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The review provides an updated overview of amorphous solid dispersion (ASD) 

manufacturing techniques. The impact of manufacturing variables of each method 

and downstream processing on the critical physical stability of ASDs are discussed. 
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Abbreviations: ASES, aerosol solvent extraction system; ASDs, amorphous solid dispersions; 

CAP, cellulose acetate phthalate; CO2, carbon dioxide; scCO2, supercritical CO2; CSG, 

continuous-spray granulation; EPAS, evaporative aqueous solution precipitation; Eudragit®, 

polymethacrylates derivatives; FDM, fused deposition modeling; GAS, gas antisolvent; Tg, glass 

transition temperature; HME, hot-melt extrusion; HPC, hydroxypropyl cellulose; HPMC, 

hydroxypropyl methylcellulose; HPMCAS, hydroxypropyl methylcellulose acetate succinate; 

HPMCP, hypromellose phthalate; PCA, precipitation with compressed fluid antisolvent; SAS, 

supercritical antisolvent; PGSS, precipitation from gas-saturated solutions; PLGA, poly(lactic-

co-glycolic acid; PVP, polyvinylpyrrolidone; PVPVA, polyvinylpyrrolidone/vinyl acetate; 

RESS, rapid expansion of a supercritical solution; SCFs, supercritical fluids; SEDS, solution-

enhanced dispersion by SCF; SLS, selective laser sintering; Soluplus®,polyvinyl caprolactam-

polyvinyl acetate-polyethylene glycol graft copolymer; USC, ultrasound compaction; 3DP, 

three-dimensional printing 

 

Abstract Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and 

bioavailability of poorly water-soluble drugs. Various approaches have been employed to 

produce ASDs and novel techniques are emerging. This review provides an updated overview of 

manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute 

for ASD, the impact of formulation, equipment, and process variables, together with the 

downstream processing on physical stability of ASDs have been discussed. Selection strategies 

are proposed to identify suitable manufacturing methods, which may aid in the development of 

ASDs with satisfactory physical stability. 

KEY WORDS Amorphous solid dispersions; Stability; Drug delivery; Manufacturing; Solvent 

evaporation; Melting process; Co-precipitation; Downstream processing; Selection criteria 

1. Introduction 

1.1 Amorphous solid dispersions (ASDs) for oral drug delivery 

Drug solubilization is an essential step for orally administered medications to be absorbed 

systemically. Unfortunately, a large percentage of marketed drugs (~40%) and those in the R&D 

pipeline (~90%) are poorly water-soluble
1-3

. Therefore, various formulation strategies have been 

employed to overcome the solubility and/or dissolution challenges of these drugs
4,5

. Drug 

solubility and dissolution rate of poorly water-soluble drugs can be successfully improved by 
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formulating them as ASDs
6-11

. ASD is a solid dispersion in which the active ingredient is 

dispersed within an excipient matrix in a substantially amorphous form
12

. The amorphous state 

of the drug in ASDs is critical for increasing their solubility
13,14

. With the drug in an amorphous 

form, no energy is required to break the drug crystal lattice. For this reason, relative to the 

crystalline form, the amorphous form of many poorly water-soluble drugs can achieve 

substantially higher apparent solubility and markedly faster dissolution
15

. ASDs are also known 

to result in higher membrane flux due to a higher supersaturation
16

 and thus, improve 

bioavailability
17,18

. ASDs also have a higher wettability due to the presence of hydrophilic 

polymers
7
. 

Based on formulation composition, solid dispersions are classified as first, second, or third 

generation
19

. Solid dispersions prepared using crystalline carriers are the first generation. Their 

drug release rate is generally slower than the other two generations of solid dispersions
20

. ASDs, 

which consist of an amorphous drug in combination with an amorphous polymer, constitute the 

second generation
7,21

. ASD formulations could also contain additional excipients, such as 

additional polymer and/or surfactants to further enhance drug release and stability
22

. Such ASDs 

are known as the third generation. Due to their solubility and dissolution advantages, ASD 

formulations have drawn increasing interest over the last decade, in both academia
21,23-29

 and 

industry. Table 1 summarizes the US Food and Drug Administration (FDA)-approved 

pharmaceutical products based on ASDs
28,30

. There has been an increase in the number of ASDs 

under development and reaching the market over the last decade
7,22

. Currently, there are 

numerous methods available for ASD preparation, each of which has its advantages as well as 

limitations. This review aims to discuss the different manufacturing approaches to preparing 

ASDs. 

 

Table 1 Examples of FDA-approved products that are based on amorphous solid dispersions. 

Trade name Chemical name Manufacturing 

technique 

Company Year of 

Approv

al 

Cesamet
®

 Nabilone Solvent 

evaporation 

Meda 

Pharmaceuticals 

1985 

Isoptin
®
 SR Verapamil Melt extrusion Ranbaxy 1987 
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Laboratories 

Sporanox
®
 Itraconazole Fluid bed bead 

layering 

Janssen 1992 

Prograf
®

 Tacrolimus Spray drying Astellas Pharma 1994 

NuvaRing
®

 Etonogestrel/Ethinyl Estradiol Melt extrusion Merck 2001 

Kaletra
®

 Lopinavir/Ritonavir Melt extrusion AbbVie 2007 

Intelence
®

 Etravirine Spray drying Janssen 2008 

Modigraf
®

 Tacrolimus Spray drying Astellas Pharma 2009 

Zortress
®

 Everolimus Spray drying Novartis 2010 

Norvir
®
 Tab

let 

Ritonavir Melt extrusion AbbVie 2010 

Onmel
®

 Itraconazole Melt extrusion Merz Pharma 2010 

Incivek
®

 Telaprevir Spray drying Vertex 2011 

Zelboraf
®

 Vemurafenib Solvent/anti-

solvent 

precipitation 

Roche 2011 

Kalydeco
®

 Ivacaftor Spray drying Vertex 2012 

Noxafil
®
 Posaconazole Melt extrusion Merck 2013 

Astagraf 

XL
®

 

Tacrolimus Wet granulation Astellas Pharma 2013 

Belsomra
®

 Suvorexant Melt extrusion Merck 2014 

Harvoni
®

 Ledipasvir/Sofosbuvir Spray drying Gilead Sciences 2014 

Viekira 

XR
™

 

Dasabuvir/Ombitasvir/Paritaprevir/

Ritonavir 

Melt extrusion AbbVie 2014 

Epclusa
®

 Sofosbuvir/Velpatasvir Spray drying Gilead Sciences 2016 

Orkambi
®

 Lumacaftor/Ivacaftor Spray drying Vertex 2016 

Venclexta
®

 Venetoclax Melt extrusion AbbVie 2016 

Zepatier
®

 Elbasvir/Grazoprevir Spray drying Merck 2016 

Stivarga
®

 Regorafenib - Bayer 2017 

Mavyret
™

 Glecaprevir/Pibrentasvir Melt extrusion AbbVie 2017 

Lynparza
®

 Olaparib Melt extrusion AstraZeneca 2018 
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Orilissa
®

 Elagolix Wet granulation AbbVie 2018 

Erleada
®

 Apalutamide Spray drying Janssen 2018 

Trikafta
®

 Elexacaftor 

(Crystalline)/Ivacaftor/Tezacaftor 

Spray drying Vertex  2019 

Symdeko
®

 Tezacaftor/Ivacaftor and Ivacaftor Spray drying Vertex 2019 

Braftovi
®

 Encorafenib Melt extrusion Pfizer 2020 

Oriahnn
TM

 Elagolix/estradiol/norethindrone 

acetate 

Melt extrusion AbbVie 2020 

 

1.2 Physical stability challenges of ASDs  

Below the melting point, the liquid/amorphous form of a drug has higher free energy than the 

crystalline form, hence there is a thermodynamic drive for crystallization. The solid-state 

physical instabilities associated with ASDs include amorphous-amorphous phase separation 

(AAPS) and/or the conversion of the amorphous drug to a crystalline form (crystallization), both 

of which negate the solubility advantage of ASDs. AAPS is a phenomenon wherein distinct 

drug-rich and polymer-rich amorphous phases are formed throughout the ASD matrix, which 

initially consisted of molecularly mixed drug and polymer
31

. These drug-rich phases are more 

prone to crystallization due to the reduction in the inhibitory effect of the polymer. Therefore, the 

drug within an ASD system exhibiting AAPS crystallizes faster than a drug within a completely 

miscible system. Since AAPS and the subsequent decrease in the inhibitory effect of the polymer 

occur prior to crystallization, increasing the polymer concentration in the ASD does not 

necessarily lead to improved stability to crystallization. This is contrary to the trend typically 

observed for ASDs that remain miscible
32

. Janssens et al.
33

 demonstrated a varying degree of 

drug-polymer miscibility in itraconazole/ Eudragit
®
 E100 solid dispersions prepared by film 

casting and spray drying. The miscibility limit for itraconazole into Eudragit
®
 E100 was 15% 

when prepared by film casting and 27.5% when prepared by spray drying. This highlighted the 

influence of processing parameters such as solvent evaporation rate on AAPS
33

. Exposure of 

ASDs to moisture upon storage can also result in AAPS
32

.  

Crystallization, in general, can be viewed as consisting of two steps, viz. nucleation and 

crystal growth. Nucleation is the formation of small nuclei where the term nucleus refers to the 

minimum amount of a new crystalline phase that is capable of independent existence. Nucleation 
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is then followed by nuclei crystal growth
34,35

. An ideal manufacturing process should be able to 

produce homogenous ASDs which can retain their amorphous form for the required duration of 

time. In the following discussions, ‘stability’ of an ASD would refer to the solid-state physical 

stability of the ASD—particularly its tendency not to crystallize unless otherwise specified. 

Ideally, the molecularly dispersed polymer in an ASD offers protection against drug 

crystallization by altering the thermodynamics and kinetics of the system. The ease of drug 

crystallization from its amorphous state depends on the driving force for crystallization. This 

force is governed by the free energy difference between the amorphous and crystalline states and 

the molecular interactions. The presence of functional groups that are either hydrogen bond 

donors or acceptors results in energetically favorable drug-polymer intermolecular interactions. 

These interactions, together with a higher entropy result in lower chemical potential of the drug 

in a miscible drug–polymer ASD system than that of a pure amorphous drug. This lowered drug 

chemical potential translates to a reduction in the thermodynamic driving force for the drug to 

convert to its crystalline form
36-38

. However, since the drug in the ASD is often supersaturated, it 

is also important to reduce the mobility of the drug molecules to delay phase separation and 

crystallization. A viscous polymer matrix can help provide this kinetic stabilization
39

. Hence, 

although the glass transition temperature (Tg) of the amorphous drug is usually lower than that of 

the polymer, an ASD system would typically have a Tg somewhere between the Tg of the drug 

and the polymer. This increase in Tg increases the kinetic barrier to crystallization
40,41

. This is 

also the primary reason for the ‘Tg ‒50 °C’ rule. According to this rule, the molecular mobility of 

an amorphous solid becomes negligible 50 °C below its Tg
42

. Therefore, a polymer with high Tg 

is generally crucial for an ASD. When the drug-polymer system is miscible and contains drug 

amounts lower than the saturation solubility of the drug in the polymer, the ASD will be 

thermodynamically stable. Therefore, amorphous formulations benefit from the presence of a 
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polymeric carrier, which serves as an amorphous form stabilizer. Also, because a majority of 

polymers used for ASD preparation are hydrophilic, they enhance drug dissolution by increasing 

formulation wettability
43

. Further, in some drug loading regimens, the dissolution of the drug is 

controlled by the dissolution of the polymer
44

. The polymer properties for generating successful 

ASDs have been comprehensively reviewed in the past
45,46

 along with a description of 

approaches and methods for a rational polymer selection
23

. Briefly, besides an acceptable 

toxicological profile, a polymer capable of generating a homogenous dispersion with a single 

amorphous drug-polymer phase is preferred. For this, the polymer should provide a certain 

degree of drug solubility and kinetic stabilization
38

. The typically-used polymers for ASDs are 

often utilized across different manufacturing platforms and include povidone derivatives such as 

polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone/vinyl acetate (PVPVA)
47

, 

polymethacrylates derivatives (Eudragit
®
 series)

48-50
, hydroxypropyl methylcellulose (HPMC)

51
, 

hydroxypropyl methylcellulose acetate succinate (HPMCAS)
52

, and polyvinyl caprolactam-

polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus
®
)
53

. Their Tg and solubility in 

organic solvents have been listed in  

Table 2. 

 

Table 2 Commonly used polymers for ASD preparation. 

Polymer Tg (°C) Solubility in solvents 

Hydroxypropyl methylcellulose  175‒185 Water, ethanol:dichloromethane (1:1, 2:1), methyl 

acetate:methanol (1:1) 

Hydroxypropyl methylcellulose 

acetate succinate 

100‒110 Caustic water, acetone, methanol, dichloromethane, 

chloroform 

Hydroxypropyl methylcellulose 

phthalate 

133‒137 Water, acetone, ethyl acetate, methyl ethyl ketone, 

ethanol:dichloromethane (1:1) methanol, 

dichloromethane, tetrahydrofuran 
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Polyvinylpyrrolidone 175‒180 Water, acetone, ethanol, methanol, ethyl acetate, methyl 

ethyl ketone, dichloromethane, tetrahydrofuran 

Polyvinylpyrrolidone/vinyl 

acetate  

70‒110 Water, acetone, ethanol, methanol, ethyl acetate, methyl 

ethyl ketone, dichloromethane, tetrahydrofuran 

Polymethacrylates derivatives 

(Eudragit
®

-L100, S100) 

>150 Water (only L100), acetone, ethanol, methanol, 

ethanol:dichloromethane (1:1) 

Cellulose acetate phthalate 160‒170 Acetone, ethyl acetate, methyl ethyl ketone 

Soluplus
®
 72 water, acetone, ethanol, methanol, dichloromethane 

 

Additives such as secondary stabilizers or surfactants are often added to ASDs to augment the 

product. The inclusion of surfactants can favor nanodroplet formation
54

. The formation of 

nanodroplets increases apparent drug solubility
55,56

. However, surfactants can cause drug 

leaching from ASDs and enhance nucleation, promoting drug crystallization during 

dissolution
49,57,58

. Therefore, the impact on ASD stability is an important selection criterion for 

surfactant. Since the choice of excipients could have a significant effect on ASD stability as well 

as other material properties that affect processing, formulation optimization is crucial before 

downstream processing of ASDs. However, despite the selection of an optimal formulation, 

exposure of ASDs to thermal, environmental humidity, and mechanical stresses during 

manufacturing, storage, and dissolution have been known to cause issues of instability
32,59-62

. As 

the temperature increases, there could be a large increase in molecular mobility in the ASD that 

can accelerate phase separation and crystallization of the drug
63

. Ambient humidity can introduce 

moisture into the hygroscopic ASD systems. Moisture reduces the system Tg and causes a 

plasticizing effect which increases the molecular mobility of ASD and the risk of crystallization. 

Absorbed water can also potentially disrupt the drug-polymer interactions by competing with 

hydrophilic polymers for hydrogen bond formation
64

. For certain ASD systems, excess moisture 

can also reduce the drug-polymer solubility
65,66

. During the formulation process, mechanical 

stress such as grinding, crushing, or compressing can promote deformation-induced molecular 

mobility in ASDs
67,68

. In fact, the generation and maintenance of an amorphous drug form 

remains a primary challenge associated with many ASD systems and is a limiting factor for their 

wider application
69-73

. Therefore, while reviewing ASD preparation methods, it is important to 
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also focus on the impact of manufacturing variables on the physical stability of ASDs. Common 

factors affecting ASD stability are listed in  

Table 3. The impact of parameters of specific manufacturing processes is discussed in their 

relevant sections. 

 

Table 3 General factors impacting the stability of amorphous solid dispersions. 

Factor (Increase) Stability Cause Ref. 

Glass transition 

temperature (Tg) 

Increases Antiplasticization effect by polymers 74 

Molecular mobility Decreases Molecular mobility is directly responsible for 

drug recrystallization 

75 

Configurational 

entropy 

Increases Low configurational entropy will favor 

crystallization 

76 

Configurational 

enthalpy 

Decreases The greater thermodynamic driving force for 

crystallization causes an increased rate of 

nucleation 

77 

Drug chemical 

potential 

Decreases Systems with lower drug chemical potential 

are generally more stable  

78 

Humidity, 

mechanical stress, 

and temperature 

Decreases These factors can significantly increase 

molecular mobility and may plasticize the 

material 

79 

Polymer 

concentration 

Increases Kinetic stabilization 11 

Surfactant 

concentration 

Decreases Enhance nucleation, accelerate solution-

mediated crystallization 

57 
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2. Manufacturing methods for preparing amorphous solid dispersions 

ASDs can be manufactured by several methods but the underlying principle for their formation is 

the same. Firstly, the lattice structure of a crystalline drug is broken and converted into a liquid 

state by applying heat or dissolving it in a solvent. The system is then rapidly cooled (if using 

heat) or dried (if using solvent), causing it to fall out of the equilibrium at the Tg. This results in 

the generation of a solid drug in an amorphous state. To generate an amorphous state, the 

liquefied drug should be cooled or dried at a sufficiently fast rate. ASD manufacturing methods 

can be broadly classified into solvent-based methods and melting or fusion methods. Solvent 

evaporation-based methods include spray drying (SD), electrospraying, and rotary evaporation, 

wherein the drug and polymer are dissolved in a solvent which is then evaporated to form an 

ASD
7,80

. These are suitable methods for thermolabile drugs. In melting methods, the physical 

mixture of the drug and the polymer is melted and solidified rapidly to form the ASD
81

. 

Although some of the methods to produce ASDs have been well-established, researchers have 

made consistent efforts over the past decade to further improve and understand them. In addition, 

novel manufacturing techniques are constantly emerging. Therefore, the purpose of this review is 

to provide an updated overview of manufacturing techniques for ASDs. 

Different manufacturing processes will generate ASD products with different physical and 

functional properties
53,82

. Therefore, an adequate understanding of manufacturing processes and 

their impact on product properties is crucial for obtaining a successful ASD product. To aid the 

development of robust ASDs, we will discuss the impact of formulation, equipment, and process 

variables together with downstream processing on the critical physical stability of ASDs for each 

method. In addition, the advantages and limitations of each of the processes have been evaluated. 

Lastly, in consideration of the several variables mentioned above, selection strategies have been 

proposed to identify suitable manufacturing methods. 

2.1 Solvent evaporation-based methods 

The solvent evaporation processes for preparing ASDs essentially involve drug–polymer 

dissolution in organic solvent systems and their subsequent evaporation. Aqueous solvents can 

also be used in conjunction with organic systems to enhance polymer solubility, and/or reduce 

the extent of organic solvent usage. Amorphous drug–polymer dispersion is generated by rapidly 

evaporating the solvent from the drug–polymer solution. Because organic solvent evaporation is 
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usually performed at temperatures well below the drug melting point, solvent evaporation is 

particularly suitable for thermolabile formulation systems
83

. 

An important consideration when developing an ASD using a solvent evaporation process is 

the choice of a solvent system. The most challenging aspect of this method is obtaining a solvent 

system that can solubilize the drug–polymer system and be compatible with the formulation
84

, 

and has a low residue in the product. Poor or partial solubility of the constituents may lead to 

longer processing times and non-homogenous ASDs. In order to obtain the desired solvent 

parameters, often a combination of solvents is used. In such cases, azeotrope forming solvents 

such as water with ethanol (95.5%, w/w) or isopropanol (87.7%, w/w) are preferred. This is 

because binary solvents with different evaporation rates can cause a variable degree of 

supersaturation that can result in rapid precipitation of selective components at some point in the 

evaporation process. Such an event generates a strong potential for phase separation
85

. Similarly, 

significant differences in the solubility of components can result in a faster rate of drying and 

selective precipitation of the component with lower solubility on the droplet surface
86,87

. This in 

turn could further affect ASD stability. The solvent should not affect the physical or chemical 

stability of the formulation constituents during the manufacturing process before being 

evaporated from the system. The amount of residual solvent(s) in the final ASD products must be 

within the acceptable values of the International Council for Harmonization Q3C(R6) 

guideline
88,89

. This guideline defines three different classes of solvents: Classes I, II, and III. Of 

these, the Class I solvents are to be avoided and Class III are the most preferable. However, 

Class II solvents can also be used to a limited extent if Class III solvents fail to provide adequate 

manufacturing conditions. Adequate removal of the residual solvent from the final product is 

particularly crucial when toxic organic solvents have been employed
90,91

. Therefore, ASD 

preparation by solvent evaporation-based method is usually followed by secondary drying
92-95

. 

Other important considerations for a solvent-evaporation based method are operator exposure to 

harmful organic solvents and the environmental impact of solvent waste. 

Additional important solvent properties include drying efficiency, combustibility, viscosity, 

and toxicity
96

. The drying efficiency is governed by the extent of heat and mass transfer which in 

turn depends on heat supply and solvent vapor removal. Thus, in order to obtain adequate drying 

efficiency, solvent parameters affecting its evaporation rate such as vapor pressure, boiling point, 

specific heat, the heat of vaporization, and viscosity need to be assessed
84

. A high feed solution 
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viscosity can also cause sticking of the solution to the processing equipment, which can result in 

low product yields
97

. Typical solvents used for solvent evaporation methods are water
98

, alcohols 

(methanol, ethanol or isopropanol)
98,99

 or other organic solvents such as dichloromethane
100

, 

acetone
101

, ethyl acetate
99

, and methyl ethyl ketone
99

 (Table 4).  

There are several methods based on the principle of solvent evaporation like spray drying, 

electrospraying, fluidized bed drying, supercritical fluid methods, spray freeze-drying, as well as 

many laboratory-scale methods. Each method has unique processing procedures and parameters, 

which may impact ASD product properties. Small changes in the processing conditions can lead 

to substantial differences in product characteristics and performance
36

. Therefore, a fundamental 

understanding of different processes is essential for selecting the most appropriate manufacturing 

method.  

 

Table 4 Commonly used solvents for ASD preparation. 

 

Solvent Boiling 

point 

(°C) 

Solubility 

in water 

(g/100 g) 

Density  

(at 25 °C, 

g/mL) 

Viscosity  

(at 25 °C, 

cP) 

Dielectric 

constant 

ICH Class 

(limit ppm) 

Acetone  56.2 Miscible 1.049 0.295 20.7 Class 3 

Butanone 79.6 29 0.805 0.4 18.51 Class 3 

Butyl acetate 126.1 0.68 0.882 0.685 5.07 Class 3 

Chloroform 61.7 0.795 1.498 0.536 4.81 Class 2 (60) 

Dichloromethane 39.6 1.32 1.326 0.413  9.08 Class 2 

(600) 

Dimethyl 

acetamide 

165 Miscible 0.937 0.92 37.78 Class 2 

(1090) 

Dimethyl 

formamide 

153 Miscible 0.944 0.97 36.7 Class 2 

(880) 
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Dimethyl 

sulfoxide  

189 25.3 1.092 1.987 47 Class 3 

Ethanol 78.5 Miscible 0.789 1.04 24.6 Class 3 

Ethyl acetate 77 8.7 0.895 0.428 6 Class 3 

Glycerin 290 Miscible 1.261 954 42.5 – 

Isopropanol 82.6 Miscible 0.786 1.96 18.2 Class 3 

Methanol 64.6 Miscible 0.791 0.543 32.6 Class 2 

(3000) 

Tetrahydrofuran 66 Miscible 0.889 0.48 7.52 Class 2 

(720) 

Water 100 – 0.998 1 78.5 – 

–, not applicable. 

 

2.1.1 Spray drying 

Spray drying is one of the widely used processes for manufacturing ASDs
102,103

 because it is a 

continuous and commercially scalable drying process
104

. The schematic set-up of the process is 

presented in Figure 1a. The spray drying process constitutes several steps. First, the feed 

solution/suspension containing the drug and the polymer (and possibly other additives) is 

pumped into the drying chamber through a spray-nozzle. The different types of commonly used 

nozzles are shown in Fig. 1 (b, c, d). The two-fluid nozzle has been the most commonly used 

nozzle for preparing spray-dried ASDs, particularly on a laboratory-scale
105

. The energy required 

to atomize the liquid is primarily provided by a gas. Liquid fed into the nozzle under low 

pressure can be mixed either internally or externally with the gas
106

. Another widely used nozzle 

in the pharmaceutical industry is the pressurized nozzle
107,108

, which solely uses the feed liquid 

pressure for atomization. The potential energy of the liquid is converted into kinetic energy 

within the pressure-swirl nozzle. Due to internal instability as well as instability arising from the 

interaction with the surrounding air, the annular liquid lamella disintegrates
109

. The pressure-

swirl nozzle does not atomize highly viscous liquids effectively
110

. A higher solution viscosity 

decreases the swirl intensity and leads to a higher liquid throughput as the cross-sectional area of 
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the liquid increases
105

. Pressurized nozzles provide the ability to produce larger particles with 

better flow properties and are easy to scale-up. This is particularly advantageous for downstream 

processing, as it can improve powder flow, die filling, compression, and tablet uniformity. 

Sildenafil was spray-dried with poly(lactide-co-glycolide) using a pressurized nozzle to form 

microparticulates (4–8 μm) of ASDs
111

. No significant changes in physicochemical properties or 

in vitro drug release were observed during a scaled-up manufacturing process using the same 

procedure. 

The choice of the feed pump depends on the feed material viscosity, the type of atomization 

nozzle, and the drying capacity
104

. The droplets atomized by the nozzle come in contact with the 

heated gas, which causes evaporation of the solvent in the drying chamber. The duration of 

particle residence in the drying chamber will vary depending on the equipment and process 

parameters, however, it is usually in the range of a few milliseconds
112,113

. Industrial spray dryers 

are equipped to have a gas flow rate as high as 5000 kg/h that can result in a solvent evaporation 

capacity of up to 400 kg/h
84

. The dried material is carried to the cyclone separator, where the 

heavier particles are separated from the drying gas and collected
114

. The finer particles are 

removed with the exhaust gases which are collected via a filter. Particles can deposit at the 

bottom of the drying chamber in some cases and may be scraped. Scraping can be done with the 

aid of vibratory devices, and/or compressed air
115

. Although mechanical brushes can also be 

used, they might result in additional stresses
45,116-118

. One of the concerns in using spray drying is 

the amount of residual solvent. Therefore, spray drying is usually followed by secondary drying. 

ASD product characteristics and performance can vary significantly by fine-tuning the 

formulation and process parameters
84

. Relevant manufacturing parameters are shown in Figure 

1a
119-121

. Of these, two of the crucial processing variables are the inlet temperature and the feed 

rate. Optimization of these factors is essential to obtain a homogenous amorphous dispersion. 

Selection of the inlet temperature is dictated by the physical and chemical stability of 

formulation constituents and the boiling point of the solvent(s)
122

. An operating and processing 

space for generating stable ASDs is shown in Figure 2
123

. During rapid solvent evaporation from 

the atomized droplet, if the surface film formed is permeable, a porous particle is formed. A 

hollow particle with a thicker shell is formed if the initial film is impermeable
124,125

. Slower rates 

of evaporation can provide adequate time for molecular rearrangement. This can cause phase 

separation or even crystallization. The extent of phase separation/crystallization is dependent 
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upon the strength of the drug-polymer interactions
126

. Studies have shown that the extent of 

drug-polymer miscibility varies depending on the location in the spray dryer from which it has 

been collected
127

. Naproxen-PVP-VA ASDs collected from the cyclone of the (Pro-C-epT 

Micro) spray dryer showed the narrow glass transition width, indicating a higher degree of drug-

polymer miscibility relative to the ASDs sampled from the collector
127

. 

Recently, solvent composition during spray drying has also been shown to have a significant 

impact on ASDs despite the complete solubilization of drug and polymer in the selected solvent 

system. In their work, Li et al.
85

 found that water addition to the solvent system can lead to phase 

separation of ASDs during spray drying even for an initially one-phase feed solution. For the 

investigated ritonavir–PVPVA system, phase separation appeared to be subtle at a 25% drug 

loading with the co-solvents of water and methanol (10:90 ratio). However, a significant 

reduction in drug release rate was noted for this batch. Both experimental and modeling results 

indicated that the extent of phase separation increased when a higher amount of water (60:40 

water-methanol ratio) was added to the spray solvent. When comparing systems prepared from 

the same solvent composition but with varying drug-loads, higher-drug loaded ASDs were more 

prone to phase separation than the low-drug-loading system. However, the impact of phase 

separation on drug release rates of high-drug loaded ASDs was minimal, likely due to the already 

compromised release often seen at high drug loadings
85

. A change in the co-solvent ratio has also 

been shown to alter the surface composition of spray-dried ASDs, likely due to the varying 

evaporation and diffusion kinetics
128,129

. These observations are particularly significant, 

considering a higher surface ratio of drug to polymer is known to result in an increased tendency 

of the amorphous drug to recrystallize
130

. For an in-depth reading regarding the fundamentals of 

ASD particle engineering by spray drying, readers are referred to some previously published 

reviews
84,102,124,131

.  

The solubility of the drug and excipients in the feed solvent limits the output of a traditional 

spray drying process. If the solubility of the solute and excipient in the solvent is very different, 

spray-dried ASDs obtained from such solutions are often not homogeneous
128,129,132-134

. Recently, 

modified spray drying techniques have been developed for ASD production in which the 

aqueous, organic, or combination feed solution is heated by a heat exchanger before being 

atomized and spray-dried
135,136

. This process generally leads to spray-dried ASDs that are more 

homogeneous
136

. The increase in temperature of the feed solution increases the solubility of the 
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drug and other excipients. Such temperature increase of feed solution can reduce its viscosity and 

enable improved uniformity of atomization
136

. In addition, this modification allows for the rapid 

evaporation of the solvent and shorter times of particle solidification than conventional spray 

drying
136

. However, operation safety and formulation stability concerns must be carefully 

evaluated before employing this method for preparing ASDs.  

Spray drying has some limitations. A major concern in spray-dried ASDs is solvent 

residue
137,138

. The low bulk density ASD powder prepared by this method often needs 

densification to improve its flow properties for further processing into the final dosage forms. 

Additionally, adhesion of the material to the equipment walls reduces product yield which can be 

a limiting factor early in development where the developers have a limited amount of the active 

ingredient, especially for those expensive drugs. Adding silicon dioxide into the feed has been 

shown to increase bulk density, and therefore the recovery of ASD product
139,140

. Nevertheless, 

spray drying remains one of the most popular methods due to its applicability to a wide variety 

of compounds and its ability to obtain a product with a high drug load and the desired particle 

properties by fine-tuning multiple processing variables. For example, albendazole was found to 

be degrading up to 97.4% during hot-melt extrusion, despite the precautions of earlier forced 

chemical and thermal degradation tests
141

. However, no degradation was seen for spray-dried 

ASDs. The capability of spray drying to prepare high drug-loaded indomethacin-PVP ASDs was 

compared with co-milling and supercritical anti-solvent process in another report
142

. The spray 

drying method could prepare stable formulations up to a higher drug load (80%, w/w) relative to 

the other processes (60%, w/w)
142

. In a very short timeframe, spray drying can generate particles 

with a size range from nano- to micro-meter scales. Nanoparticles of celecoxib-phospholipoid 

E80 and trehalose were prepared via spray drying
143

. Microspheres (3–10 μm) of caffeine ASDs 

were generated when it was spray-dried with poly(lactic-co-glycolic acid) and polylactic acid
144

. 

It is also a process that can be scaled up from laboratory to industrial manufacturing. For 

example, Sawicki et al.
98

 showed that spray drying is more suited to scale-up than freeze-drying. 

For a Phase 1 clinical trial of docetaxel or paclitaxel, spray drying was a method of choice over 

freeze-drying since the values of both saturation solubility and precipitation onset time of spray-

dried ASDs were either similar or better to the freeze-dried ASD
98

. 
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Figure 1 A schematic of (a) spray dryer set-up and the manufacturing variables affecting product 

properties and performance; (b) external mixing two-fluid nozzle; (c) internal mixing two-fluid 

nozzle; (d) pressure-swirl nozzle. 

 

 

2.1.2 Figure 2. Spray drying design space for generating stable ASDs. Electrospraying  

In electrospraying, electrical forces atomize feed solution (containing drug and other additives) 

into small droplets in the range of a few nanometers or micrometers. Similar to spray drying, the 

rapid rate of solvent evaporation contributes to the formation of the amorphous drug state within 

the ASD. With atomization of the drug-containing solvent and rapid drying, the method is 

somewhat similar to that of spray drying
124,125,137

. However, one of the key advantages of 

electrospraying over spray drying and many other techniques is its capability to produce small 

particles, with a narrow particle size distribution
145-147

. The ‘free-fall’ of the droplets with 

subsequent rapid solvent evaporation allows for minimal to no agglomeration of the 

electrosprayed particles
148

. This technique additionally offers adaptability with basic equipment 

designs to generate particles with the desired size, shape, and morphology
149,150

. 

The standard electrospraying set-up is comprised of 4 significant parts: a siphoning system 

(usually a pump), a spray nozzle set-up with a variable high voltage, and a grounded substrate
151

. 
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The electrically conductive feed is pumped gradually into the spray nozzle, which has an applied 

electrical potential difference. When the feed solution is ejected from the nozzle, at an 

adequately high applied voltage, the free charges on the solution surface create an electrical 

pressure. This results in the generation of the ‘Taylor cone’, where the meniscus at the nozzle tip 

is shaped like a cone (Fig. 3)
152

. The solution at the tip of the cone has a high free charge and is 

pulled away rapidly towards the collector, forming a highly charged solution jet
151

. During the 

flight to the collector, solvent evaporation on the primary droplet surfaces causes them to shrink. 

This increases charge concentration causing the droplet to undergo Coulomb fission and break 

into even smaller droplets
151

. These nano- or micro-sized droplets allow for instant solvent 

evaporation so that only solidified particles reach the grounded substrate
153,154

. Several studies 

have also used an additional assembly of a corona neutralizer. The neutralizer is placed opposite 

to or concentrically around the nozzle and is used to prevent further Coulomb fission and 

disruption of charged droplets to obtain monodispersed particles
155-161

. Besides the Taylor cone-

jet mode, many other electrospraying modes can be achieved by adjusting the electrical potential. 

However, the Taylor-cone mode, which emits a steady stream of microscopic jet and breaks up 

periodically into uniformly sized droplets is the preferred mode for the generation of 

monodisperse particles.  

For electrospraying, the processing conditions are optimized such that the solution kinetic 

energy and surface tension are overcome by the electrostatic repulsion, allowing the jet to break 

into smaller droplets
151

. However, if the kinetic energy in the Taylor cone and the surface tension 

exceeds the electrostatic repulsion, usually due to the presence of high molecular weight 

polymers, the charged solution jet will not break into droplets
162

. This forms fine polymeric 

fibers (instead of particles) with their diameter ranging from a couple of nanometers to a few 

micrometers
163

. This process is known as electrospinning. Although ASDs can be prepared using 

electrospinning
164-167

, electrospraying is preferred due to its ability to generate spherical and 

monodisperse particles with better flow characteristics relative to electrospun fibers. 

Bohr et al.
168,169

 formulated celecoxib-poly(lactic-co-glycolic acid) (PLGA) microspheres of 

ASDs with electrospraying. Not only was the drug release from ASDs faster than that of a pure 

crystalline drug, but optimization of electrospraying allowed for varying ASD properties like 

particle size and porosity which helped alter drug release profiles. Yu et al.
170

 prepared 

ketoprofen-PVP ASD nanoparticles using electrospraying with drug-polymer ratios of 1:10, 
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2:10, and 5:10. Almost complete drug release was achieved for all the ratios within 1 min at a 50 

mg drug dose in phosphate buffer solution. Similar rapid release (<1 min) was exhibited for 

acetaminophen/PVP K25 prepared by electrospraying
171

. Electrospraying can also be useful for 

preparing ASDs of drugs that are poorly soluble in common solvents or have a high melting 

point, which makes using traditional heat or solvent-based methods challenging. For instance, 

quercetin is one such drug with a high melting point of 326 °C. Li et al.
172

 formulated a 

quercetin-PVP ASD by electrospraying their dimethylacetamide and ethanol-based solution, 

which exhibited rapid release (<10 s) and 10-fold higher permeation rates across porcine 

sublingual mucosae than crystalline quercetin. 

Although there are studies indicating successful ASD formation by electrospraying, there are 

also reports highlighting the complexity of electrospraying in preparing ASDs. When 

clarithromycin ASDs were prepared by electrospraying, Mohammadi et al.
173

 observed an 

incomplete amorphization of the drug. Similarly, even though the -Eudragit
®
 L100 ASDs 

prepared by Zhang et al.
174

 had a significantly enhanced drug release, incomplete amorphization 

(<5% crystallization) was observed in the formulation. Besides the nature of the drug
175,176

, 

ambient pressure is one of the factors that results in incomplete amorphization during 

electrospraying. For example, Nyström et al.
157,158,177

 reported the varying effect of ambient 

pressure on drug amorphization during electrospraying. Electrospraying the solutions of 

budesonide and piroxicam at low pressure (0.3 bar) led to powders exhibiting higher degree of 

amorphization compared to solutions electrosprayed at atmospheric pressure. On the other hand, 

indomethacin solutions electrosprayed at lowered pressure (0.3 bar) prompted the formation of 

more crystalline drug than that produced at atmospheric pressure.  

An important parameter impacting the crystallinity of eletrosprayed solids is the electrical 

field, especially for dipolar compounds. Increased interaction of the compound dipole moments 

with a strong electrical field, can cause molecular rearrangements that promote crystallization
178

. 

Also, it is important for the feed solution to have sufficient conductivity
179,180

 and low viscosity 

so that the solution jet can be broken into smaller droplets
181,182

. Figure 3 shows some other 

equipment and process variables that can affect the drug amorphization during electrospraying. 

Since even a small trace of crystalline phase can induce subsequent crystallization of the ASD, 

residual crystallinity is a parameter that needs to be monitored while manufacturing ASDs, 

especially via electrospraying. Although there is some advancement in scale-up approaches of 
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electrospraying like multi-spray nozzle
183

, nozzle-free
184

, and high-speed electrospinning
167

, the 

use of electrospinning for ASD preparation is restricted due to its low production rates and 

complex process design. For in-depth reading regarding the fundamentals of electrospraying, 

readers can refer to some previously published reviews
151-154,185

. 

 

 

Figure 3 Formulation and process variables of electrospraying affecting ASD performance (left 

diagram) and the mechanism of particle formation by electrospraying (right diagram). 

2.1.3 Fluidized bed technology 

Fluid bed technology is used for various pharmaceutical unit operations including granulation 

(fluidized bed granulator), coating (fluidized bed coater), drying (fluidized bed dryer), and 

cooling
186-188

. Along similar lines, fluidized bed coaters and granulators are also used to 

manufacture ASDs
189,190

. For ASD preparation, the drug-polymer solutions are sprayed onto 

inert excipient cores, with the solvent evaporation and ASDs layering occurring simultaneously. 

The organic solvent can be recovered and recycled
191

. This method has been used to formulate 

both controlled- and immediate-release solid dispersions
192,193

. Direct formation of ASD granules 

by this method reduces additional downstream processing steps, which aids in avoiding potential 

stability issues during these processes
45,194

. In addition, such granules allow an additional coating 

of suitable excipients which can control the release profiles or enhance the ASD stability
195

. For 

example, indomethacin–PVP ASDs prepared by coating onto sugar spheres were further coated 

with various polymers to achieve the desired drug release and diffusion rates
194

. 
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Based on the nozzle location, there are four types of setups available for fluidization as shown 

in Figure 4
196

. In both the bottom and tangential spray process, the drying air and feed solution 

are introduced in the same direction. This presents a more controlled particle movement and 

allows for a uniform ASD coating. Therefore, these two configurations are usually the preferred 

fluid bed technology methods to prepare ASDs
197

. The typical formulation and process 

parameters of fluidized bed manufacturing which affect product properties are shown in Figure 

4
198

. Dipyridamole controlled release ASD pellets were formulated by Beten et al.
192

 using the 

bottom spray fluidized bed process. When Ho et al.
193

 prepared nifedipine-HPMC ASDs by 

layering them on sugar spheres using a fluidized bed coater, they observed varying rates of drug 

release with varying drug-polymer ratios. Similarly, Sun et al.
199

 employed a fluidized bed 

coating method to prepare silymarin-PVPP ASDs. Additionally, Zhang et al.
200

 demonstrated the 

success of this process to prepare ASDs at low air temperatures of <30 °C for thermolabile 

drugs. This technique was also utilized to produce wax-based (floating) ASD pellets which gave 

a sustained release for 12 h
201

. The wax-based core was coated with protocatechuic acid and 

ethylcellulose solution in a single-step fluidized bed coating method. Fluid bed layering has also 

been used to prepare an amorphous complex of drug and cyclodextrins to enhance the drug 

dissolution profile
202

. For ASD preparation, fluid bed layering can be challenging on a larger 

scale due to stickiness of the material and over-agglomeration; though there are still a few 

marketed products manufactured using the fluid bed process
203,204

, probably because the 

fluidized bed offers a one-step granulation-coating-drying approach with the possibility of 

relatively lower operating temperatures than spray drying. 
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Figure 4 Fluidized bed manufacturing variables affecting product properties and the different 

types of fluidized bed dryers (a) top spray; (b) bottom spray; (c) Wurster; (d) tangential or side 

rotor spray. 

 

2.1.4 Supercritical fluids 

Supercritical fluids (SCFs) have also been used to produce ASDs. SCFs are simply gases that 

simultaneously present gaseous and liquid state properties under specific pressure and 

temperature conditions
205-207

. The liquid property of SCFs is useful for drug-polymer 

solubilization whereas the gaseous property aids in solid diffusion and solvent evaporation
206

. 

Although theoretically nearly all gases can be SCFs, practically only a few are used due to the 

limitation of attainable temperature and pressure conditions. In fact, >98% of all SCF 

applications have been developed with carbon dioxide (CO2)
205

. This is because CO2 has a low 

critical temperature (31 °C) and pressure (7.4 MPa), making it easier to achieve adequate 

conditions for an SCF process. In addition, it is non-flammable, reusable, non-toxic, and 

inexpensive
206,208,209

. Another gas used as an SCF in the pharmaceutical industry is 

trifluoromethane
209

. The major advantage of SCF-based methods is that they are relatively 

greener in nature and have lower production costs compared to other solvent-evaporation 

processes. The solvent evaporation process can also be controlled more by adjusting the 

temperature and pressure conditions. The low viscosity of SCFs result in a high diffusivity and 

rapid solvent evaporation with faster and higher yields
210

. Drawbacks of using SCF-based 

methods for ASD preparation include the difficulty in removing residual organic solvents (if 

used), and the high capital investment
205

.  

SCF-based processes can be divided into three groups
206

. The first includes processes that use 

SCFs as solvents. An example of such a process is the rapid expansion of a supercritical solution 

(RESS). In RESS the drug and polymer/s are dissolved in an SCF and the SCF is then rapidly 

expanded by sudden decompression. This is usually done by passing the SCF solution through an 

orifice at low pressure
210

. RESS is an advantageous single-step process requiring minimal to no 

organic solvent. However, a typical issue with this process is particle agglomeration. Many 

poorly water-soluble compounds have inadequate solubility in SCFs under moderate conditions 

of temperature (<60 °C) and pressure (<300 bar)
206,210

. Cosolvents such as methanol can be 
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added to CO2 to aid drug solubility. However, this necessitates an additional step for removing 

the residual solvent which increases process complexity and expense
211-213

.  

The second group consists of processes that use SCFs as antisolvents. In these processes, the 

drug-polymer system is solubilized in an organic solvent and then mixed with an SCF which acts 

as an antisolvent. The solubilization capability of the organic solvent reduces as SCF is being 

added to the organic solvent. Thus, the new liquid mixture now becomes supersaturated with 

respect to the drug (and the polymer) causing them to precipitate as ASDs. To successfully 

produce an ASD by this method, the drug and polymer should possess high solubility in the 

selected organic solvent and limited/no solubility in the SCF. Also, the selected organic solvent 

should be miscible with the selected SCF (antisolvent). The precipitated particles are 

subsequently filtered. There are different techniques that have the same underlying principle but 

differ in the mixing method of the solvent and antisolvent
206,210

. The examples include 

precipitation with compressed fluid antisolvent (PCA), supercritical antisolvent (SAS) 

precipitation, aerosol solvent extraction system (ASES), gas antisolvent (GAS) precipitation, and 

solution-enhanced dispersion by SCF (SEDS). For the PCA method, the organic solvent solution 

is introduced via capillaries into the controlled chamber containing the SCF
214

, whereas in SAS 

the solvent solution is introduced via a nozzle
215,216

. These methods have been applied to provide 

ASDs on an industrial-scale
217

. Atorvastatin
218

, megestrol acetate
219

, and valsartan
220

 are ASDs 

produced by the SAS approach and have exhibited improved solubility and bioavailability. 

Indomethacin
221

, cefdinir
222

, and glycyrrhizic acid ASDs
223

 produced by this process have shown 

enhanced solubility whereby the formulated powder also exhibited uniform particle size. 

Glibenclamide ASDs prepared by the SAS were shown to have similar solubility as those 

prepared by solvent evaporation using a rotary evaporator
208

. A recent study further 

demonstrated improved permeability of zidovudine-poly(L-lactic acid) solid dispersions relative 

to the pure crystalline drug when tested in an ex vivo everted rat intestinal sac model
224

. The 

observed effect was attributed to the enhanced poly(L-lactic acid) (polymer) plasticization which 

increased the extent of drug diffusion in the polymer matrix. In the ASES method, the organic 

solvent solution and SCF are sprayed at the same time (using different nozzles) into the 

chamber
216

. Itraconazole-HPMC ASD particles (100–500 nm) produced by ASES showed >609-

fold increase in the amount of drug released during dissolution compared to the pure crystalline 

Jo
urn

al 
Pre-

pro
of



 

 

23 

 

drug. Also, the bioavailability of ASDs as determined in rat models was similar to that of the 

marketed ASD drug product Sporanox
®225

.  

As an alternative to the above methods, the SCF can be added to the organic solution in the 

GAS technique
206,226

. A key unique feature of this method is that the SCF can be used as an 

antisolvent in the supercritical condition for the entire time of processing. The pressure applied 

varies continually from 1 Bar to the final pressure. With an increase in pressure, the 

concentration of the gas employed increases, causing the ASD to precipitate. Compared to other 

SCF methods, GAS is a slow process that can allow for molecular rearrangement and is therefore 

not ideal for ASDs. SEDS, another process of the second group uses a unique patented nozzle 

that allows SCF to function both as an antisolvent and a dispersing agent for the organic 

solution
227

. Thus, the organic solution and SCF are atomized simultaneously
228

. There are two 

types of a nozzle in the SEDS: one with two channels (one each for SCF and organic solution) 

and another with three channels. The nozzle with three channels provides more choices in 

operating variables. For example, one channel can be for the organic solution with a drug, a 

second for polymer in aqueous solution, and a third for SCF
229

. Puerarin microparticles produced 

by SEDS were amorphous whereas the ones prepared by GAS were crystalline
230

, likely due to 

the slow process of GAS.  

The third group includes methods that use SCFs as solutes, including precipitation from gas-

saturated solutions (PGSS). It utilizes the ability of supercritical CO2 (scCO2) to diffuse into 

organic compounds like polymers. When scCO2 diffuses into the polymer, it lowers polymer Tg 

and viscosity. In the PGSS process, the drug-polymer physical mixtures are first introduced into 

SCF. Elevated pressure and SCF cause the mixture to melt. This non-viscous solution is sprayed 

into a receiving chamber with controlled pressure. Due to rapid decompression, SCF escapes the 

solid matrix, and ASDs are formed. This method is particularly suitable for materials like PVP 

and PLGA which easily absorb SCF. PGSS is an advantageous SCF-based process since it does 

not require organic solvents and usually operates at low pressures with lower gas consumption 

relative to other processes such as RESS. Composite solid dispersions of fenofibrate and stearoyl 

macrogol-32 glycerides (Gelucire
®
) have been prepared using PGSS by Pestieau et 

al.
231

 Biphasic dissolution of the formulation indicated a significantly higher concentration of the 

drug in the aqueous (0.1 mol/L HCl) as well as organic (octanol) layer relative to the physical 

mixture. In another study, progesterone solid dispersions were prepared with PGSS
232

. Amongst 

Jo
urn

al 
Pre-

pro
of



 

 

24 

 

the tested variables, a yield of 94.7% and the highest extent of progesterone dissolution after 20 

min (85.6%) was observed for lower progesterone-to-excipient ratio (1:10) and process values of 

higher pressure (186 bar), higher temperature (60 °C), and a longer processing time (30 min). 

SCFs have also been used as processing aids in combination with melt extrusion (usually in 

RESS or PGSS mode)
233

. A schematic for the selection of an appropriate SCF-based process for 

ASD preparation is shown in Figure 5. Among SCF-based processes, SAS-based processes are 

generally favored for ASD preparation due to easier scale-up and more tunable variables
234

. 

Besides the formulation composition (discussed in previous methods), the key variables that 

affect product attributes in the SCF-based methods are pre-expansion conditions (temperature 

and pressure of vessel), nozzle type (atomization, dimension) and angle of impact of the jet 

stream, feed rate of solution, flow rate of the SCF, and final drying/extraction time
234

. 

 

Figure 5 Schematic for selection of SCF-based process for ASD preparation. 

 

2.1.5 Spray-freeze-drying 

Spray-freeze-drying is one of the cryogenic technology for preparing ASD powders (Figure 

6)
235,236

. During the spray-freeze-drying process, the feed solution or suspension comprising of 

the drug, polymer, and possibly other excipients are atomized and sprayed directly into a 

cryogenic liquid
237,238

. The frozen particles are then transferred to a freeze-dryer to generate a 

flowable ASD powder. This process can be further categorized depending on the type of 

injection devices (capillary, rotary, pneumatic, ultrasonic, two-fluid/three fluid nozzle), location 

of the nozzle, and the composition of the cryogenic liquid (liquid nitrogen, liquid argon, 
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compressed CO2)
207

. However, generally, spray-freeze-dried powders are amorphous and porous, 

which results in a high surface area and a high dissolution rate
239-244

. Also, relative to spray 

drying, spray-freeze-drying offers a higher control over particle size, compatibility with more 

excipients, less thermal stress, and a higher yield
245

. The spray-freeze-drying process has been 

successfully used to enhance the dissolution and bioavailability of poorly soluble drugs like 

carbamazepine
239,240

, and danazol
241,243,244,246-248

. He et al.
249

 demonstrated that this technology 

could be employed for producing stable and free-flowing baicalein powers that could not be 

obtained by a conventional solvent evaporation method (i.e., rotavapor). Pluronic F68 was used 

as a carrier and inhibited baicalein from crystallizing. In comparison with the ASDs prepared by 

rotary evaporation, the spray-freeze-dried ASDs exhibited significantly enhanced baicalein 

dissolution rate and improved oral bioavailability in rats
249

, likely as a result of their porous 

structure and higher specific surface area. 

Since spray-freeze-drying is a combination of spraying and freeze-drying processes, the 

manufacturing considerations for preparing stable ASD systems using this method are a 

combination of those two as well (discussed in their respective sections). Nevertheless, an 

important distinction is the solvents used for preparing the feed solution. Spray drying solvents 

may have a high ratio of organic components. However, for spray-freeze-drying, it is preferable 

that the feed solution have a low organic component since freeze-drying usually does not permit 

high organic solvent content. Another concern with spray-freeze-drying is that the porous and 

low-density structures of the ASDs may make them fragile and difficult for secondary 

processing.  
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Figure 6 Preparation of ASDs by spray-freeze-drying. The feed solution is atomized and sprayed 

directly into a cryogenic liquid and the frozen particles are subsequently transferred to a freeze-

dryer to generate dried ASD powder. 

 

2.1.6 Other solvent-based methods 

Solvent casting is a commonly used laboratory process for preparing ASDs
250-253

. A drug–

polymer solution (mostly organic) is spread onto a substrate and then the solvent is evaporated at 

room temperature under normal pressure
254

. The solvent evaporation can also be sped up using a 

hot plate
255

 or by placing it in an oven (at low temperatures and pressure) and followed by 

cooling
250

. The films that form are usually milled to obtain powders. However, this method is 

limited to drugs that can be solubilized in solvents with low boiling points like ethanol, 

chloroform, dichloromethane, or their mixtures
256-258

. Also, it might be challenging to completely 

evaporate the residual solvent.  

Solvent evaporation using a rotary evaporator is another frequently used process for a small-

scale ASD preparation
48,259

. In this process, the drug–polymer solution, typically using an 

organic solvent, is evaporated under vacuum and at slightly elevated temperatures. Simultaneous 

application of vacuum and heat increases the rate of solvent evaporation and allows the use of a 

solvent with higher boiling points if required. In the rotary evaporator process, solvents like 

tetrahydrofuran or dimethylformamide that could not be used in a solvent casting process can be 

used. The final product is collected from the flask and, if necessary, can be further milled.  

Sandhu et al.
123

 reported rotating jet-spinning as an alternative to electrospinning for ASD 

production with particles in the nano- or micro-meter size range. The typical set-up consists of a 

rotating reservoir containing drug-polymer solutions attached to a motor (Figure 7). The 

reservoir can either be perforated, or equipped with a side nozzle, or possibly placed over metal 

plates with perforations for ejecting the solution. The drug-polymer solution is placed into a 

preheated or room temperature rotating metal container (spinning reservoir) which rotates at high 

speed (generally in the range of 2000–13,000 rpm). When the reservoir is rotated (about its axis) 

at a rate that overcomes the capillary and centrifugal forces, the solution jet is ejected from a side 

nozzle/perforations on the reservoir or a gap between metal plates holding the reservoir
260

. This 

jet is propelled along a long spiral trajectory extended by the centrifugal forces. This generates a 

higher surface area. Solvent evaporation also occurs during this step. The solvent evaporation 
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rate is dependent upon the solvent diffusion coefficient in the polymer
261

. Relative to solvent 

evaporation methods like spray drying or electrospinning, challenges posed by this method 

include its lower ability to remove the residual organic solvent(s) to a satisfactory level, and the 

necessity of a batch mode
262

. Further study on the scale-up capability of this method for 

producing ASDs is warranted for the feasibility of industrial manufacturing
262

. 

 

 

 

Figure 7 A typical set-up of the rotating jet-spinning process. The reservoir containing feed 

solution is rotated such that the solution jet is ejected with a higher surface area, resulting in 

rapid solvent evaporation. 

 

2.2 Melting-based methods 

In melt-based methods, the formulation components are heated to form dispersions, followed by 

cooling. Solvent avoidance is a significant benefit of the melting techniques
263

. However, a 

major drawback of these methods is that the high temperatures may induce drug degradation
84

. 

Melting methods also require sufficient solubility/miscibility of drugs in the polymer melt, which 

can be very difficult for certain molecules to achieve
7,264,265

.  

An efficient ASD production by melting depends on the operational as well as compositional 

variables. The use of a polymer in the production of an ASD is of course to stabilize the 

amorphous form, but it is also important for processing because the polymer provides a molten 

medium for drug solubilization or dispersion. Therefore, the polymers used in melting processes 

are usually polymers or waxes with a low melting point or Tg
52,266

. Commonly used carriers 

include PVP
52

, PVPVA
267-269

, cellulose esters and acrylates
47,52

, and polymethacrylate 

derivatives
268

. There are some commercial polymers specifically designed for melting processes 
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such as HPMCAS
270-272

, Soluplus
®273,274

, and Affinisol
® 

HPMC HME (modified HPMC)
275

. 

These carriers can also be used in combination to achieve improved amorphization, stability, 

dissolution, and bioavailability
47,276

. 

Sufficient plasticization is essential to form an ASD during the melting process. Although the 

drug itself can provide some plasticizing effect
277

, additional plasticizers can be added to aid the 

mixing of drug and polymer. Melting-based ASD preparation processes are also often 

characterized by high shear stress, which can be reduced by the incorporation of a plasticizer
265

. 

Plasticizers reduce the viscosity of the mixture and therefore can lower the processing 

temperature. Some examples of frequently used plasticizers are D-α-tocopheryl
270,278

, 

poloxamers
273,279

, low molecular-weight poly(ethylene glycol)s (PEGs)
265

, and 

surfactants
280,281

. Plasticizer selection is dependent on its intended formulation functionality, 

such as lowering the processing temperature or lowering the melt viscosity. Added plasticizers 

that remain in the product, can affect its properties and performance (physicochemical stability, 

dissolution, Tg, hygroscopicity, or appearance). In addition, conventional plasticizers are used in 

a concentration range of 5%–30%, w/w
282,283

 which increases the total weight of the formulation 

and may result in large, unacceptable dosage forms. Therefore, an ideal plasticizer should be 

capable of providing the desired plasticizing effect and then be removed from the formulation to 

mitigate its possible negative effects before final processing. For this reason, scCO2, low boiling 

solvents, or reagents that can evaporate or sublime are being used
123,233,284

.  

2.2.1 Hot-melt extrusion (HME) 

For commercial-scale production, only two types of melting processes are available, hot-melt 

extrusion (HME) and melt agglomeration (discussed later in the ‘Granulation’ subsection). 

HME, and especially the twin-screw melt extrusion with Meltrex™ as a representative example, 

is one of the most widely used techniques for producing ASDs
263,265,285

. The drug and the 

polymer are mixed, melted, dispersed, and then extruded under specific processing 

conditions
265,286

. Figure 8 shows the HME process, which can be divided theoretically into five 

steps, namely: feeding, melting and plasticizing, mixing/kneading and conveying, discharging, 

and cooling for further downstream processing. Important parts of a hot-melt extruder include a 

feed hopper, barrel, extrusion screws, torque sensors, heating-cooling system and dies. 

The HME equipment has a flexible design, which enables processes to be tailored to achieve 

the desired outcomes and to accommodate varying raw materials, by adjusting the modular 
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design elements, namely the screws and barrels
287

. It is also possible to apply HME technology 

to drugs liable to oxidation and hydrolysis by excluding oxygen and moisture from the 

mixture
265,287,288

. The barrels can be flanged together or linked via internal tie rods. The most 

critical component of the extruder is the screw, which determines the quality and quantity (per 

unit time) of the extruded material
52,287

. Based on the screw configuration, the process may be 

categorized into single-screw or twin-screw extrusion. A twin-screw provides many benefits over 

the single screw model, with decreased drug residence time in the extruder and facilitated 

continuous mass flow with better mixing
278,289

. It can also be designed with two separate 

hoppers, both of which can vary in temperature over a wide range and are equipped with the self-

cleaning function
265,266,290

. In addition, twin-screw extruders can limit thermal stress on the 

materials by reducing the ‘non-motion’ and preventing localized overheating
265,266

. It also 

presents easier feeding of materials and less propensity to overheat
288

.  

Depending on the desired shear level and operating speed, two screws can be designed in 

different configurations
52,291

 of co-rotating (rotating in the same direction) or counter-rotating 

(rotating in the opposite direction), depending on the desired mixing intensity. Co-rotating 

screws are usually used in pharmaceutical manufacturing because they generate relatively lower 

shear forces than the counter-rotating
266

. Nakamichi et al.
289

 demonstrated that the 

physicochemical properties of the extruded material were substantially impacted by the machine 

operating conditions. The study reported that since the kneading screws kept the material in the 

machine for a prolonged period under shear, stable ASDs exhibiting super-saturation upon 

dissolution could be prepared irrespective of changes in operating conditions such as the rate of 

revolution of the screws (20‒100 rpm) and the amount of water (0%‒50%) introduced in the 

feed
289

. When the kneading screws were detached from the screws and only the feed screw 

elements were used for ASD preparation, the extent of amorphization and dissolution profiles of 

the extruded material was substantially impacted by the machine operating conditions. Although 

partial crystallinity was observed in all the batches, the extent of crystallinity decreased with a 

reduction in rotation rate and amount of water. Slow screw rotation and the addition of a 

sufficient amount of water to the mixture increased the rate of dissolution of the drug, although 

no super-saturation occurred in any of the batches tested
289

. 

The kneading paddles play a vital role in drug amorphization. Verhoeven et al.
292

 reported that at 

least one kneading zone was necessary for the homogeneous distribution of metoprolol tartrate in 
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ethyl cellulose matrices, even though the homogeneity of distribution and drug release rate were 

not significantly altered by the number of kneading zones or their location along the extruder 

barrel. The impact of screw configuration on the dissolution behavior was studied by Liu et al.
293

 

with indomethacin-Eudragit
®
 EPO ASDs. They observed that indomethacin dissolution into the 

polymer melt was accelerated by the kneading blocks. Adequate shear stress, shear rate and 

mean residence time (which is linked to lower screw speed and feeding rate), are required to 

ensure complete drug amorphization
263,266,294,295

. However, excessively high shear stress, shear 

rate, and residence times pose the risk of material degradation.  

The molten mass can be conveyed to the dies of a variety of shapes and sizes depending on the 

desired product properties. For example, the production of films
296

 and patches
297

 use flat dies, 

whereas pelletization and spheronization use circular dies
298,299

. Injection molding can also be 

utilized to fill the molten drug-polymer mass into molds
233,300

. Tablets, granules, capsules, or ear 

inserts can be produced in these molds
263,265,295,301

. After cooling at room temperature, the 

resulting product is collected and can be further milled to obtain the required particle sizes
265,302

. 

Apart from these important variables, other parameters such as temperature, die geometry, barrel 

design, and screw speed can also impact the final product properties
265

. Recent work has shown 

that the degassing process can remove volatile substances and subsequent air bubbles, which 

facilitates consistent production of extrudates with improved cross-sectional uniformity
303

. In 

order to reduce torque during screw rotation, certain minimum temperatures capable of 

plasticizing the material are required in HME
263,265

. Material flow properties are also critical to 

ensure a consistent feed rate from the hopper. For poorly flowing material, flow aids such as 

spray-dried mannitol, maltodextrin, and colloidal silica
123

 can be used. As some of these flow 

aids are crystalline, the miscibility of the drug in the polymer may be affected, further 

complicating the solid-state and chemical analysis.  

HME is continuous, single-step, solvent-free, and capable of scaling up
263

. The HME method 

can be equipped with on-line and in-line quality-control analysis such as near-infrared, Raman, 

and dielectric spectroscopies
304

, which facilitate quality by design and continuous manufacturing. 

Some drawbacks include the higher energy usage and exclusion of thermolabile 

compounds
263,266,305

. Changes in the design of the equipment (e.g., presence of kneading 

elements), as well as the addition of plasticizers, can lead to a reduction in processing 
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temperatures and/or residence time, and thus minimize the potential of thermal degradation of 

drugs during the processing
265

. 

 

Figure 8 Twin-screw hot-melt extrusion and the associated manufacturing variables impacting 

product properties. 

 

2.2.2 KinetiSol
®

 

KinetiSol
®
 is a modern fusion-based method that uses high shear force combined with heat to 

melt the drug-polymer blend and generate an ASD
306

. A rapid temperature rise is generated by 

the combined mechanical forces involved in the process. This creates a molten mass that is 

immediately quenched and processed further. The schematic representation of KinetiSol
®
 

technology is shown in Figure 9. A series of paddles rotating in a cylindrical vessel and shaft 

with high-speed mixing blades produce a large amount of frictional and shear energy
307

. This 

mechanical force results in the generation of heat, and the material temperature increases without 

applying external heating. Computer software controls the real-time temperature of the 

composition inside the KinetiSol
®
 chamber, and the molten mass is quickly ejected from the 

processing vessel upon reaching the user-defined temperature endpoint. The entire process 

duration is normally <20 s, and the material is generally exposed to high temperatures for <5 s 

before the product is discharged and cooled
308

. The method is designed to operate in a batch 
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mode at a laboratory-scale, whereas it can be run semi-continuously at an industrial-scale with 

output as high as 1000 kg/h
309,310

.  

 

 

Figure 9 Schematic of KinetiSol
®
 technology. Mechanical forces involved in the process result 

in a rapid temperature increase. This creates a molten mass which is immediately quenched to 

generate ASDs. 

  Being a short process in which desired temperature is reached within seconds, and material 

is ejected rapidly when the target temperature is reached, it lowers the exposure of the material to 

thermal stress, which is beneficial to ASD regarding degradation. Hydrocortisone-HMPC and -

PVPVA matrices were found to be chemically ‘preserved’ during KinetiSol
®
 processing (160 °C, 

<30 s); while heating the mixture at higher temperatures of >180 °C reduced drug potency due to 

decomposition
311

. Griseofulvin ASDs prepared with this method did not exhibit any sign of 

crystallinity or increased impurity, even after storage at 40 °C and 43% relative humidity (RH) 

for 6 months
309

. The utilization of heat generated by the process (with no added external heating) 

in KinetiSol
®
 makes it one of the few methods applicable to drugs with high melting points as 

well as low solubility in organic solvents. This also enables the elimination of plasticizers and 

Jo
urn

al 
Pre-

pro
of



 

 

33 

 

reduces the risk of extended heat exposure
312

. Even viscous polymers (e.g., PVP K30, PVP K90, 

HPMC K15 M) can be applied in KinetiSol
®
 processing without the aid of plasticizers.  

Another benefit of KinetiSol
®
 is that it permits high drug loading without high torque and 

degradation, unlike other thermal processes
306

. Itraconazole dispersion with Methocel E50LV 

was prepared using KinetiSol
®
 at a temperature range below the drug melting point without 

excessive shear
312

. Tg values of itraconazole-Eudragit
®
 L100-55 ASDs prepared by KinetiSol

®
 

(at 1:2 ratio) were higher than those prepared using other thermal techniques, suggesting 

improved stability. This improved stability was attributed to the ability of KinetiSol
®
 to offer a 

short processing time of < 10 s, a processing temperature lower than the polymer degradation 

temperature, and the use of low torque (even without plasticizers)
306

. 

Hughey et al.
312

 conducted a design of experiment matrix to examine the effect of KinetiSol
®
 

process variables on drug stability. Meloxicam-Soluplus
®
 ASDs were prepared at varying 

processing temperatures (110‒140 °C) and processing speeds (2250‒3000 rpm). The results 

indicated that the residence time was inversely related to process speed; when the processing 

speed was increased from 2250 to 3000 rpm, the residence time decreased from 22 s to less than 

3 s. No definite relationship between the processing speed and drug degradation was observed. 

Ejection temperature and degradation, however, were found to be correlated. The samples 

ejected at 110 and 118 °C showed a drug content of >95%, but when the ejection temperature 

was raised above 125 °C it decreased to <90%, and further decreased to 79% when the ejection 

temperature was raised to >140 °C.  

Similar effects of KinetiSol
®
 processing conditions have been reported on the stability of 

ritonavir-PVPVA ASDs
308

. The processing time was decreased, but the amount of impurity 

increased with an increase in mechanical energy (processing speed), indicating that exceeding 

the mechanical energy over a certain limit can result in drug degradation. Of important note was 

that even though the ejection temperature was maintained at 80-100 °C, which was far below the 

drug degradation temperature of 160 °C, a high processing speed of 2000 rpm still caused the 

drug to degrade. The above case studies illustrate the capacity of KinetiSol
®

 for generating ASDs 

after adequate process optimization.  

2.2.3 Three-dimensional (3D) printing 

Three-dimensional printing (3DP) is a relatively innovative technology that can transform 3D 

computer models into physical objects by additive manufacturing
313,314

. The significance and 
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relevance of 3DP for pharmaceutical applications have been discussed in depth elsewhere
315-322

. 

It is a technique to manufacture customized medicines for patients
323

 by delivering multiple 

drugs
324-327

 with varying print settings, allowing for better control over the drug dissolution 

kinetics
328-331

. There are several techniques and variations in 3DP, such as material jetting, binder 

jetting, and material extrusion
332

. The most widely used technology in the pharmaceutical sector 

is material extrusion and fused deposition modeling (FDM)
333,334

. In vivo experiments in animals 

as well as humans have demonstrated good tolerance of FDM 3D printed formulations
335-337

.  

For ASD preparation, 3DP has often been used in conjunction with HME
338

. HME + FDM 

3DP involves heating a drug–polymer mix and extruding it with the HME technique, followed 

by 3DP, and cooling-solidification of the molten mass into the desired form on the build 

plate
339,340

. Although many polymers have been studied for HME + FDM 3DP
341

, hydroxypropyl 

cellulose (HPC) remains the most commonly used one due to its suitable properties of particle 

size, viscosity, and Tg which allow for ease of extrusion, shape retention, and dimensional 

accuracy while generating a stable product
323,342-344

. Friability of the tablets greatly depends on 

the particle size of the employed polymer with smaller polymer particles improving the friability, 

whereas disintegration time and dissolution properties mainly depend on the viscosity of the 

employed polymers
345

. The polymers with higher viscosity usually lead to slower disintegration 

and dissolution
345

. One obvious drawback of FDM 3DP is the need for drug dispersions to be 

prepared by HME, which increases the probability of thermal drug degradation
346,347

. Another 

significant downside is the constraint on the use of excipients and drugs because they need to 

generate filaments with the necessary mechanical and physical characteristics for a successful 

3DP
348,349

. Nowadays many 3DP studies in pharmaceutical applications have focused on the 

selection and optimization of excipient filaments appropriate for 3DP. The drug loading potential 

of the process is typically limited since a significant amount of polymer is required to impart 

adequate rheological properties to the extrudate. Therefore, the possibility of eliminating the 

HME step in FDM 3DP would be of great value in pharmaceutical product development
316

. In 

the plastics industry, direct pellet extrusion, a new 3DP material extrusion process, has recently 

been introduced as a possible alternative to FDM 3DP
350

. This technology uses a single screw 

extruder with a printer nozzle to directly print material in the form of pellets/powder. Since this 

technology does not require the preparation of filaments using HME, it may potentially permit 

the extrusion of mixtures which, due to the insufficient mechanical properties of the filaments, 
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would not be printed by conventional FDM (e.g., being too brittle or too flexible). Similar 

technology was employed by Goyanes et al.
351

 to prepare cylindrical ‘printlets’ or 3D printed 

tablets of ASDs. This new, single-step 3DP technique was used to prepare itraconazole ASD 

printlets directly from powdered materials using four different grades of HPC (HPC-UL, SSL, 

SL, and L). All the generated printlets exhibited acceptable mechanical and physical 

characteristics complying to pharmacopeial limits. In addition, no drug degradation was detected 

in the printlets and they exhibited a sustained drug release profile with drug concentrations 

exceeding the crystalline drug solubility. This research demonstrated the ability of this 

technology to resolve one of the major drawbacks of HME FDM 3DP, i.e., the need for filament 

preparation by HME.  

Recently another single-step 3DP process, selective laser sintering (SLS), was used to produce 

ritonavir–copovidone ASDs
352

. A complete conversion of the crystalline drug to its amorphous 

form was obtained as a function of laser-assisted selective fusion. In this study, powder flow 

properties, surface temperature, chamber temperature, laser speed, and hatch spacing were found 

to be crucial for successful ASD formation
352

. Moreover, ritonavir in the SLS 3D printed tablets 

exhibited a 20-fold increase in solubility relative to the crystalline drug. These novel, single-step 

technologies could be advantageous for the preparation of ASDs for preclinical studies where the 

quantity of drugs is limited or the use of traditional HME is challenging. 

 

2.2.4 Microwave heating 

Microwave-induced in situ amorphization is being investigated, wherein the crystalline drug in 

the final dosage form is amorphized in situ inside the final dosage type using a microwave 

oven
353

. Several experiments have demonstrated the feasibility of using microwaves to prepare 

ASDs. Doreth et al.
354

 obtained indomethacin–PVP ASDs generated in situ by microwave 

heating. The indomethacin-PVP ASDs exhibited no microwave-induced drug degradation and 

the dissolution rate of the microwaved amorphous tablets was 6-fold higher than that of the 

physical mixture containing crystalline indomethacin-PVP
354

. 

The microwave-induced amorphization process consists of three main steps. First, preparing 

the drug-polymer physical mixture. Second, inducing drug amorphization with continuous or 

intermittent microwave heating. The last step is cooling, followed by possible pulverizing and 

sieving. In order to achieve a higher degree of drug amorphization, the formulation should be 
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optimized such that the drugs have high solubility in the polymer, and the polymers can be 

melted or softened at relatively low temperatures
355-357

. To date, only a few polymers have been 

studied for this technology, with a primary focus on PVP K12. Therefore, it is important to 

identify more potential carriers to be used with the microwave heating method to expand its 

applicability in pharmaceutical applications. 

High input of microwave energy is needed for the amorphization
354

 because unlike water, 

polymers and drug molecules are weak absorbers of microwave
358,359

. Usually, the following two 

techniques are applied to generate sufficient heat: i) convective heating, i.e., a microwave 

absorbing reactor or a sample holder is heated and this heat is then indirectly transferred to the 

sample
353,360-370

; and ii) The addition of microwave absorbing solvent
371

 or solvent slurry
372,373

 to 

the drug-polymer solution mix and followed by solvent evaporation due to heating. For example, 

Moneghini et al.
353

 placed the physical mixture of ibuprofen and PVP-VA in a glass sample 

holder, and materials were heated due to the convective heating from glass, whereas Abreu-

Villela et al.
372

 manufactured ASDs by microwaving suspensions prepared by adding defined 

amounts of water to the drug-polymer physical mixture. 

The microwave heating time is typically <15 min, which has a relatively short exposure time 

to heat and thus potentially shields drug degradation
374-376

. The potential of the microwave 

heating method is its applicability to introduce drug amorphization in the final dosage form 

without downstream processing
354,377-379

. Of a particular note, such in situ amorphization process 

by microwave heating can take place in the final dosage form. Doreth et al.
354

 demonstrated an in 

situ amorphization process where a drug can be amorphized within its final dosage form (tablets) 

through microwave irradiation. The authors also noted that increasing moisture content resulted 

in a higher fraction of amorphous drug. For the tablets in which the absorbed water evaporated 

rapidly from the surface after storage, the microwaves could not be absorbed, leaving a shell of 

the crystalline drug at the surface. In regard to the drug chemical stability, there is potential for 

drug degradation during microwave processing due to the microwave energy applied
376

. But 

even before microwaving, the presence of absorbed water, which is a prerequisite for facilitating 

in situ amorphization by microwave irradiation, can potentially lead to drug hydrolysis and 

degradation. A potential explanation why Doreth et al.
354

 did not detect drug degradation during 

their in situ amorphization process may be due to the short storage time (RT and 54% RH for 

two weeks) prior to microwaving at 1000 W for 90 s. It is possible that long-term storage can 
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have a substantial effect on the drug stability profile, especially considering the large quantity of 

absorbed water (approx. 10%) present in such systems. Therefore, it is important to perform 

more systematic studies to evaluate the drug degradation propensity during formation as well as 

storage of ASDs prepared by microwave heating. There are presently only a few other 

publications on microwave-induced in situ amorphization in the final dosage form
377-379

. 

 

2.2.5 Other melt-based methods 

On a laboratory-scale, ASDs can be produced by the melt-quench method, where formulation 

ingredients are melted, and followed by a natural or forced rapid cooling
380

. A water bath
381

 or a 

hot plate
382

 can be used to melt the formulation components while the molten mass can then be 

solidified either by allowing it to cool naturally to room temperature
383-385

 or by immersing in an 

ice bath
386-388

 or liquid nitrogen
389

. However, during early drug discovery and development of 

ASD formulations there is a limited amount of drug to work with. Therefore, a high throughput 

method that can prepare ASDs in small batches is particularly useful and efficient. Guo et al.
390

 

proposed a novel acoustic fusion method, which can provide a fast process with only a small 

amount of drugs. In this method, a Labram resonant acoustic mixer was used for acoustic fusion. 

The heating metal plate attached to the mixer was preheated to 80‒160 °C and 10 mg of solid 

load (2 mg drug and 8 mg polymer) was filled into each glass vial of the 24-vial plate. The vials 

were then sealed and placed in the acoustic fusion heating block. The powder was mixed at an 

intensity of 50‒80 G. The heating/mixing time varied between 15‒60 min depending on the 

formulation. The samples were then removed and cooled to room temperature, which resulted in 

a dense glassy solid. The batch size limit for this process can vary from 10 mg to 2000 mg 

depending on the powder density. Torcetrapib, itraconazole and lopinavir of ASDs were 

prepared using a variety of polymer systems, including HPMCAS (L, M, and H), copovidone, 

Soluplus
®
, Vitamin-E TPGS, Kolliphor EL, and Eudragit

®390
. These ASDs demonstrated 

significantly higher drug solubility compared to the crystalline form. Thus, this approach can be 

used to prepare and optimize ASDs during early screening. 

Another potential method for early-stage pre-clinical investigations of ASDs is ultrasonic-

assisted or ultrasound compaction (USC). USC is a modified tableting process that provides heat, 

pressure, and shear to melt the powders during compaction with ultrasonic energy. The USC 

method is a relatively new fusion-based technique in pharmaceutical research
391-398

. Fini et al.
395
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pioneered the use of USC for drug amorphization. In this earlier study, the effectiveness of USC 

in preparing indomethacin and β-cyclodextrin SDs was examined
395

. Indomethacin melted 

during processing and eventually was dispersed in β-cyclodextrin. Due to the presence of 

amorphous indomethacin, the USC formulations displayed enhanced dissolution properties over 

the physical mixture or kneaded compositions. Sancin et al.
393

 also prepared a ketoprofen–

Eudragit
®
 S100 ASD system sing USC. The findings showed that the dispersed ketoprofen 

crystallized at a much lower rate (>6 months) than the pure ketoprofen produced using USC (<1 

day). Similarly, Fini et al.
394

 prepared PVP-based indomethacin systems using USC. The use of a 

PVP matrix allowed a faster dissolution rate than the formulations prepared with β-cyclodextrin. 

Fini et al.
392

 also investigated PEG-based compositions of indomethacin prepared by USC. It was 

hypothesized that, due to the low melting point of the material, the USC process would soften or 

melt each material, enabling a solid dispersion to be formed inside the die cavity. However, 

despite the observed increased dissolution rate, the formulations prepared by USC were not able 

to reach the dissolution rate of the ASD control samples prepared by the melt-quench method, 

suggesting, incomplete amorphization
392

. This is perhaps the reason for the observed increase in 

indomethacin dissolution rate with an increase in the input of ultrasonic energy, suggesting that 

higher energy input leads to a higher extent of amorphization
392

. 

When monitoring the USC process, Ueda et al.
391

 noted changes in both the punch position 

and the die pressure with respect to the phase transition process of the polymer. Their study 

inferred that a sudden increase in the pressure on the lower punch can detect the optimum 

ultrasound energy for complete transformation. This is why the polymer as well as system Tg are 

important considerations during the USC process. 

The primary advantages of using this method are the low quantities of material required and 

elimination of downstream processing. However, a crucial limitation of this method is the 

incomplete amorphization of the drug due to the lack of distributive mixing with ultrasonic 

energy. The product may show some inhomogeneity, and phase separation or presence of a small 

amount of crystalline phase which can be detrimental to the stability of an ASD system, as 

discussed in the earlier sections. For wider applicability of this method, more in-depth studies are 

required to understand the requisite physicochemical properties of the drug and the polymer, 

stability of the materials during and after processing, as well the method reproducibility
399

.  
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2.3 Others miscellaneous techniques 

2.3.1 Granulation 

Preparation of ASDs by the granulation approach enables the direct generation of ASD granules 

with a reduced number of manufacturing unit operations and minimized cost for investing in new 

equipment
400,401

. Depending on the nature of the binder fluid, granulation can be categorized into 

solvent evaporation or melting process categories. Several granulation techniques can be utilized 

to produce ASDs including fluidized bed granulation, tumbling granulation, and mixing 

granulation
190,402-407

. Figure 10 shows the commonly used high-speed granulator and the 

associated manufacturing variables affecting ASD properties. 

The principle of granulation for ASD preparation by solvent evaporation is the same as 

discussed in the fluidized bed technique section earlier (fluidized bed granulators). In this case, 

the binder usually consists of a drug dissolved in appropriate solvent(s) which is then added to 

the remaining excipients of the formulation. There are several examples in the literature which 

have utilized solvent evaporation-based granulation for the successful preparation of 

ASDs
190,402,403,406,408,409

. In addition, if it is critical to avoid drug exposure to the organic and/or 

aqueous solvents, the process of melt agglomeration can be employed wherein a molten mass of 

the drug and the polymer serves as a binder for forming granules
405,410

. This further reduces the 

drying steps associated with the solvent-based wet granulation process. Melt agglomeration also 

employs standard granulation equipment such as high shear granulators
411,412

 and fluidized bed 

granulators
81,413

. The melted drug-polymer mass serves as a binding liquid for granulation, 

ensuring sufficient homogeneity. Polymers for melt agglomeration can be liquids such as PEG 

300 and caprylocaproyl macrogol-8 glycerides (Labrasol
®

) or semi-solids like stearoyl polyoxyl-

32 glycerides (Gelucire
®

 50/13)
411,414

. Solid polymers with low melting temperature/Tg, such as 

PEG (3000
412

 and 6000
81

 grades) and poloxamer 188
412,415

 can also be used. However, similar to 

other melting processes, the use of high temperatures limits its application to thermally sensitive 

drugs. The limited choice in carriers is another drawback of this method because high Tg 

polymers are not suitable
405

.  

A modified method of granulation is thermal adhesion granulation (TAG)
416

. This process can 

be loosely considered as a combination of solvent- and melt-based processes. In TAG, little to no 

solvent is added to the drug and excipient mixture relative to the traditional wet granulation 

methods. The mixture is heated (30–130 °C) to promote the formation of the adhesive binder, 
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and then mixed by tumble rotation until granules are formed. Drying is not needed in most 

instances because little to no solvent is added in the process. Following cooling, granules of the 

specific particle size can be collected by sieving. The method imparts good flow properties and 

binding ability to granules to form tablets with low friability and sufficient hardness
416

. Lin et 

al.
417

 converted hydrophilic polymers such as PVP and HPMC into the matrix materials while 

processing them with other diluents using TAG. Chen et al.
404

 developed cilostazol ASDs by 

TAG using two adsorbents dibasic calcium phosphate anhydrous (Fujicalin
®
) and 

microcrystalline cellulose (Microcel
®

) for granule formation.  

However, a major drawback of TAG is that it is challenging to formulate tablets of high-dose 

drugs since it necessitates the use of a larger amount of other excipients for inert core
418

. To 

overcome this challenge, Theismann et al.
419

 developed an alternative process of spray 

granulation capable of preparing high drug-loading (80%, w/w) nicotinamide (NAM) granules by 

wet extrusion and spheronization. However, it would be a challenge to employ this method for 

stable ASD preparation due to the higher extent of water/solvent exposure. Continuous-spray 

granulation (CSG) may overcome the above limitations in solvent exposure
420

. This is a one-step 

method generating granules from solution or suspension. In the CSG method, the solution or 

suspension containing the drug and polymer (and possibly other excipients) is spray-dried 

generating small particles. These are then further layered by continuous spray. A typical set-up 

for CSG is a kind of a combination of spray dryer and fluid bed granulator. It consists of a two-

fluid spray nozzle which is placed vertically at the bottom of the drying chamber. Additional air 

nozzles are present on the inside wall of the drying chamber which remove adhered powder off 

and maintain a continuous flowable state of the particles during drying/layering. Recently, 

Tanaka et al.
420

 prepared ASD granules of rebamipide and PVPVA using a continuous-spray 

granulator. Dense and smooth granules with satisfactory physical stability (20 °C/75% RH for up 

to 6 months) and improved dissolution properties relative to the pure crystalline drug were 

obtained with the optimized polymer concentration.  
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Figure 10 Preparation of ASDs using a high-speed mixer granulator. Molten drug–polymer mass 

can be added in the form of binder into the excipient mixture to form granules (melt 

agglomeration). Depending on the availability of suitable solvent system, alternate route includes 

using an organic feed solution as a binder fluid. 

 

2.3.2 Co-precipitation 

Antisolvent co-precipitation is another widely employed approach to produce ASDs
44,421,422

 at 

both small-scale
423-428

 and industrial-scale
18

. Compared to the spray-dried ASDs, the ASDs 

produced by the solvent exchange process have a larger particle size and often do not need 

further densification. These result in a superior compaction profile, limiting the need for added 

excipients such as compaction aids
123

. In addition, it is possible to maximize drug loading as 

high as 70% for certain compounds
123

. 

Co-precipitation amorphize drugs by the rapid precipitation of the ASD in the anti-solvent. 

The low processing temperatures circumvent the stability issues for the thermal-liable drugs. The 

co-precipitation process, as shown in Figure 11, begins with the dissolution of the drug and an 

ionic polymer in the nonvolatile solvents that are usually dimethylacetamide, 

dimethylformamide, or dimethylsulfoxide. The solution is then transferred gradually into a pH-

controlled and chilled anti-solvent (usually water). It is crucial that both the drug and the 

polymer are insoluble in anti-solvent and that the common solvent is miscible with the anti-

solvent to cause rapid co-precipitation
423

. An additional condition for the anti-solvent 

environment is that in the precipitated suspension state, the drug-polymer ASD remains in an 

Jo
urn

al 
Pre-

pro
of



 

 

42 

 

amorphous state, i.e., the Tg of the amorphous composite is above the precipitation temperature 

as plasticized by the anti-solvent environment. After the controlled co-precipitation process, the 

precipitated wet solid mass can still contain a relatively significant amount of the organic 

solvent, which needs further removal. The organic solvent is generally removed by washing the 

solid precipitate with appropriate aqueous solvent until the residual organic solvent is <0.1%, 

w/w
10

. The washing is followed by a drying process to remove the aqueous solvent from the 

precipitate with the forced-air oven or fluid bed dryer.  

Commonly used polymers for this process are HPMCAS (L, M, H grades), cellulose acetate 

phthalate (CAP), cellulose acetate butyrate, polyvinyl phthalate, hypromellose phthalate 

(HPMCP), and polymethacrylates derivatives/Eudragit
®
 (L100–55, L100, S-100, and EPO 

grades)
123

. The use of low temperature, low solvent/antisolvent ratio, and adequate shear helps in 

improving the operational efficiency of co-precipitation. The time required for drug transition 

between the two solvents must be less than that associated with drug diffusion and crystallization 

in the solvent. The method therefore can benefit from agitation which rapidly mixes the solvent 

and antisolvent
429

. Rotor-stator devices are often incorporated into the co-precipitation process 

for adequate mixing. The introduction of higher shear often provides greater volumetric 

efficiency and enables the formation of more homogenous products
429

. Other process variables 

that need to be monitored and optimized for preparing a stable ASD are shown in Figure 12. 

In order to generate ASD, many variations of solvent-mediated precipitation have been 

explored, e.g., evaporative aqueous solution precipitation (EPAS), flash nanoprecipitation, and 

controlled precipitation. In EPAS, the drug–polymer solution is atomized into a heated aqueous 

solution, where the heated antisolvent evaporates the solvent (generally dichloromethane)
430

. 

However, this method is limited to low boiling solvents such as dichloromethane that can be 

readily evaporated due to the use of heated aqueous fluid as an antisolvent. Also, since this 

process occurs at elevated temperatures, it may not be ideal for ASD stability, particularly for the 

thermal-liable compounds. A modification to the EPAS process is controlled precipitation, which 

involves in-line extraction of solvent by vacuum distillation
431

. The controlled precipitation 

method also utilizes solvents with low boiling points such as methanol. Mann et al.
432

 used a 

slightly altered co-precipitation system in which nonionic polymers were used and the 

precipitation was induced by organic antisolvents as opposed to pH modified aqueous 

antisolvents. The integration of surfactants into these ASDs was also possible due to the use of 
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aqueous solvents. Moreover, using solvents and antisolvents with relatively lower boiling points 

makes the downstream isolation and drying of the precipitates easier. 

A major limitation of the co-precipitation method is that due to pH-dependent solubility and 

stability, some pH sensitive compounds may not have sufficient time for adequate precipitation 

in the anti-solvent. Furthermore, heat and moisture may cause stability concerns during the 

washing and drying processes. 

 

Figure 11 Schematic of co-precipitation process to prepare ASDs. 
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Figure 12 Co-precipitation and its processing variables for preparing ASDs. 

 

2.3.3 Milling-based methods 

On a laboratory-scale, milling/cryogrinding has been employed for preparing ASDs of certain 

compounds
433-439

. The reduction in particle size has long been known to decrease crystallinity 

and achieve amorphization
440-442

. A partially amorphous anti-inflammatory product has been 

manufactured using SoluMatrix
®
, a technique that entails dry milling the crystalline drug with a 

hydrophilic carrier
443

. However, the method is not widely popular in the pharmaceutical 

industry
433

 as there is often a risk of residual crystallinity, which can act as a seed and induce 

nucleation/crystallization during the shelf life, even with some stabilizers (e.g., magnesium 

aluminometasilicate, crospovidone, sugar)
441,442

. 

3. Downstream processing 

It is clear from the discussion so far that variations in manufacturing techniques have a 

substantial impact on ASD properties such as particle size, particle porosity, and density, 

flowability, tabletability, and stability. However, it is important to note that these properties are 

not only linked with the manufacturing process but also to the formulation composition. 

Obviously, even slight changes in the process parameters and formulation can alter these 

physicochemical properties. During the development of a specific ASD product, the process 

parameters need to be carefully evaluated and optimized to obtain an optimal product. In many 

cases, downstream processing is necessary to obtain such desired properties.  

During the downstream processing of ASDs, there is often a risk of drug crystallization, 

especially during operations that expose the ASDs to moisture, thermal or mechanical 

stress
59,60,68,386,444,445

. The crystallization of a drug from the ASD during transport and storage due 

to the mechanical activation by grinding, crushing, or even scratching has also been discussed by 

Német et al.
68

. Therefore, ideal ASDs require minimal downstream unit operations. However, in 

reality, certain downstream processes might be inevitable. Depending on the manufacturing 

method, the ASDs obtained can be in the form of a fine powder, granule, extrudate, or fiber. 

Processes like spray drying, electrospraying, super-critical fluid technology, cryogrinding, and 

milling usually generate fine ASD powders that require further densification (or granulation) to 

enhance their density and flow properties for efficiently manufacturing their final dosage 

forms
446-448

. For ASDs, dry granulation and direct compaction are usually preferred over wet 
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granulation due to the moisture sensitivity of ASDs. Fu et al.
449

 observed that the amorphous 

drug is more inclined to crystallize in a tablet prepared from a wet granulated method than in 

tablets prepared by direct compression. Leane et al.
444

 also noted a significantly higher 

crystallinity in the tablets with roller-compacted granules, in contrast to directly compressed 

tablets under accelerated storage conditions (40 °C/75% RH).  

HME generates extrudates (usually spaghetti-shaped) while processes like electrospinning and 

rotating-jet spinning result in ASD fibers, which need to be milled into granules. The granules of 

ASDs can be further combined with additives such as disintegrants, flow aids, compression aids, 

lubricants, etc. for efficient encapsulation or tableting
450

. HME granules, however, usually have 

limited compaction properties due to the reduced porosity of the extrudates and the ductile 

properties of the polymers used. Recently, two types of post-die melt extrudate processing 

milling techniques were evaluated for itraconazole-HPMC ASDs, viz. hammer mill and air 

classifier mill
450

. The product was prepared by using the hammer mill melted at higher mill 

loadings. In contrast, this problem did not emerge when an air classifier mill was used. The 

addition of an elastic substance (e.g., carrageenan or polyglycolic glyceride) has been shown to 

prevent an amorphous drug from crystallization during compression and storage
59,451

, possibly 

due to the cushioning effect of elastic materials. However, the addition of elastic substances 

during compression can generate other undesirable effects on product properties and 

performance such as physicochemical stability, dissolution, Tg, hygroscopicity, or appearance. 

Large surface area can contribute to the lower stability of amorphous drug because Tg of ASD 

is typically lower on the surface than in the bulk particle region
452,453

. Increased crystallization 

rates are often noticed on the particle surface because of greater molecular mobility
454

. Coating 

celecoxib-PVP ASDs prepared by the fluidized bed (Wurster) process with coating excipients 

(PVA, inulin, and polyvinyl acetate were tested) formed a barrier layer
455

. This led to lower 

molecular mobility at the surface and increased protection against moisture. Figure 13 shows a 

schematic of possible downstream processes to prepare a solid dosage form of an ASD 

(tablet/capsule). 
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Figure 13 A schematic of downstream processing routes to prepare ASD solid dosage forms. 

4. Selection criteria of an ASD manufacturing method 

Besides the drug thermal stability and solubility, other important considerations for selecting a 

manufacturing method are batch size (scale), and equipment availability. If the drug can melt 

<150 °C without degradation, melting methods can be considered. Amongst melting methods, if 

the purpose of preparation is screening, even DSC pans can be used for ASD preparation by 

melt-quenching. For a larger laboratory-scale batch, melt-quenching by using a hot-plate/oil bath 

can be considered. However, a molten mass with a viscosity of >300cP may make ASD 

processing with these methods challenging. In such cases, HME or solvent evaporation 

techniques can be considered.  

The key factors to consider when choosing a solvent evaporation-based manufacturing method 

are the properties of the organic solvents used to solubilize the drug and polymer(s). For a 

screening study, if the boiling point of the solvent/s is <50 °C, the solvent cast method can be 

used. For solvent/s boiling at higher temperatures or for a larger batch, rotavapor or spray drying 

can be the choice. For intermediate or industrial-scale production, the choice of processes for 

ASD preparation is limited. This is because, at a larger scale, additional criteria such as the 

process efficiency, process yield, particle properties, and if applicable, solvent toxicity, 

environmental impact, the safety of the operator, and flammability/explosion risk need to be 

considered. Based on formulation properties, a straightforward method selection decision tree for 

preparing ASDs is shown in Figure 14.  
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Figure 14 A method selection decision tree with the commonly used manufacturing processes 

for preparing ASDs
30

. 

 

5. Conclusions 

A successful development of amorphous solid dispersion formulations depends on three primary 

factors: active pharmaceutical ingredient properties, stabilizing polymer, and processing 

technology. Polymers provide the basic and essential foundation for a stable drug amorphization 

and the process supplies the energy required to transform the system to an amorphous form. The 

effectiveness of the process is critical to generate, capture, and preserve the amorphous form. 

The success of these processes is dependent on the processing time and the supersaturation 

conditions that are being generated during the formation of the solid dispersion.  

Despite the discovery of solid dispersions in the early 1960s, the application of the solid 

dispersion concept to solve solubility challenges had been limited for several decades partly due 

to the lack of commercially viable processing technologies. However, the past two decades have 

seen remarkable progress in developing pharmaceutical ASD products as our understanding of 

ASD systems and their manufacturing technologies have evolved considerably, leading to 

several commercial products in addition to numerous in development. Spray drying and HME 

have become the mainstay of ASD preparation in the pharmaceutical industry, while newer 
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methods are constantly being added into the toolbox that promise to improve the quality, 

productivity, and/or better performance of the products.  
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