species networks occur under
alkaline conditions with a pH of 9.5–12.5 using silica precursors such as TEOS, colloidal solutions and
Na2SiO3 [79]. Under alkaline conditions, pH changes occur during synthesis. Silica hydrolyses at the
beginning of the reaction; there is a decrease in pH and a little increase during the condensation of
silica species [79]. Moreover, a similar trend can be observed under highly acidic conditions when the
rate of mesoporous silica synthesis increases with a decrease in pH and the rate of silica precipitation
increases in the presence of high concentrations of acid catalysts [82].

2.4. Surfactant removal after synthesis
To use the synthesized MSNs for their various drug applications, the complete removal of surfactants
from nanoparticles is essential for three main reasons:
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(i) Cytotoxicity. Most surfactants used to synthesize MSNs are toxic to living cells. Some can cause cell
death at high concentrations by interacting with the phospholipids present in cell membranes.
Therefore, removing these pore-forming agents is necessary before their use for biological
applications [101].

(ii) Pore accessibility. Surfactants tend to reduce the pore volume of synthesized MSNs. The pore
volume affects the drug loading and release rates of mesoporous materials. Large pore volumes
can reduce the tendency of intense drug–drug interactions, which aids intermolecular
interactions between drug molecules and pore walls, resulting in high loading capacity [102].
The presence of surfactants in pore walls reduces the small pore volumes and minimizes drug
molecules’ loading and release rates.

(iii) Surface modification. Surfactant removal from pores enhances the surface modification of the
synthesized nanoparticles as it makes the pores more accessible to an extensive range of
functional groups such as amino acids, thiol, small organic phosphates, carboxyl groups and
phospholipids [62]. The two silica surfaces (cylindrical pore and exterior particle surfaces) can
be functionalized with the same functional groups or with two different functional groups
using two basic synthetic strategies; co-condensation or post-synthetic grafting [103].

Surfactants can be removed after the formation of mesoporous silica structures using the following
methods:

2.4.1. Calcination

Calcination involves subjecting the synthesized MSNs to temperatures as high as 800°C for the
decomposition of the surfactant used. Hollow cylinders of inorganic materials are formed in the process
[32]. This method comes with disadvantages such as surface modification and high temperature and
energy requirements. The Si–OH bonds present on the surface of the synthesized mesoporous silica
material is converted to Si–O–Si bonds at high temperatures, resulting in compression of the pores and
the surfaces. As a result, the pore size is affected, and the particle becomes hydrophobic [44]. In
addition, calcination causes dehydration and cross-linking between particles, causing irreversible
aggregation of particles, challenging to redisperse back into solitary particles [93,104].
2.4.2. Solvent extraction

Solvent extraction is a mild alternative for calcination, requiring high thermal treatment. Based on the
type of surfactant and the experimental conditions, either acidic or basic, solvents can be used to
extract the synthesized nanoparticles. Examples of solvents used include ammonium nitrate [105],
water [106], ethanol [107], hydrochloric acids [108] and other alcohols [109]. Compared with
calcination, solvent extraction has less impact on the porosity and structures of synthesized
mesoporous materials. However, in most cases, complete surfactant removal cannot be achieved with
solvent extraction, but it is possible to re-use recovered surfactants. This method is ideal when
complete removal of surfactants is not required [110].
2.4.3. Chemical-assisted oxidation

Hydrogen peroxide is commonly used as a chemical oxidant to remove surfactants through oxidation
reactions [111]. This method increases pore diameters and reduces total pore volume and surface areas
[112]. Also, it increases the number of silanol groups present on the silica walls compared with
calcinated samples [113]. An acid such as HNO3 is frequently added with hydrogen peroxide for
surfactant removal [112]. Other chemical oxidants that have been used include; ozone [114], KMnO4–
H2O2 and NH4ClO4 [115,116].
2.4.4. Microwave digestion

Microwave digestion is the fastest way to remove surfactants from mesopores. It involves exposing the
synthesized mesoporous materials to microwave radiation for about 2 min after being suspended in
an HNO3–H2O2 solution [117] or hexane and ethanol [118]. This method does not affect the textual
properties of synthesized mesoporous materials. It increases the concentration of silanol groups
compared with calcinated samples and yields higher pore volume, size and larger surface areas [117].
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2.5. Surface functionalization
The physical and chemical properties of MSNs can be enhanced through surface functionalization with
different functional groups for improved drug adsorption, delivery and sustained release at target sites
[119]. The presence of silanol groups on the surface of silica walls makes functionalization with different
functional groups easy through covalent grafting with organic silanes ((RO)3SiR

1) [120]. Commonly
used organic silanes include vinyltriethoxy silane (VTES), 3-aminopropyl triethoxysilane (APTES),
methoxy-PEG-silane and 3-mercaptopropyl trimethoxysilane. It makes MSNs versatile and suitable to
perform specific tasks. Scheme 4 provides the chemical structures of commonly used organic silanes.
Examples of functional groups surfaces that are modified include; carboxyl groups (COOH), amino-
containing polymers such as polyethylenimine (PEI), phospholipids, polyethylene glycol (PEG), small
organic phosphates and thiols [62]. Functional groups such as 3-aminopropyltriethoxysilane [121],
polylysines [122] and polyethylenimine [123] are used to modify negatively charged surfaces, such as
carboxylic acids [124]. Hydrophobicity can also be reduced using diethoxydimethyl silane [125],
trimethylchlorosilane [126] and polymethyl hydrosiloxane [127] which helps to enhance the drug
loading capacity of hydrophobic drugs [72]. There are three significant functionalization sites on MSNs:
pore entrances, pore walls and interior/exterior surfaces of the nanoparticles [128]. Drug molecules are
encapsulated to these sites by covalent bonding, hydrogen bonding, van der Waal interactions or
electrostatic binding based on the functional groups attached to the sites [129]. MSNs can be chemically
modified using two main methods: post synthesis or grafting and co-condensation method [130].
2.5.1. Post synthesis or grafting method

Post synthesis entails grafting organo-trialkoxysilanes or organo-trichlorosilane with synthesized MSNs
after surfactant removal by calcination or extraction. The functional groups attached to MSNs are
located at the exterior surface or the openings of the mesopores. One of the significant challenges
with this method is the possibility of having the mesopore openings blocked with functional groups,
which causes the heterogeneous or non-uniform distribution of functional groups on the silica matrix
[131,132]. However, this method is suitable for the functionalization of exterior surfaces of mesopore
walls [133].
2.5.2. Co-condensation method

Co-condensation involves the synthesis and functionalization of MSNs in a one-pot route synthesis. During
mesoporous synthesis, organo-alkoxy silanes are introduced together with the silica source and surfactant
at the condensation stage [103]. Surfactant is removed using ion-exchange with either an ethanolic solution
of hydrochloric acid [108] or ammonium nitrate [105]. This method allows functional groups to be grafted
to the outer and inner surfaces of the silica walls, as illustrated in figure 2 [134].
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Figure 2. Schematic representation of surface functionalization methods.
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2.6. Effect of synthesis parameters on the physico-chemical properties of mesoporous
silica materials

The effects of synthesis parameters on the physico-chemical properties of mesoporous silica materials are
discussed as follows:
2.6.1. Pore size and shape

The pore size and shape of mesopores determines the type and amount of drug molecules that can be
encapsulated within the MSNs and also the dissolution rates of drugs [135]. The appropriate pore size
has to be used to prevent the premature release of drug molecules [136,137]. With the help of the
mesoscale channels present in MSNs, drugs can be preserved in a non-crystalline state [138]. The type,
chain length and concentration of surfactants used as templates can control the final pore size
[135,139]. Jana et al. [140] investigated the effect of various alkyl chain lengths of tetra-
alkylammonium salts (commonly used surfactants) on the pore sizes of MSNs. It was observed that
an increase in the surfactant chain length from C8 to C22 can increase the pore size from 1.6 to
4.2 nm. Relevant studies have also shown that the pore size can be up to 4.1 nm by adjusting the
surfactant chain length [141,142].

Also, experimental conditions such as reaction time and temperature, the choice of silica precursor
and catalyst concentration have essential roles in determining the pore sizes of MSNs [143]. The pore
shapes also affect the drug loading and release rates of mesoporous materials, either 2D pore or 3D
interconnected structures [144].

Moreover, effective loading of drug molecules requires using the appropriate matrix as mesopore
diameters determine the size of drug molecules confined within the matrix [145]. Drug molecules that
are smaller than the diameters of the mesopore’s cavities are absorbed within the inner surface of the
mesopore. By contrast, molecules larger than the diameters of the mesopore’s cavities are absorbed on
the external surfaces of the cavities. Consequently, pore diameter serves as a size-selective adsorption
factor [63]. To achieve an adequate drug loading capacity, the ratio of the pore diameter to the size of
the drug must be significantly greater than 1. The drug loading rate improves as the ratio increases
due to increased diffusion [137].

Pore diameter also plays a vital role in drug release kinetics as they serve as a drug release rate
modulator. The influence of pore size was observed when different MCM-41 matrices were
synthesized using cationic surfactants having different chain lengths for the delivery of ibuprofen. A
decrease in the pore diameter caused a decrease in the release rate of ibuprofen [136]. As a result,
mesopore diameters can be adjusted to regulate the release kinetics of drugs [63]. Likewise, pore
volume is a crucial factor to consider when high amounts of drug molecules and large drug
molecules such as proteins are to be absorbed as they influence the drug loading properties of
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nanocarriers. Large pore volumes can prevent drug–drug interactions, which aids drug–pore wall
intermolecular interactions resulting in high loading of mesopore channels [102,146].

Meanwhile, drug loading is considered a surface-related phenomenon of which the total surface
area is a crucial factor that influences it [147]. Total surface area refers to the sum of nanocarriers’
inner and outer surface areas. It can be altered by the choice, type and concentration of surfactants
used and surface functionalization. Typically, mesoporous materials have pore sizes of less than
15 nm, a total pore volume of 1–2 cm3 g−1 and a surface area of 1000 m2 g−1 [147,148]. Also, the
specific surface area of matrices regulates the number of drug molecules retained within the
matrices. As the specific surface area increases, there is more room for host–guest interactions,
allowing a higher amount of drug molecules to be retained with a slower release rate. It was
observed in alendronate loaded into SBA-15 and MCM-41 matrices. Alendronate released from
SBA-15 (719 m−2 g−1) exhibited zero-order kinetics, while alendronate released from MCM-41
(1157 m−2 g−1) showed first-order kinetics [149].

2.6.2. Particle morphology and surface charge

The particle size, shape and surface charge are essential factors determiningmesoporous materials’ in vitro
and in vivo drug delivery. MSNs with a diameter of less than 1 µm are highly sought in drug delivery as
they have fast mass transport and excellent dispersibility compared with their bulk counterparts
[87,150,151]. The surface charge and topology of MSNs affects their pharmacokinetics and accumulation
at their target sites [152]. The cellular uptake of MSNs, their cellular interactions, distribution and
elimination, are controlled by the particle size of the nanocarriers [153]. The surface charge also affects
the cellular uptake and the in vivo immune response to mesoporous materials [152,154].

The particle size of MSNs is a factor that can be altered by specific parameters such as pH [155],
reaction temperature [156], stirring rates [157], types of silica precursor [158] and additives such as
functional organosilanes [159], TEA as a base alternative [160], co-surfactants [143] and gelatine [138].
The hydrolysis rates and condensation of silane bonds are greatly affected by pH, which subsequently
controls the particle size of MSNs. Chiang et al. and Wu et al. reported an increase in the hydrolysis
rate of TEOS as pH increased with large particle size. Also, an increase in the hydrolysis rates and
polymerization of silica precursors as reaction temperature increased resulted in MSNs having larger
particle sizes [87,150,156,161,162].

The effect of base (TEA) concentration, reaction temperature and stirring rate on particle size was
studied by Lv et al. [163]. An increase in temperature of 55°C resulted in particle size growth from 21
to 38 nm. At the same time, a decrease in particle size occurred for a slight increment in the base
concentration. There was a decrease from 51 to 41 nm by adding 0.18 g of TEA. Also, increasing the
stirring rate from 100 to 700 r.p.m. drastically reduced the particle size from 110 to 38 nm, with no
further decrease occurring after the rate increased from 700 to 1000 r.p.m. The transmission electron
microscopy (TEM) images shown in figures 3–5 represent the effects of stirring rate, base
concentration and reaction temperature on the particle size of MSNs.

Moreover, various shapes of MSNs can be synthesized by modifying reaction conditions such as the
temperature of synthesis, types of co-surfactants, stirring rate, additives and the molar concentration of
silica source, surfactant, catalyst and water [52,135,164]. Slight changes in the molar ratios of reaction
mixtures compositions and their acidity have been reported to affect the particle morphology of MSNs
[165]. Shapes like spherical and silica rods were generated by Cai et al. [166] through molar
concentration modification of CTAB, TEOS and NaOH/NH4OH. Discoid and spherical shaped MSNs
were also synthesized by Naik et al. The pH of the reaction mixture was lowered, which reduced the
condensation rate of silica and consequently lowered the local curvature energy resulting in the
generation of discoid and spherical-shaped MSNs [167].

Various shapes of MSNs ranging from sphere to yolk shell-like structures with well-ordered size,
shell structure, porosity and internal space were generated by Han et al. [168] through the adjustment
of temperature of synthesis and quantity of dodecanol used as a soft template. Rod-shaped MSNs
were synthesized by regulating the molar concentrations of reactants, the temperature of synthesis,
addition of co-solvents such as heptane and increasing the amount of catalyst used [153,169,170].

In addition, using organo-substituted trialkoxysilanes as co-structure directing agents can also control
the particle size and morphology of MSNs. Various shapes of MSNs with controlled particle size were
fabricated using several alkyl-substituted silanes with different functionalities [171]. Similar results
were reported by Sadasivan et al. using three different functional groups and an anionic surfactant
route [172,173]. Specific shapes of MSNs can be generated by making use of dual-surfactant systems
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Figure 3. TEM images of MSNs synthesized with 0.06 g of TEA, stirring rate of 700 r.p.m. and different temperatures (a) 40°C
(b) 60°C (c) 80°C and (d) 95°C (adapted from Lv et al. [163]).
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such as sodium dodecyl sulfate/HDTMA bromide [174], CTAB/dodecanethiol [168], CTAB/
polystyrene-b-poly(acrylic acid) [89], CTAB Triton X-100 [175], CTAB/perfluorooctanoic acid [127] and
CTAB/sodium dodecylbenzene sulfonate [176].

However, MSNs have a surface charge on both their outer and inner surfaces. Surface charges do not
only affect nanoparticles’ stability, opsonization, cellular interactions and bio-distribution [177]. The inner
surface charge is known to influence the drug loading capacity of MSNs [178]. In addition, the anti-
bacterial efficacy of nanoparticles is greatly influenced by surface charge. Nanoparticles with many
cationic groups on their surfaces tend to neutralize the negative charge of the bacterial cell membrane,
which results in contact death by inhibition of bacterial respiratory function or sterilization due to
change in the number of surface charges resulting in bacterial dissolution [179].

2.7. Comparing the performance of MSNs with conventional drug dosage forms such as
compressed tablets, 3D-printed drugs and polymeric nanoparticles

Compressed tablets are pharmaceutical dosage forms made by subjecting a dry granular powder to
sufficient pressure to make the particles cohesive yet with the ability of the content of the tablets to be
released predictably and reproducibly. Conventional drug dosage formation methods include direct
compression, which involves multiple processes such as blending, mixing, milling and finally
compression into tablets. The conventional production techniques are intended to be a large-scale
mass production with a one-dose-fit-all approach that may not necessarily consider a patient’s
individual needs. The significant disadvantages of the traditional manufacturing process include being
time-consuming and costly while also requiring highly skilled technicians. More recently, 3D printing
technology is revolutionizing drug manufacturing in the pharmaceutical industry because it can
curtail drug production from days to a few hours. When the production process is accelerated, it can
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Figure 4. TEM images of MSNs synthesized with a stirring rate 400 r.p.m., reaction temperature of 95°C and different TEA
concentrations (a) 0.06 g (b) 0.06 g (c) 0.12 g (d ) 0.20 g (adapted from Lv et al. [163]).
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lead to a more rapid release of the drug product into the market [180]. The ability to rapidly produce
drug dosage by the 3D method brings about a substantial reduction in the cost of production, which
is favourable to the economy of the process [181].

3D printing or additive manufacturing (AM) is used to transform a 3D digital model into a 3D
physical subject by successive material deposition in a layer-by-layer mode. Among 3D printing
strategies for drug production are stereolithography (SLA), binder jetting (BJ), powder bed printing
(PBP), semi-solid extrusion (SSE) and inkjet printing (IP). The printed drugs can be generated by
different processes that replace the ink with a desirable drug formulation and then released to a
suitable substrate in an additive process. The substrate could be an edible sheet with a functionalized
structure of specific hydrophobicity/hydrophilicity, porosity and permeability. The first step to
manufacturing a 3D object involves designing a digital model of the desired 3D product by a unique
CAD (the software comes in many forms and licences). Subsequently, the digital design is exported to
a readable format for a system, mainly a stereolithography (SLA) file. Later, a slicer (3D printing
software) converts the SLA file into a series of thin layers with an instruction tailored to generate the
3D object [182]. One of the most innovative aspects of AM is the ability to develop oral dosage forms
with elaborate shapes and complex structures (like floating systems) which were previously
impossible to produce or required laborious and cost-ineffective procedures. Furthermore, dosage
forms with more-sophisticated shapes and geometries can be easily manufactured via a broad
spectrum of AM techniques, including:
(i) dosage forms with an internal channelled honeycomb network or gyroid microstructure, where
dimension adjustments could tailor drug release;

(ii) torus-shaped formulations achieving active pharmaceutical ingredients (API) zero-order release
via fusion deposition modelling (FDM), SLA or PBP printing; and



(a) (b)

(c) (d)

50 nm

100 nm

100 nm

100 nm

diameter (nm)

50
diameter (nm)

60 70 80
diameter (nm)

3020 50 6040

80 100 120
diameter (nm)

8060 100 120140 160

Figure 5. TEM images of MSNs sample synthesized with 0.06 g of TEA, 95°C reaction temperature and different stirring rates of
(a) 100 r.p.m. (b) 200 r.p.m. (c) 300 r.p.m. (d ) 10 000 r.p.m. (adapted from Lv et al. [163]).
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(iii) composite multi-layered or shell–core formulations that could deliver one or more APIs at
different rates, depending on their specific structure and sequence of layers.

FDM is usually introduced to design and produce a bilayer tablet consisting of rifampicin (RFC) and
isoniazid (INZ) for the treatment of tuberculosis. Ghanizadeh Tabriz et al. [181] formulated INZ in
hydroxypropyl cellulose (HPC) matrix to allow drug release in the stomach (acidic conditions), and
RFC was formulated in hypromellose acetate succinate (HPMC-AS) matrix to afford drug release in
the upper intestine (alkaline conditions). This design could offer a better clinical efficacy by
minimizing the degradation of RFC in the acidic condition and potentially avoiding drug–drug
interaction. The bilayer tablet was prepared by fabricating drug-containing filaments using hot-melt
extrusion (HME) coupled with 3D printing [181,183].

The fabrication steps involving 3D printing are clean, and the material wastes are negligible, making
initially thrashed raw materials to be explored while also increasing compliance and accessibility of drugs
[184]. As a result, there is an increase in research into 3D pharmaceutical printing techniques because of
the reduced cost-benefit. However, there is a need to consider the potential product liability implications.
Based on its role in providing the product blueprint alone, the firm may be partially responsible if an
adverse incident or product defect claim arises. Another limitation of this approach is cyber risk. The
proliferation of counterfeit medicines is perhaps the industry’s most significant concern with 3D
printing. Printers are much more vulnerable to hackers than traditional manufacturing processes, and
the short production time magnifies the risk of counterfeits. In addition, the main challenge of the 3D
printing technique is to convert the starting materials (drug and excipients) into ‘curable ink’ or a
printable material [185].

Moreover, the safety and efficacy of 3D printers are often subjects of concern because traditional
mass-manufacturing facilities are subject to intense oversight from regulatory bodies, which keeps
products safer and provides solace to the insurers who cover them. However, the Food and Drug
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Administration cannot regulate every instance of 3D printing, so determining the safety of products
developed and responsibility for adverse events is murky. Hence, there is a need to consider a more
eco-friendly, safe, efficient and easily regulated approach domiciled within the purview of the
pharmaceutical industry.

In this regard, research is leveraging multifunctional and stimuli-responsive mesoporous nanocarriers
drug delivery systems that provide multiple benefits to overcome limitations of the traditional drug
dosage forms, such as protection of the drug and enhanced bioavailability and targeted delivery to
the disease site. Nanocarriers have exhibited tremendous successes in the targeted delivery of
therapeutics to the desired tissues and cells with improved bioavailability, high drug loading capacity,
enhanced intracellular delivery and better therapeutic effect [186].

Cheng et al. designed and synthesized a pH-responsive multifunctional MSN system comprising
polydopamine, poly(ethylene glycol) and folic acid for targeted delivery of doxorubicin to bridge the
limitations of drug delivery with the conventional drug fabrication modes. The authors observed the
release of the encapsulated drug from this MSN–PDA–PEG–FA nanosystem in acidic pH and high
anti-tumour activity [187]. Elsewhere multifunctional MSNs were prepared by decorating their surface
with cationic polymers to facilitate electrostatic attachment and delivery of anionic therapeutics such
as nucleic acids and siRNA [188]. In the recent decade, Yang et al. [189] developed disulfide-bridged
degradable dendritic mesoporous organosilica nanoparticles (DDMONs) for therapeutic protein
delivery to cancer cells. This DDMONs system showed a higher rate of glutathione (GSH)-responsive
degradation and release of the therapeutic protein in B16F0 cancer cells. By contrast, the degradation
of the nanoparticle was low in the normal HEK293t cells. Specifically, consideration must be given to
exploring the great potentials of multifunctional MSN to deliver anti-tubercular drug candidates
to ameliorate the problem of drug resistance and patient non-compliance with dosage routine
owing to the dangerous endogenic side effects associated with the treatment regime. Therefore, a
different treatment of the application of MSN in the anti-tubercular drug must be on the front burner.

2.8. Application of mesoporous silica nanoparticles for anti-tubercular drug delivery
Most existing and novel drugs are poorly water-soluble drugs with low absorption rates and poor
bioavailability [190,191]. Poor drug solubility is due to the drugs’ high crystallinity, melting
temperature and partition coefficient [192]. Solubility has a vital role in determining the efficiency of
drugs as it affects their overall therapeutic potential. Due to their poor solubility, poorly water-soluble
drugs are quickly expelled from the gastrointestinal tract before fully dissolved and absorbed into the
bloodstream for circulation [193]. It leads to poor bioavailability and low dose proportionality, which
in most cases, dose augmentation is required to achieve the right therapeutic blood concentration.
Dose augmentation sometimes comes with topical toxicity within the gastrointestinal tract resulting in
poor patient compliance as seen in the treatment of tuberculosis.

MSNs have special features making them an excellent drug carrier that enhances the solubility of
poorly water-soluble drugs [194]. Their bioavailability [195] makes them suitable for delivering anti-
tubercular drugs. The spatial confinement of poorly soluble drug molecules encapsulated within the
mesopores decreases the lattice energy and crystallization of amorphous drugs [196], which, as a
result, increases their bioavailability and dissolution rates compared with crystalline drugs [195,197].
Also, dispersion and wetting of the encapsulated drugs are made possible by the hydrophilic large
surface areas of MSNs, which enhances the dissolution rate of the drug molecules [70] and their drug
loading capacities [198]. Table 2 summarizes the physico-chemical properties of anti-tubercular agents
encapsulated in different types of MSNs, while scheme 5 provides the chemical structures of some
anti-tubercular agents that have been encapsulated in MSNs.

The use of spherical and honeycomb-shaped MSNs for the encapsulation of poor water-soluble
bicyclic nitroimidazole compounds, pretomanid and MCC7433 was studied by Ang et al. [199]. The
surfaces of these materials were modified with organosilane surface modifiers APTES for amine
groups and 3-(trihydroxysilyl)propyl methylphosphonate (THMP) for phosphonate group using post-
synthesis grafting method. The nanoparticles were synthesized using the sol–gel method and
encapsulated using the rotary evaporation technique. It was observed that the saturated water
solubility of the encapsulated anti-tubercular compounds improved compared with the non-
encapsulated compounds. Also, a high drug loading capacity of MCM-41 was reported, with
MCC7433 having a slightly higher loading capacity than pretomanid. Furthermore, the encapsulated
pretomanid and MCC7433 were observed to be an amorphous form compared with their crystalline
non-encapsulated form [199]. Xia et al. encapsulated moxifloxacin (an 8-methoxy quinolone) and PA-
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824 (a nitroimidazole) in spherical shaped MSNs using the solvent extraction method. It was observed
that moxifloxacin had a higher dissolution rate for both the encapsulated and non-encapsulated drugs
in phosphate-buffered saline (PBS) buffer at a pH of 7.4. Non-encapsulated PA-824 showed a lower
solubility with a poor release rate in PBS buffer due to its poor aqueous solubility. However, a faster
dissolution rate of encapsulated PA-824 was reported than non-encapsulated PA-824. One-hundred
percentage of the PA-824 loaded was released within 4 h, while non-encapsulated PA-824 had a 63%
release rate after 4 h and an 80% release rate after 24 h. A 20% increase in the solubility of
encapsulated PA-824 was attained compared with that of non-encapsulated PA-824 in the crystalline
state. Furthermore, the X-ray diffraction patterns obtained showed no recrystallization of encapsulated
moxifloxacin and PA-824, which were in an amorphous state compared with their highly crystalline
non-encapsulated forms [200].

Mohseni et al. successfully synthesized spherical shaped MSNs by the sol–gel method and passive
diffusion for encapsulation. The entrapment efficiency was observed to depend on the polarity index
of the solvent used. Due to its low polarity index, dimethyl sulfoxide had a low entrapment efficiency,
while water with a high polarity index also yielded low efficiency. However, methanol produced the
highest entrapment efficiency of the three solvents used. They also studied the effect of temperature
on the drug loading procedure employed. The entrapment efficiencies of 25% and 51% were reported
at 4°C and 25°C, respectively, while RFC’s fast degradation occurred at 45°C. The in vitro release rate
of 60% was reported for the first 4 h, and 95% of RFC was released after 24 h, creating a biphasic
release system of high and slow-release rate [198].

Furthermore, Subramaniam et al. synthesized Hiroshima type MSNs with particle sizes of 40 and
100 nm and encapsulated RFC in them using the passive diffusion method. It was observed that MSNs
with the particle size of 40 nm (MSNP-Rif 40) had a lower loading capacity, 38.3%, than that of 100 nm
(MSNP-Rif 100) 41.1%. The entrapment efficiency of 26.8% was reported for MSNP-Rif 40 and 22.5% for
MSNP-Rif 40. Subramaniam et al. also studied the in vitro release rate of RFC from PBS buffer with a
pH of 7.4 and acetate buffer with a pH of 5. It was observed that the smaller MSN particle size, MSNP-
Rif 40, released about 10% of RFC in 5 min and 3% was released from the larger particle size MSNP-Rif
100 in PBS at a pH of 7.4. It could be due to the larger surface areas of the smaller particle size and the
attachment of RFC on the surface of the mesopores. Also, RFC was released at a similar rate from both
MSNP-Rif 40 and MSNP-Rif 100 in acetate buffer at a pH of 5, which could be due to the poor
solubility of RFC in more acidic conditions compared with pH of 7.4 [201].

Joyce et al. synthesized Hiroshima type MSNs using a sol–gel method for the encapsulation of
RFC via centrifugation. The surface was modified with a hydrophobic component, hexane. The
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organic solvent and surfactant extraction process (calcination or solvent extraction) were optimized to
produce various particle sizes and hydrophilicity. It was observed that the loading capacities of RFC
increased with increasing hydrophobicity and particle size and therefore assumed that the drug
loading capacity of RFC was dependent on the surface chemistry and particle size of the MSNs rather
than the pore volume [202].

The effect of drug loading techniques, rotary evaporation and impregnation method on drug loading
capacities of INZ, pyrazinamide, pyrazinoic acid and ethambutol (scheme 5) was also studied by Shawky
et al. In their report, the rotary evaporation technique yielded a higher drug loading capacity than
impregnation method. Also, the rotary evaporation method was independent of the nature of the
drug, solvent used and MSN charge [203].

Nanoparticle-mediated delivery of anti-tubercular drugs provides distinct advantages over free drug
molecules, like prolonged circulation and enhanced access of the therapeutic payload to the
Mycobacterial tuberculosis-infected cells and tissues, consequently increasing the efficacy of the therapy.
In addition, prolonged release of the drugs from nanosized carriers ensures persistent therapeutic
concentrations of the drug for a more extended period, along with a better pharmacokinetic profile
ensuring a less frequent dosage regimen and lower dose requirement [204].

Presently, various strategies have been employed for the successful and site-specific delivery of drugs
to treat tuberculosis. Different ligands can be anchored to nanoparticles to carry numerous potential
drugs for site-specific delivery. Lung targeting with non-ligand anchored nanoparticles offers potential
challenges. The rapid exhalation of small-sized inhalable nanoparticles and mucociliary clearance of
extra size inhalable nanoparticles create significant barriers for pulmonary targeting. Therefore, the
ligand anchored nanomedicine delivery systems for effective anti-tubercular drug delivery to lungs
and its internalization with a reduced reticuloendothelial system (RES) uptake [205].

Recently, INZ-loaded mannose-functionalized solid lipid nanoparticle (ISN-MAN SLNs) reinforced
with sterylamine (SA) was designed and developed for effective alveolar macrophage targeting. The
current study suggested that after in vitro cytotoxicity study in NCIH441 and dTHP-1 cell lines for
both functionalized and unfunctionalized SLNs exhibits devoid of toxicity. Additionally, in vitro
cellular uptake study revealed greater macrophagic internalization of mannosylated SLNs. Still,
mannose treated pre-incubated cells exhibit a significant reduction of cellular uptake, evidencing
receptors-dependent internalization of mannosylated SLNs [206].

The bid to improve anti-tubercular agents’ drug loading and release performance led to the synthesis of
Pretomanid and MCC7433, a novel nitroimidazopyrazinone analogue, and promising anti-tubercular
agents that belong to the bicyclic nitroimidazole family. They suffer from poor aqueous solubility
despite high cell permeability and require specialized formulations to be orally bioavailable. To address
this limitation, we investigated the use of MSNs (MCM-41) as drug carriers. MCM-41 nanoparticles
were synthesized using a sol–gel method, and the surface was modified with amine and phosphonate
groups. The compounds were incorporated into the nanoparticles with rotary evaporation, leading to a
high encapsulation efficiency of greater than or equal to 86%with approximately 10% loading (w/w) [199].

2.9. Drug loading and release methods
The efficiency of drug delivery systems is majorly determined by their loading capacities and release
profiles [207]. Factors influencing mesoporous materials’ drug loading and release kinetics include
pore size, surface area and surface functionalization [63]. The well-ordered structures of MSNs, high
pore volume and large surface areas allow a high drug payload to be achieved [19]. Also, they
possess efficient drug release mechanisms through surface modification. The silica framework and the
nanocarriers’ outermost surface can be used to attach surface functional groups that perform various
roles in the interaction between drugs and nanocarriers, including the interaction between
nanocarriers and the physiological environment [208]. Also, loaded drug molecules are protected
effectively from physiological conditions and external environmental factors such as denaturation and
enzymatic degradation due to the inorganic nature of MSNs and their non-swellable silica network [209].

2.9.1. Drug loading methods

MSNs can maintain their structural integrity in organic solvents, making them suitable for encapsulating
poor water-soluble drugs in a non-aqueous medium. They can also improve the dissolution rate of drugs
[60]. Techniques used for loading drugmolecules can be categorized into various classes. One of them is in
situ loading during fabrication and adsorption of drug molecules within mesopores through



in situ
 loading

during fabrication

adsorption ofdrug molecules
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Figure 6. Diagram illustrating the in situ loading during fabrication and adsorption of drug molecules technique.
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chemisorption or physisorption, which is majorly influenced by the surface chemistry of the MSNs [207].
The physical adsorption method involves soaking MSNs in the desired drug solution with the aid of
intermolecular interactions such as ionic, hydrophobic and dipole–dipole interactions, which is the most
common and suitable approach for loading poor water-soluble drugs [12,210]. Figure 6 represents a
schematic diagram illustrating the in situ loading during the fabrication and adsorption of drugmolecules.

Other drug loading techniques are solvent-free and solvent-based methods [25]. Solvent-free methods
include microwave irradiation [211], co-milling [212] and melting methods [213,214]. Solvent-based
methods include incipient wetness impregnation [215,216], adsorptions [217,218], solvent evaporation
[39,138,219–221], diffusions-supported loading [222], supercritical fluid technology [223], one-pot drug
loading and synthesis procedure [224] and covalent grafting [225,226]. The drug entrapment/
encapsulation efficiency (%EE) and drug loading content (%LC) of MSNs can be determined using
the equations according to Dong et al. [227,228].
2.9.2. Drug release methods

Drugs are released from their matrices through diffusion, erosion and desorption [229]. Their release
mechanism depends on pore connectivity and size, the chemical composition of nanoparticle surfaces,
physico-chemical properties and loading methods of the drugs. Their release kinetics from their
matrices can be regulated by modifying their pore size and geometry, surface functionalization and
drug loading methods [135]. Various methods are employed to study the in vitro release of drugs
from nanoparticles, including dialysis bag diffusion, reverse dialysis bag diffusion [230], agitations
followed by ultracentrifugation/centrifugation [231] and ultra-filtration [232,233].
2.10. Outlook for functionalized nanomesoporous silica materials as promising sustainable drug
delivery modules for anti-tubercular agents

The treatment and management of tuberculosis, one of the world’s most deadly infectious diseases, is
faced with therapeutic challenges associated with conventional drug delivery systems. The main
challenges include costly and prolonged treatment regimes, poor patient compliance, systemic toxicity
and the use of poorly water-soluble drugs. Nanocarriers such as MSNs have provided a platform for
overcoming these challenges. MSNs have significant merits such as controllable physico-chemical
properties, low cytotoxicity and suitable biocompatibility, easy functionalization and high drug
loading capacity. These properties can be used to enhance the therapeutic efficiency of anti-tubercular
drugs, reduce their dosing frequency, minimize drug-related toxicity and achieve a better level of
patient compliance. Their ability to enhance the solubility of poorly water-soluble drugs by controlling
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their physico-chemical properties and straightforward surface functionalization techniques have made
them promising nanocarriers for enhancing the therapeutic efficiency of these drugs.
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