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Abstract: In the case of capsule-based dry powder inhalation systems (DPIs), the selection of the
appropriate capsule is important. The use of gelatin, gelatin-PEG, and HPMC capsules has become
widespread in marketed capsule-based DPIs. We aimed to perform a stability test according to
the ICH guideline in the above-mentioned three capsule types. The results of the novel combined
formulated microcomposite were more favorable than those of the carrier-free formulation for all
capsule types. The use of HPMC capsules results in the greatest stability and thus the best in vitro
aerodynamic results for both DPI powders after six months. This can be explained by the fact that
the residual solvent content (RSC) of the capsules differs. Under the applied conditions the RSC of
the HPMC capsule decreased the least and remained within the optimal range, thus becoming less
fragmented, which was reflected in the RSC, structure and morphology of the particles, as well as in
the in vitro aerodynamic results (there was a difference of approximately 10% in the lung deposition
results). During pharmaceutical dosage form developments, emphasis should be placed in the case
of DPIs on determining which capsule type will be used for specific formulations.

Keywords: pulmonary drug delivery; powders for inhalation; dry powder inhaler; novel com-
bined formulation; ciprofloxacin hydrochloride, sodium stearate; magnesium stearate; stability test;
DPI capsules

1. Introduction

Research on pulmonary drug delivery (PDD) has been carried out in remarkable
numbers in the last two and half decades, and the number of companies and research
groups specializing in this field continues to grow [1]. This is due to the fact that the
lung, as an alternative drug delivery gate, is able to absorb the drug over a large area
according to its anatomical properties through a thin absorption membrane, and due to its
excellent blood supply, a rapid systemic effect (much faster than oral administration) can
be achieved [2]. Thus, PDD is suitable for both local and systemic therapeutic purposes [3].
Furthermore, it should be emphasized that it is much more advantageous compared to
oral administration in terms of side effect profile, as the first-pass effect of the liver and
the enzymatic inactivation of the gastrointestinal tract as metabolic pathways are avoided
by the inhaled drug, requiring a lower therapeutic dose [4,5]. It is noteworthy that great
emphasis is placed on the development of inhaled antibiotic products as, for example,
they can be used effectively in the treatment of cystic fibrosis [6]. A number of inhaled
antibiotics are currently available on the market, such as amikacin (Arikayce®, Insmed
Incorporated, Bridgewater, NJ, USA), aztreonam (Cayston®, Cayston Gilead Sciences Ire-
land UC, Carrigtohill, Ireland), colistimethate sodium (Colobreathe®, Forest Laboratories
UK Ltd., Whiddon Valley, UK), levofloxacin hemihydrate (Quinsair®, Chiesi Farmaceutici
S.p.A., Parma, Italy), and tobramycin (TOBI®/TOBI® Podhaler®, Novartis International
AG, Basel, Switzerland; Bramitob®, Chiesi Farmaceutici S.p.A., Parma, Italy) [7,8]. In addi-
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tion, many inhalation products containing antibiotics (e.g., ciprofloxacin, murepavadin, etc.)
are in clinical trials [9,10].

For PDD, the following main groups can currently be distinguished: nebulizers,
pressured metered-dose inhalers, soft mist inhalers and dry powder inhalers (DPIs) [11].
The development of the latter can be said to be the most popular of the listed, as their
stability is relatively high compared to liquid-based systems due to solid powders, they
are propellant-free to operate, easy to use, etc. [12,13]. For the optimal functioning of
these microcomposites, in addition to the appropriate formulation, it is essential that
patients use the inhalers professionally and master the correct breathing maneuver, and
the development of DPI devices should facilitate the adequate flow of the formulation,
must be compatible with the applied powder, however, that should allow easy application
by the user [14]. A notable proportion of DPI products marketed are capsule-based [15],
which suggests that remarkable attention should also be paid to the role of DPI capsules
used, but the international literature has only recently begun to address this issue [16–20]

Capsules used in DPIs have different functions and properties compared to oral drug
administration in terms of therapeutic success [21]. While capsules also play a role in
the liberation of the drug when administered orally, in the case of inhalation therapy, the
capsule wall does not only serve to “package” the formulation, as its composition and
internal surface properties can affect aerosolization and thus the effectiveness of the therapy.
For example, excessive adhesion between the capsule wall and the particles of the DPI
formulation (this may be due to the static nature of the capsule wall and the roughness
of the inner surface) may result in more drug particles remaining in the capsule after
inhalation [18,22]. Thus, DPI powder particles can be more difficult to aerosolize and, in
carrier-based systems, can also adversely affect the dispersion of the micronized drug from
large carrier particles [23]. It should be noted that the properties of DPI capsules may
also play a role in the stability of DPI powders, as their residual solvent content (RSC)
can affect the structure of formulations (in the case of being amorphous), morphology,
density, and interparticle interactions (between drug–drug and/or drug–carrier particles),
which also affect the aerosolization and dispersion of the formulations. The stability of the
DPI capsules and the increase in fragility over time may also modify the aerodynamics of
the powders during inhalation. As a result of the factors listed above, the mass median
aerodynamic diameter (MMAD) of the samples may increase and greater deposition is
expected in the upper airways, so fine particle fraction (FPF) may be smaller than expected
if using DPI capsules improved properties [24,25].

For DPI capsules, three main types can be distinguished. First of all, the use of
gelatin (GEL) capsules is widespread, which is still one of the most common type of
capsule in capsule-based inhalers on the market, e.g., in Onbrez® Breezhaler® (Novartis
International AG, Basel, Switzerland) [26]. However, it should be mentioned that it is
incompatible with certain active ingredients (e.g., hydrolyzing agents) and the relatively
high RSC involves a risk, since based on experience, it becomes brittle below 10% [16].
The next step was the development of gelatin-PEG (GEL-PEG) capsules. Indeed, their
use is not widespread—in a few marketed formulations such capsules they can be found,
e.g., in SPIRIVA® HandiHaler® (Boehringer Ingelheim, Ingelheim, Germany)—but for
these capsules, the optimal RSC is already lower (10–12%), so they are less exposed to
fragmentation than GEL capsules [26]. Another line is hydroxypropyl methylcellulose
(HPMC) DPI capsules, e.g., in TOBITM PodhalerTM (Novartis International AG, Basel,
Switzerland), which are prepared using a gelling agent and a network promoter. These
capsules are chemically inert, resulting in incompatibility with few materials. Moreover,
they have much less optimal RSC (about 3–7%) than the two capsule types detailed earlier,
so the risk of fragmentation is even less with this type of DPI capsule [16]. Capsules made
from the above-mentioned materials are manufactured/marketed as a separate portfolio
for inhalation, in the development of which manufacturers have recently placed increasing
emphasis on reducing the static charge of the capsule wall and the adhesion between the
powder particles and the capsule wall. Furthermore, it is also important for these capsules
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to respond well to activation mechanisms such as punching and cutting and to be subject
to more stringent microbiological requirements than orally administered capsules [27–29].

In the present work, we aimed to investigate the six-month stability test of carrier-free
and novel combined formulated DPI microcomposites containing ciprofloxacin hydrochlo-
ride (CIP) based on ICH guidelines in three different DPI capsule types (GEL, GEL-PEG,
HPMC) and to compare the stability of these two formulations under given conditions.
Two of our previously published communications provide the background for this study.
In the prior article, results/findings related to the development of the above-mentioned
formulations are found [30], while in the second article, stability test results of the same
samples were reported at the conditions of 25 ± 2 ◦C with 50 ± 5% RH (room conditions),
stored in open containers for one month [31]. GEL capsules were used in both cases. In
our current work, as a novelty, we would like to present a comprehensive approach to the
importance of final pharmaceutical dosage form development for the above-mentioned CIP
containing samples. Focusing on the stability of each DPI capsule type used and their im-
pact on the stability and in vitro aerodynamic properties of DPI formulations under given
conditions. The same formulation may exhibit different stability and thus aerodynamic
properties in different DPI capsule types.

2. Materials and Methods
2.1. Materials

Micronized ciprofloxacin hydrochloride (µCIP) (D (0.5): 5.09 µm) as a fluoroquinolone
antibiotic active ingredient was applied and donated by Teva Pharmaceutical Works Ltd.
(Debrecen, Hungary). Lactose monohydrate, Inhalac® 70 (IH 70) (D (0.5): 215.00 µm) was
gifted by MEGGLE Group (Wasserburg, Germany) and utilized as a carrier. Magnesium
stearate (MgSt) (D (0.5): 6.92 µm) was used to treat the surface of IH 70 [32], which was
supplied by Sigma-Aldrich (Budapest, Hungary). Sodium stearate (NaSt) (Alfa Aesar,
Heysham, United Kingdom) was used as an excipient in the co-spray-drying process. The
Coni-Snap® hard GEL (Capsugel®/Lonza Pharma & Biotech, Basel, Switzerland), Ezeefit™
GEL-PEG (ACG-Associated Capsules Pvt. Ltd., Mumbai, India) and Ezeeflo™ HPMC
(ACG-Associated Capsules Pvt. Ltd., Mumbai, India) capsules were used to store DPI
formulations during the stability test.

2.2. Methods
2.2.1. Preparation of the Samples

For the six-month-long stability test, we again prepared the formulations which had
been investigated in our previous work [30]. The CIP_0.5NaSt_spd microcomposite was
produced as a carrier-free DPI system, which was named formulation (1). Furthermore,
formulation (2) was the novel combined formulated microcomposite. The former was
made with co-spray-drying from a solution of CIP and NaSt. Firstly, the 1.5 w/v % aqueous
solution applying CIP and the ethanolic solution containing 0.0175 w/v % NaSt were
prepared at 30 ◦C. Then, the two above-mentioned solutions were blended in a ratio of 70:30.
Büchi B-191 equipment (Mini Spray Dryer, Büchi Labortechnik AG, Flawil, Switzerland)
was utilized for the co-spray-drying process with the following parameters: inlet heating
temperature, 130 ◦C, outlet heating temperature, 78 ◦C, aspirator capacity, 75%, pressured
airflow, 600 L/min, feed pump rate, 5%. So, formulation (1) contained 99.5 w/w % of drug
and 0.5 w/w % of NaSt. Formulation (2) was the combination of formulation (1) and the
surface treated carrier (Figure 1). The surface treatment of IH 70 carrier was performed
with 2.0 w/w % of MgSt [33,34] with Turbula blending (Turbula System Schatz; Willy A.
Bachofen AG Maschinenfabrik, Basel, Switzerland) for 4 h [32]. Then, formulation (1) was
mixed with a surface modified carrier in the mass ratio of 1:10 [35] with a Turbula blender
at 60 rpm for 30 min [36]. Then, knowing their exact drug content, the appropriate amount
of the two prepared formulations—see in Section 2.2.2—was filled into GEL, GEL-PEG and
HPMC capsules and then blistered, considering that the applied inhalation dose of CIP
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is 10 mg, which corresponds to ten percent of the oral dose of CIP [37]. As a result, the
six samples shown in Table 1 were obtained from the two produced formulations.
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Table 1. Details of the components of the samples.

Samples
Compositions of the DPI Formulations Applied DPI Capsule Types

CIP
(w/w %)

NaSt
(w/w %)

IH 70
(w/w %)

MgSt
(w/w %) GEL GEL-PEG HPMC

1_GEL 99.50 0.500 – – + – –
1_GEL-PEG 99.50 0.500 – – – + –

1_HPMC 99.50 0.500 – – – – +
2_GEL 9.045 0.045 88.91 2.000 + – –

2_GEL-PEG 9.045 0.045 88.91 2.000 – + –
2_HPMC 9.045 0.045 88.91 2.000 – – +

2.2.2. Homogeneity and Drug Content Test

After the preparation of formulation (2), homogeneity and drug content investigations
were carried out for this microcomposite due to the application of blending actions. The
drug content was also tested for formulation (1). The United States Pharmacopeia (USP)
required that the tests must be carried out with DPI dosage units [38] taken from ten
random places [39]. These were dissolved in distilled water, and the CIP content was
calculated with a UV/VIS spectrophotometer (ATIUNICAM UV/VIS Spectrophotometer,
Cambridge, UK) at a wavelength of 276 nm. The linearity of CIP in this medium at the
above-mentioned wavelength was determined in advance. The linearity of the calibration
curve was y = 0.0736x. The unit of the slope was mL/µg.

2.2.3. Investigation of the Stability of the Formulations and the Capsules

Stability tests were performed in a Binder KBF 240 (Binder GmbH Tuttlingen, Ger-
many) constant-climate chamber. An electronically controlled APT.line™ line preheating
chamber and refrigerating system ensured temperature accuracy and reproducibility of
the results in the temperature range between 10 and 70 ◦C and the relative humidity (RH)
range between 10 and 80%. The stability test was carried out at 40 ± 2 ◦C with 75 ± 5%
RH based on the ICH guideline. The duration of storage of the blistered formulations in
different capsule types (six samples) was six months. Sampling was implemented after
one month, three months and six months. Under the same conditions, the applied capsule
types were stored empty blistered for six months for testing.
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2.2.4. Light Microscopic Examination

The shape and area of the holes formed by punching the capsules were recorded with
a Leica image analyzer (Leica Q500MC, LEICA Cambridge Ltd., Cambridge, UK) at 4×
magnification. Ten replicates per capsule type were performed each time.

2.2.5. Thermoanalytical Test

The Mettler Toledo STARe (Mettler Inc., Schwerzenbach, Switzerland) was used
to determine the RSC of capsule wall types and DPI powders. For thermogravimetry
measurements, 3–5 mg of sample per capsule was weighed into 40 µL aluminum crucibles,
and the temperature dependence of the mass change of the samples was observed between
25–350 ◦C at a heating rate of 10 ◦C/min under nitrogen gas flow. The weight loss up to
110 ◦C was due to the water leaving the sample.

2.2.6. X-ray Powder Diffraction (XRPD)

The XRPD diffractograms—the raw CIP, NaSt, and the carrier-free formulation during
the stability test in the different DPI capsule types—were determined by a BRUKER D8
Advance X-ray powder diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with Cu
K λI radiation (λ = 1.5406 Å) and a VÅNTEC-1 detector. The powders were scanned at
40 kV and 40 mA, with an angular range of 3◦ to 40◦ 2θ, at a step time of 0.1 s and a step
size of 0.01◦.

2.2.7. Particle Size Distribution

Laser diffraction (Malvern Mastersizer Scirocco 2000, Malvern Instruments Ltd.,
Worcestershire, UK) was applied to determine the particle size distribution of the mi-
crocomposites. Approximately 0.5 g of the sample was placed into a feeder tray. The dry
analysis method was used, so the air was the dispersion medium for the examined particles.
The dispersion air pressure was set to 2.0 bars to determine whether particle attrition had
occurred. Three parallel investigations were performed. The D (0.1), D (0.5), and D (0.9)
values were determined after the measurements as particle size distribution.

2.2.8. Scanning Electron Microscopy (SEM)

The examination of the morphology of the DPI microcomposites was carried out
by scanning electron microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd., Tokyo,
Japan). For the induction of electric conductivity on the surface of the samples, a sputter
coater was used (Bio-Rad SC 502, VG Microtech, Uckfield, UK). The air pressure used was
1.3–13.0 MPa. The formulations were coated with gold-palladium (90 s) under an argon
atmosphere using a gold sputter module in a high vacuum evaporator.

2.2.9. In Vitro Aerodynamic Investigation

The in vitro aerodynamic behavior of the DPI samples was examined with an An-
dersen Cascade Impactor (ACI) (Copley Scientific Ltd., Nottingham, UK) because the
ACI is authorized for this purpose in the European Pharmacopoeia, the USP, and the
Chinese Pharmacopoeia as well [40]. The plates of the ACI were soaked with a Span®

80 and cyclohexane mixture (1:99) and then allowed to dry. A mass flow meter (Flow
Meter Model DFM 2000, Copley Scientific Ltd., Nottingham, UK) with a vacuum pump
(High-Capacity Pump Model HCP5, Critical Flow Controller Model TPK, Copley Scien-
tific Ltd., Nottingham, UK) were used to set the appropriate flow rate (28.3 ± 1 L/min),
which was applied during the in vitro aerodynamic test. During the in vitro test, three
capsules [41] from a given sample were used in one measurement and the Breezhaler®

(Novartis, Basel, Switzerland) inhaler was utilized. An inhalation time of 4 s was applied
twice for each capsule used. After each test, the inhalator, the DPI capsules used, parts of
the ACI (the mouthpiece, the throat, the eight plates (0–7), the filter used) were washed
with distilled water. The amount of the drug deposited on these items was determined
with an ultraviolet-visible spectrophotometer (ATI-UNICAM UV/VIS Spectrophotometer,
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Cambridge, UK) at a wavelength of 276 nm. The linearity of the API calibration curve in
distilled water was y = 0.0736x at 276 nm (unit of the slope: mL/µg). With the above data
known, it is possible to calculate the terms which characterize the in vitro aerodynamic
properties of the samples: fine particle fraction (FPF), mass median aerodynamic diameter
(MMAD), emitted fraction (EF). EF is the percentage of drug detected from the impactor
(from the mouthpiece to the filter)—which is equal to the emitted dose (ED)—relative to
the total amount of the API recovered [42]. In the KaleidaGraph 4.0 program (Synergy
Software, Reading, PA, USA) the cumulative percentage less than the size range versus the
effective cut-off diameter (ACI, 28.3 L/min flow rate [40]) was plotted on the log probability
scale. If the abscissa data for the ordinate values of 5 µm and 3 µm are known, the mass
with a diameter of less than 5 µm and 3 µm can be determined. The percentage ratios of
these amounts to ED are FPF < 5 µm and FPF < 3 µm [43]. The expression of FPF < 3 µm is
not yet very common in the international literature, [44,45] since in the deep lung, in the
subtracheal area, especially the particles below 3 µm are deposited [46]. The mass median
aerodynamic diameter (MMAD) is the diameter at which 50% of the particles of an aerosol
by mass are larger and 50% are smaller [47]. This is determined as the ordinate value for
the 50% abscissa value. It should be emphasized that the number of DPI capsules used per
measurement must also be taken into account in the calculations.

2.2.10. Statistical Analyses

Statistical analyses were carried out applying t-test calculations at a significance level
of 0.05 and with a one-tailed hypothesis using the Social Science Statistics, which is available
online [48]. All described data indicate ± SD of three parallel measurements (n = 3).

3. Results and Discussion
3.1. Blend Uniformity and Drug Content

For DPIs, blending uniformity should be between 85 and 115% according to the USP
criterion and the relative standard deviation (SD) for 10 dosage units should be ≤6%. There
is also a stricter 90–110% requirement in the industry [38]. The novel combined carrier-
based formulation (2) is also in line with the latter as SD < 5% was obtained (94.17 ± 3.34%),
so homogeneity can be assumed [49]. Before the start of the stability period, the DPI
capsules were filled with powders in the knowledge of specific drug content. In the case
of formulation (1), this value was 98.41 ± 1.07%, even in the case of formulation (2) is
8.518 ± 0.302%.

3.2. Stability of the Capsules

Based on Table 2, it can be said that GEL and GEL-PEG capsules started to break
even after 1 month. This was especially true for GEL capsules, which formed irregularly
shaped holes. The edges of the holes dropped on GEL-PEG capsules were also fractured,
although these types of capsules became less brittle during the stability test compared
to those containing purely GEL, thus further supporting the viability of the use of PEG.
In the case of HPMC capsules, no remarkable change was observed in the shape of the
perforated area, and as for the tests, the holes remained approximately regular in terms of
their flexibility even after 6 months.

The area of the capsule puncture and the degree of fragmentation during punching
increased the most overtime for GEL and GEL-PEG capsules, respectively (Table 2). The
initial values of the hole areas (Table 3) for these DPI capsules increased more than 1.5 times
after 6 months. There was less area increase for HPMC capsules. The RSC of the capsule
walls was also determined after 1, 3 and 6 months of the stability test (Table 3). It was found
that the RSC of GEL capsules dropped below the optimal range (13–16%) after the first
month, and according to the 3-month results, this was also the case for GEL-PEG capsules
(optimal range: 10–12%), while for HPMC capsules the measured values remained within
the optimal 3–8% range 6 months later.
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Table 2. Light microscopic images of the punctured ends of the applied DPI capsules.

Capsule
Type Before Storage 1 Month 3 Months 6 Months

GEL
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Capsule Type Time RSC (%) Area of Capsule Puncture (mm2)

GEL

Before storage 15.26 ± 0.18 0.60 ± 0.16
1 month 10.31 ± 0.21 0.74 ± 0.11
3 months 7.23 ± 0.28 1.01 ± 0.28
6 months 6.68 ± 0.12 1.14 ± 0.38

GEL-PEG

Before storage 11.87 ± 0.09 0.54 ± 0.10
1 month 10.68 ± 0.32 0.84 ± 0.12
3 months 8.74 ± 0.15 0.89 ± 0.14
6 months 7.12 ± 0.12 0.92 ± 0.07

HPMC

Before storage 5.98 ± 0.11 0.79 ± 0.05
1 month 5.45 ± 0.09 0.79 ± 0.04
3 months 4.84 ± 0.13 0.86 ± 0.08
6 months 4.62 ± 0.02 0.88 ± 0.03

3.3. Residual Solvent Content of the Samples

The RSC of the samples plays an important role in stability, since in the case of increas-
ing values, recrystallization of the amorphous drug particles, and thus also a structural and
morphological change, can be expected. Furthermore, it can contribute to the unfavorable
change of interparticle interactions, therefore it can affect the aerosolization and dispersion
of the particles, and thus also the lung deposition results. Based on the results of the
RSC of the samples determined during the stability test (Table 4), it can be stated that, in
general, the values of formulation (1) increased more remarkably in all three DPI capsule
types than those of formulation (2). In the latter case, the initial RSC value of around
5% corresponds to the value already published for alpha-lactose monohydrate [50], as it is
present in almost 90% of the formulation; however, the effect of MgSt moisture resistance
is reflected in the values [51]. Furthermore, for both microcomposites, it was observed
that the lowest RSC value was measurable in the HPMC capsule after 6 months, which is
related to that described in Section 3.2. It was found that this type of DPI capsule had the
smallest decrease in RSC during the stability test, thus less moisture could be transferred
to DPI powders.
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Table 4. RSC values of DPI powders during the stability test.

Samples
RSC (%)

Before Storage 1 Month 3 Months 6 Months

Formulation (1) 3.76 ± 0.07 — — —
Formulation (2) 4.61 ± 0.12 — — —

1_GEL — 3.99 ± 0.06 4.62 ± 0.08 5.21 ± 0.08
1_GEL-PEG — 3.92 ± 0.03 4.48 ± 0.06 5.03 ± 0.09

1_HPMC — 3.85 ± 0.10 4.26 ± 0.13 4.72 ± 0.04
2_GEL — 4.93 ± 0.11 5.13 ± 0.09 5.64 ± 0.13

2_GEL-PEG — 4.85 ± 0.06 5.04 ± 0.03 5.45 ± 0.06
2_HPMC — 4.76 ± 0.07 4.91 ± 0.06 5.16 ± 0.04

3.4. Structural Investigations

By performing the XRPD examination, it became possible to study the structure of
the produced samples before storage and at sampling times for the duration of the sta-
bility test. If the XRPD pattern of the raw drug and NaSt is known, conclusions can be
drawn regarding the stability of the samples, furthermore, in the case of microcompos-
ites, the dominance of the crystalline or amorphous form affects morphology, so in vitro
aerodynamic results can be predicted. In the present study, the XRPD diffractograms of
the samples of the carrier-free DPI formulation (1) stored in different capsules are illus-
trated (Figure 2)—since the pattern of the carrier particles in the case of formulation (2)
dominates—during the sampling times of the stability study. For the raw CIP; 8.23, 9.25,
19.22, 26.39, and 29.16 2Teta-degree, even for NaSt, 4.0, 6.0 2Teta-degree characteristic peaks
were observed, with crystalline property predominating. The fresh formulation (1) clearly
has a predominantly amorphous structural property before storage. After one month,
there was no remarkable difference between the XRPD diffractograms of the formulation
stored in the different capsules, with some recrystallization seen. After six months, it
can be seen that the microcomposites stored in HPMC capsules recrystallized less than
those stored in GEL and GEL-PEG capsules. This shows that the particles remained more
stable or morphologically less variable during storage in HPMC capsules, which predicts a
remarkable difference in in vitro aerodynamic results between the different samples stored
in the capsule type.
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3.5. Particle Size Analysis and Scanning Electron Microscopy (SEM) of the Samples

Detection of changes in the particle size distribution of DPI samples during the stability
study is essential, along with the study of morphological properties. It is important for the
success of inhalation therapy that the average particle size be between 1 and 5 microns
(maximum 10 microns), as several studies have highlighted the fact that most individual
particles below 1 micron are exhaled [52], while particles above 5 microns are probably
deposited in the upper airways. For formulation (1), D (0.1) and D (0.9) also fell within
the optimal range mentioned above throughout the 6-month stability study for all three
capsule types (Table 5). The results obtained did not differ remarkably between the capsule
types, the average particle size increased slightly better in the GEL capsule type compared
to the others. In terms of SEM images, they approximately correlated with the results
obtained by laser light scattering. As regards morphology, it can be stated that there
is a remarkable difference between the samples stored in different capsule types. After
1 month, recrystallization can be detected in the GEL capsule, which correlates well with
our previous stability study (performed under different conditions) [31]. The formulation
in this type of capsule appears to be increasingly prone to agglomeration as the stability
test progresses. In the case of the GEL-PEG capsule type, recrystallization starts later, so
the sample remains stable in this. For HPMC capsules, the particles appear to be the most
stable after 6 months.

For formulation (2), the six-month stability study showed that, based on morphological
and particle size analysis (Table 6), the sample stored in the HPMC capsule type remained
the most stable, with the least aggregation or crystallization appearing. In Table 6, the
sample-specific values of D (0.1), D (0.5) and D (0.9) are given, from which the above
findings for the products can also be made. However, for more accurate analysis, since the
samples contained formulation (1) on the IH70_MgSt surface-treated carrier particles, the
D (0.5) values of the drug particles and the surface-modified carrier particles were also
taken into account using bimodal distribution curves. Based on these, the value of the drug
particle D (0.5) increased from 2.28 µm before storage to 6.129 µm when stored in GEL
capsules, 3.004 µm in PEG-GEL capsules, and 2.712 µm even in HPMC capsules. In the case
of the surface-treated carrier, the following values were determined: in GEL: 189.313 µm;
in PEG-GEL: 176.520 µm and in HPMC capsule: 171.635 µm. Thus, the values measured at
the samples were refined for specific components, the same tendencies can be established.
Furthermore, comparing formulation (1) and the change in the size of the same D (0.5)
in the formulation (2), we can see that the change in average size in the novel combined
formulated composite was smaller than in the carrier-free samples. Therefore, higher FPF
values for in vitro lung deposition are still expected for formulation (2) compared to the
formulation (1), which predicts greater stability of the former (in the HPMC capsule type).
The results detailed in this Subsection are closely related to changes in the RSC of DPI
capsules and powders during the stability study.
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Table 5. Particle size distribution and morphology of the carrier-free samples during the stability test.

Formulation 1

Before storage
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Table 6. Cont.
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3.6. In Vitro Aerodynamic Assessment

Based on the RSC, structure and particle size analysis as well as the SEM images,
it can be said that the formulations stored in HPMC capsules (1, 2) remained the most
stable considering the physical properties. For both formulations, in vitro aerodynamic
tests performed (Tables 7 and 8) before storage show that the capsule types did not affect
FPF values, in both cases the initial FPF values of samples 3-3 were nearly identical. The
MMAD values at each measurement point correlated with FPF values over the entire study
period. For EF, the initial values showed that in case (1) the drug dripped out of the HPMC
capsule better, in case (2) it drifted easily out of all capsule types due to the nature of the
formulation. Regarding the FPF values of the 6-month stability study, it can be stated that
both formulations tested had the lowest results in the GEL capsules, this was followed
by the results of GEL-PEG capsules, and the FPF values decreased the least when using
HPMC capsules. The EF values were also the most favorable after 6 months for HPMC
capsules, and for sample (1), using this capsule only, the sample meets the prescribed
range of 85–115%. For EF, it was also observed that the SD was higher for samples 1_GEL
and 2_GEL compared to the other samples. This is explained by the results presented in
Section 3.2, i.e., the area of capsule puncture measured in the case of the GEL capsule and
its SD, and the SEM images of GEL capsules also serve as support.

Table 7. Aerodynamic properties of the carrier-free formulations.

Samples Time FPF (%)
<5 µm

MMAD
(µm)

EF
(%)

1_GEL

Before storage 53.42 ± 1.23 3.98 ± 0.15 77.04 ± 1.03
1 month 31.87 ± 0.11 4.43 ± 0.14 85.75 ± 0.16
3 months 29.94 ± 0.25 4.86 ± 0.17 86.14 ± 0.81
6 months 28.83 ± 0.65 5.02 ± 0.22 87.70 ± 0.64

1_GEL-PEG

Before storage 54.13 ± 0.89 3.81 ± 0.06 72.72 ± 0.76
1 month 42.25 ± 0.38 4.31 ± 0.21 86.54 ± 0.54
3 months 36.31 ± 0.43 4.62 ± 0.15 86.85 ± 0.85
6 months 31.67 ± 0.07 4.93 ± 0.12 87.80 ± 0.73

1_HPMC

Before storage 53.97 ± 1.08 3.78 ± 0.26 86.44 ± 0.99
1 month 44.71 ± 0.94 4.16 ± 0.14 86.96 ± 0.36
3 months 39.18 ± 0.27 4.32 ± 0.08 87.55 ± 0.49
6 months 38.59 ± 0.44 4.40 ± 0.11 90.16 ± 0.34

Table 8. Aerodynamic properties of the novel combined carrier-based samples.

Samples Time FPF (%)
<5 µm

MMAD
(µm)

EF
(%)

2_GEL

Before storage 62.91 ± 1.02 3.51 ± 0.09 90.31 ± 0.95
1 month 43.89 ± 1.28 3.84 ± 0.13 91.15 ± 0.12
3 months 35.03 ± 0.23 3.93 ± 0.07 91.27 ± 0.36
6 months 31.71 ± 0.64 4.10 ± 0.16 92.89 ± 0.41

2_GEL-PEG

Before storage 62.53 ± 0.48 3.45 ± 0.12 90.21 ± 0.83
1 month 46.11 ± 1.32 3.72 ± 0.05 89.75 ± 0.45
3 months 38.66 ± 0.96 3.87 ± 0.09 91.39 ± 0.21
6 months 36.26 ± 0.39 4.03 ± 0.13 92.56 ± 0.66

2_HPMC

Before storage 63.15 ± 0.41 3.47 ± 0.08 89.55 ± 0.26
1 month 53.29 ± 0.72 3.68 ± 0.21 91.42 ± 0.52
3 months 45.23 ± 1.12 3.84 ± 0.04 94.39 ± 0.74
6 months 43.40 ± 0.57 3.91 ± 0.15 96.98 ± 0.63

The results of formulations (1) and (2), when considered, correlate with the results of
our previous publications for prestorage values. It can be stated that the novel combined
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carrier-based formulation (2) achieved better in vitro aerodynamic results under the afore-
mentioned storage conditions—in all capsule types—than the carrier-free formulation (1),
which corresponds to the results of the 1-month stability test previously performed at room
temperature [31].

4. Conclusions

In this study we introduced the importance of final formulation-development by
studying the effect of capsule types on the stability and aerodynamic properties of DPI.
The same formulation have different stability and thus aerodynamic properties in different
DPI capsule types. The RSC and light microscopic results of the DPI capsules supported
the claim that GEL and GEL-PEG-type capsules begin to break when the RSC falls below
the optimal range. Due to their fragmentation, the resulting holes became irregularly
shaped and large. Although more formulations came out of these larger, irregularly shaped
holes, resulting in increased EF values, the deaggregation of the particles was less efficient,
which in turn reduced FPF values. However, HPMC capsules retained their elasticity
after 6 months, pieces of the capsule wall did not break during punching, and the holes
remained in regular shape. RSC and XRPD analysis confirmed, and the SEM images also
showed that DPI powders stored in GEL and GEL-PEG capsules formed irregularly shaped
particles during the stability study due to the onset of recrystallization (it is assumed
that moisture was transferred to DPI powders). The altered habit was aerodynamically
disadvantageous, which may have been one of the reasons for the decrease in FPF values.
The morphological change was least observed with the formulations stored in HPMC
capsules, and FPF values decreased to a lesser extent. Overall, initial, almost identical
aerosolization values after 6 months were the most favorable for HPMC capsules for both
investigated DPI formulations. This was probably due to the RSC of the capsules, the size
and shape of the perforated area, and the altered habit of the DPI powder. The results of
the novel combined formulated composite were more favorable after the stability test than
those of the carrier-free formulation for all DPI capsule types.

Thus, it may be worthwhile focusing on testing DPI formulations in different capsules
during pulmonary dosage form development, as the same formulation may have different
stability and thus aerodynamic properties in different DPI capsule types. The prepared DPI
formulation of a carrier-free and novel combined carrier-based systems using CIP could
present an effective new possibility in the therapy of lung diseases (direct and indirect
treatment of pathophysiological processes such as cystic fibrosis and chronic bronchitis)
instead of the per os applied antibiotic formulation.
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