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Abstract: Recently, the pharmaceutical industry has undergone changes in the production of solid oral
dosages from traditional inefficient and expensive batch production to continuous manufacturing.
The latest advancements include increased use of continuous twin-screw wet granulation and
application of advanced modeling tools such as Population Balance Models (PBMs). However,
improved understanding of the physical process within the granulator and improvement of current
population balance models are necessary for the continuous production process to be successful in
practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation
process was improved by altering the original aggregation kernel in the wetting zone as a result of
an identifiability analysis. In addition, a strategy was successfully applied to reduce the number
of model parameters to be calibrated in both the wetting zone and kneading zones. It was found
that the new aggregation kernel in the wetting zone is capable of reproducing the particle size
distribution that is experimentally observed at different process conditions as well as different types
of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model
parameters could be linked not only to the material properties but also to the liquid to solid ratio,
paving the way to create a generic PBM to predict the particle size distribution of a new formulation.

Keywords: granulation; wet granulation; granules; continuous manufacturing; PAT; population
balance modeling; process modeling and simulation; particle size distributions; identifiability;
formulation

1. Introduction

The pharmaceutical industry started a successive shift from the traditional batch oper-
ations towards a more upgraded continuous framework. In this context, the twin-screw
wet granulation has become a promising wet granulation technique in the pharmaceutical
industry for continuous manufacturing of solid dosage forms due to advantages such as de-
sign flexibility, short residence time and throughput range [1]. Various works conducted on
twin-screw wet granulation have investigated the aspects of the process or the equipment
design that determine the quality attributes of the produced granules [2-8]. In contrast, less
investigations have been approached to delve into the physical mechanisms that govern
the process and are necessary to predict it.

As an effort to investigate the process mechanisms present in a twin-screw wet granula-
tor, a unique dataset was collected at different locations inside the granulator and reported
in [9]. It was stated that the main factor that affects the particle size distribution (PSD) is
the liquid-to-solid (L/S) ratio. Atlow L/S ratio, the PSD exhibited bimodality, whereas at
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high L/S ratio the PSD showed unimodal behavior, those findings were in agreement with
other works [8,10]. From that experimental data, a one-dimensional population balance
model was developed for predicting the PSD at the outlet of the granulator starting from
the pre-blend using aggregation and breakage as the main phenomena that take place in
the granulation process [11].

Population balance modeling (PBM) has emerged as a powerful model-based tool
not only to predict the output of the desired property but also to increases the under-
standing and the enhancement of continuous twin-screw granulation processes [12-14].
One-dimensional PBMs are still widely used in pharmaceutical manufacturing primarily
tracking only one particle property at a time, partly due to the lack of suitable equipment
capable of measuring two or more properties simultaneously, as well as the lack of suit-
able multi-dimensional kernels that take into account the specific process or the available
experimental data [15,16].

Despite the multiple published models to simulate the twin-screw wet granulation
process [1,12-15,17-20], a complete or more generic model that involves material properties,
process parameters and perhaps screw configurations, is to the author’s best knowledge not
available in literature [6]. This work seeks to take the first steps to address the development
of a generic model, which from an industrial perspective is desirable to reduce the number
of experiments required and therefore expedite the time to market for new products. In this
paper, the compartmental model developed by Van Hauwermeiren et al. [11] was adapted
to improve it, through an identifiability analysis. Some proposed kernels were tested, and at
the end the one which presented a unique value under the threshold was chosen, resulting
in an upgrade of the aggregation kernel for the wetting zone. The selected kernel was used
during the initial calibration and testing process for different formulations, evidencing
the need to modify the kernel once more. After a mathematical modification the final
expression of the kernel was obtained. In particular, a strategy is applied to reduce the
amount of unknown parameters of the model in each compartment using patterns detected
from the collected experimental data.

2. Experimental Setup
2.1. Continuous Wet Granulation Experiments Using TSG

The granules analyzed in this study were produced in the high shear twin-screw wet
granulator (TSWG) module of the ConsiGma™.-25 (GEA Pharma Systems, Collette™,
Wommelgem, Belgium) continuous line. The TSWG is composed of two co-rotating self-
wiping screws of 25 mm diameter, with a length-to-diameter ratio of 20:1. The screw
configuration comprises an initial zone of conveying elements, followed by two blocks
or compartments of six kneading elements at a 60° of stagger angle each (the kneading
compartments are separated by conveying elements with the same length, being 1.5 di-
ameter of each kneading compartment), and extra conveying elements plus three size
control elements right before the granulator outlet (60°). The powder pre-blend enters the
granulator through a gravimetric twin-screw loss-in-weight feeder (KT20, K-Tron Soder,
Niederlenz, Switzerland), and distilled water as granulation liquid is dosed into the screw
chamber, using peristaltic pumps out of phase, located on top of the granulator (Watson
Marlow, Cornwall, UK), connected to 1.6 mm nozzles. The addition of the liquid is done
by injecting the liquid through the feeding ports, located in the upper central part of each
screw. The barrel jacket temperature setpoint was 25 °C. Note that in this study the screw
configuration differs from the configuration presented in the original model, as size control
elements were included here to reduce large granular material and obtain a similar size
among the formulations under study, which allows a fair comparison.
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2.2. Design of Experiments

In order to study the influence of the granulation parameters such as screw speed,
material throughput and liquid-to-solid (L/S) ratio, in addition to the effect of the nature
of the API, on the size distribution of the resulting granules, a five-level central composite
design of experiments (DoE) was performed. Three different active pharmaceutical ingre-
dient (API) at both low and high concentrations, resulting in the study of six formulations
were studied. Therefore, two or three factors were used for each formulation based on their
hydrophilicity, see details in Table 1. The process conditions were chosen to operate the
equipment in a stable manner as well as according to the processability of each formulation
to obtain similar granules [21,22]. Formulations at low concentration contain 5% (w/w) API,
5% (w/w) hydroxypropylcellulose (The Dow Chemical Company, Midland, MI, USA), 15%
(w/w), microcrystalline cellulose (Avicel® PH 101, FMC, Philadelphia, PA, USA), and 75%
lactose monohydrate (Lactochem® Regular, DFE Pharma, Goch, Germany). Formulations
at high concentration contain 50% (w/w) API, 5% (w/w) hydroxypropylcellulose (The Dow
Chemical Company, Midland, MI, USA), 15% (w/w) microcrystalline cellulose (Avicel® PH
101, FMC, Philadelphia, PA, USA), and 30% (w/w) lactose monohydrate (Lactochem® Reg-
ular, DFE Pharma, Goch, Germany). The samples were collected at four locations inside
the barrel, indicated with the red color labels in Figure 1. These measurements are possible
by the usage of a second liquid addition port: this enables us to mimic the granulation
behavior of these different zones at the end of the barrel so that granules can be collected
continuously without the need for a screw pull-out. This method is described in full detail
in the work of Verstraeten et al. [9].

Table 1. Process conditions of the experimental work (DoE).

API Number of Screw Speed Throughput L/S
Experiments (rpm) (kg/h) (%)
API1 (5%) 11 675 15-25 8.9-20.2
API1 (50%) 11 675 15-25 13.6-23.7
API2 (5%) 17 450-675 15-25 8-18
API2 (50%) 17 450-675 15-25 5.2-16
API3 (5%) 17 750-900 15-25 15.2-18.5
API3 (50%) 17 450-675 15-25 5.2-134

Liquid addition

Flow direction Zone

Figure 1. Twin-screw configuration.

It was observed that the L/S ratio is the most important factor that influences the
properties of the granules for all the formulations. This is in line with what was observed by
Verstraeten et al. [9] for hydrophobic and hydrophilic formulations, both of which were also
studied in the present work. Higher L/S ratio conditions result in a larger number of large
granules and thus there is a reduction in the amount of fine material and smaller granules.
At low L/S ratios, a bimodal PSD prevails after the wetting zone. The powder is initially
wetted through immersion [8] by injecting the binder liquid onto the compartment 1, called
the wetting zone, where solely conveying elements are present, therefore a low—shear
environment is generated. Thus part of the initial blend remains un-granulated partly
due to the inability of distributing homogeneously the liquid over all the granules and
on the other hand the amount of water into the system (L/S ratio condition) and the
availability of water in the granules as a result of the different mechanism involved during
the granule formation and the nature of the blend. Subsequently, the wetted material is
redistributed, compacted [23], and deformed mostly, elongated by the kneading elements
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present in the kneading zones (C3 and C5 in Figure 1) due to the high-shear environment.
Finally, the granules undergo extra shear and compression due to the size control elements,
reducing the oversized granules.

2.3. Particle Size Distribution Measurements

The samples collected were dried for twenty four hours and hereafter measured using
a QICPIC particle size analyzer, equipped with WINDOX 5.4.1.0 software (Sympatec,
GmbH, Clausthal-Zellerfeld, Germany). Each powder PSD (dry preblend) was measured
with laser diffraction using a Mastersizer® 2000 (Malvern Instruments, Malvern, UK).
Those measurements gave the materials initial PSD for the simulations.

3. Population Balance Model
3.1. Base Model Description

The original model is a one-dimensional PBM with granule size as internal coordinate,
assuming pure aggregation in the wetting zone, other possible mechanisms were lumped
into the aggregation process to avoid parameter identifiability issues in the calibration pro-
cess taking into account the data available. That assumption was based on the observations
from the collected data, where the PSD often exhibited a bimodal shape after the wetting
zone. Those experiments performed at low L/S ratio exhibited more bimodality than those
at high L/S ratio. However, since only a low-shear environment is present in the wetting
zone, breakage is not likely to be the main mechanism leading to the bimodality, findings
supported by the analysis of the liquid distribution performed in the experimental work by
Verstraeten et al. [9]. On the other hand, a combination of aggregation and breakage was
used to model the dynamics in the kneading zones. The general expression for tracking the
temporal change of particle number density in a spatially homogeneous system undergoing
aggregation and breakage within the gist of the framework is described in Equation (1) [24].

at 2/’3 —€,6n (x—et)(etde—//%xet)(et)d
+/ (x,€)S(e)n(e, t)de — S(x)n(x, t) 1)

In Equation (1), n(x,t) is the particle number density as a function of time (¢) and
its internal coordinate, here granule size (x) with size referring to the particle volume.
The first two terms on the right-hand side of Equation (1) correspond respectively to the
birth and death of particles due to aggregation dynamics: the birth of particles of size x, as a
result of aggregation of two particles with sizes € and x — ¢, and the death of the original
particles that were aggregated. In these first two terms, 5 represents the aggregation kernel.
This function describes the aggregation rate of two particles € and x — e. The aggregation
kernel B(t, x,€) can be esteemed as a product of two factors: the aggregation efficiency
Bo(t) and the collision frequency B(x,€) : B(t,x,€) = Bo(t)B(x,€), the latter describing the
transport of granules leading to collisions, the former how successful these collisions are.
The last two terms denote the birth and death of particles due to breakage. In these terms,
b represents the probability density function for the formation of particles of size x from a
particle of size €, S represents the selection function, which determines the rate at which
particles of size x are selected to break.

Due to the impossibility of traditional aggregation kernels within a PBM framework,
e.g., the sum (B(x,¢) = x + ¢) or product kernel (B(x,€) = x - €) to capture the bimodal
shape curve from an initially unimodal distribution a new aggregation kernel with a step-
like behavior as a function of granule size was proposed in the original model by [11].
The original collision frequency is presented in Equation (2) [11].
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Equation (2) is composed of two parts, a two-dimensional stepping function which is
the responsible to induce bimodality, and a product kernel B(x,¢) = (x!/3 - €1/3) responsi-
ble of a monotonously increasing contribution. The two-dimensional stepping function
(described by the first and second line of Equation (2)), in turn, is decomposed in a dis-

tance function (R3 — (x? + 82)1/2), and a smoother (dg) as argument of the hyperbolic
tangent function.

To simplify the aggregation kernel By(t) was assumed to remain constant with re-
spect to time and to be size independent. Rj, d1, dp, and top, were chosen to be fixed,
the parameters Ry, topy, and By were calibrated in the compartment corresponding to the
wetting zone.

In the kneading zones a linear selection function of the form S(m) = Sym'/3, where
Sp is a positive breakage rate constant and m represents the size of the particle before
breakage. And the probability for the formation of granules of size d (which stands for
daughter particle) after the breakage of a granule of size m (mother particle) represented by
the breakage function b(m, d) were used. The breakage function takes into account attrition
and binary breakage, represented in Equation (3) [11], this equation states that when a
particle breaks, some smaller fragments are formed, the remaining part of the granule
breaks into two pieces.

1 2
()
m 1 2

ﬁﬁudi% + (1 _fprim)a (3)

1

In Equation (3), fprim represents the fraction of granules selected to form small frag-

ments. ¢ is the standard deviation, and p the mean of the Gaussian normal distribution

corresponding to the particles that result from erosion. m and d are the volume of the
mother and daughter particle, respectively.

3.2. Calibration Procedure

To calibrate the model, the Particle Swarm Optimization (PSO) method was imple-
mented as it is a global optimizer which has been proved to be more robust with regards
to local minima [25]. Calibration was performed individually for each compartment,
for each experiment and for each formulation. The PSD resulting from the simulations
was obtained from the best combination of each set of parameters with the minimum
value of the objective function Equation (4) [26] which in turn reached the best fit with the
experimental data.

D(u,0) = (2E|X — Y| —E|X — X'| —E|Y — Y'|)!/?

4)

The Equation (4) represents the distance between the experimental data and the model
prediction u and v respectively in the notation, where X and X’ are independent random
variables whose probability distribution is u. Similarly, Y and Y’ are independent random
variables whose probability distribution is v. This equation is called the energy distance
in its implementation in the Python package Scipy [27] and is a way to write down the
maximum mean discrepancy. The simulations were run in different round of calibrations.
The first round of calibration included three parameters in the wetting zone B, R, and Step
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and a total of five parameters in the kneading zones from the Equation (3): Sy, u,c and
fprim, and the aggregation efficiency By due to a combination of breakage and aggregation
was assumed. Subsequent rounds of calibrations included two parameters from the new
aggregation kernel in the wetting zone, proposed in Section 4 to calibrate: the aggregation
efficiency By, and Step. A total of three parameters were calibrated in the kneading zones,
Bo, So, and fpm-m. The remaining unknown parameters were set as suggested in Section 5.2.

It is important to highlight that the main focus of this work is presented in the
development and improvement on the original model by presenting a new aggregation
kernel for the wetting zone and reducing the number of unknown model parameters.
Therefore, the details of the calibration results will be presented as an extension of this
work in a future publication.

4. Identifiability
4.1. Introduction to Identifiability

In the work of [28], Chapter 7 on loss functions for PBMs, it was observed that some
parameters of the model described in the previous section have flat regions in the loss
function that could not be attributed to the behavior of the loss function itself. This is an
issue for interpretability: if a simulated PSD can be attained by a range of parameter values,
what is then the physical meaning of this parameter? In an ideal case, we want to have
each possible model outcome to be linked with one unique parameter set. Let us introduce
the concept of structural identifiability:

A model is structurally identifiable if it is possible to determine the values of

its parameters from observations of its outputs and knowledge of its dynamic

Equations [29].

This definition puts up two constraints: we need to be able to observe our outputs and
we need to know the system equations. For the sake of simplicity, assume for the remainder
of this work that we have this information. In light of this work, we have measurements of
PSDs and we know the system equations, i.e., a PBM.

With some mathematical rigor, the problem can be approached in a local or a global
sense. A parameter ; is structurally locally identifiable, if for almost any 6;, there exists a
neighborhood (2 such that [30]:

(6, (61), € O B
oy g § = @h= @ ©)

with f the system equations. Interpret almost any 6; as all values except isolated points.
If ) spans the entire parameter space, then 6; is called structurally globally identifiable.
In mathematics, this is equivalent to stating that the map from 6; to f(6;) is injective:
0; — f(6;). The structural identifiability of model parameters for a given set of system
equations assumes error-free measurements. This is interesting for applications where
approximately continuous and noise-free observations can be attained.

Alas, our world is noisy and cannot be sampled continuously, therefore an extension
is needed to consider measurement noise. Furthermore, it should be taken into account
that although we assume that the model framework is known, some parts of the model
may only be approximately accurate in describing the system dynamics. If we add these
two remarks to the definition of identifiability, we call the result practical identifiability.

The goal of this subsection is to bring the concept of practical identifiability to the
world of PBMs. To the authors’ best knowledge, this is the first time that identifiability
analysis is performed on PBMs.

In this work, a workflow is presented to deal with identifiability when the model
outcome is a probability mass function (pmf). Further, it should be noted that identifiability
is a local property on several levels. The obvious first one is local in the parameter space.
Next, also local in the sense of model definition: a different kernel may have completely
different behavior. In the PBM-framework, the grid needs to be defined. This grid will
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for sure have a profound effect on the results of an identifiability study. But the effect
of the grid is out of scope for this work, and it is the same throughout this work. Last,
there is a lot to say about the measurement error: different pre-processing steps, different
preblends, the operator effect, different TSWG, different measurement device or settings, etc.
The upside is that the data used in this entire work was collected using the same granulator,
measurement device and carried out by the same person. For the sake of simplicity, it will
be assumed that the measurement error is approximately constant for all experiments.

This leads us to the two aspects we are going to investigate: the parameters and
the kernels. The question that will be attempted to answer is: given the parameters,
kernel definition and measurement error, for which experiments can we perform a reliable
parameter estimation?

4.2. Identifiability Approach

A new approach for performing identifiability analysis with PBMs is needed. Let us
sum up what is desired in this approach: feasible calculation time, flexible in different
inputs and outputs, ability to incorporate measurement error, and intuitive interpretability
of the results. It would be feasible to have an approach that can determine whether a
proposed kernel makes sense viewed from a parameter estimation angle, both for the
kernel structure as for the choice of parameters. Next, using the measurement errors, we
want to determine for which experiments the parameters can be estimated so that the
confidence intervals do not overlap. In other words, which experimental conditions can be
estimated independently.

In the remainder of this section, two approaches will be discussed. First, the potential
issue with the aggregation kernel will be tackled by a combination of parameter space
sampling and analysis of the inner workings of the population balance equations. Second,
a definition of expected measurement error for our data will be given. Using that defini-
tion, new proposals for kernels definitions will be tested and an approach to determine
uncertainty regions in the parameter space will be constructed.

4.3. Potential Kernel Issues
4.3.1. The Origin of the Problem

To illustrate the staircase behavior, scenario 9 of the aforementioned research on objec-
tive functions for PBMs is used [28], Chapter 7. Note that the other scenarios described in
Van Hauwermeiren [28], Chapter 7 have no relevance for the topic discussed in this paper,
so they will not be mentioned here. In the so-called scenario 9, the behavior of the distance
functions for a PBM model using the aggregation kernel described in Equation (2) in func-
tion of one parameter R, was investigated, while keeping the other parameters constant.
In other words, the effect of R, on the model output was investigated. In Figure 2a, the nor-
malized Maximun Mean Discrepancy (MMD) is plotted in function of said parameter Rj.
The horizontal flat parts can be observed in that figure. This is not an ideal situation: this
means that for some piece-wise parts of the parameter space, the distance to the optimum
remains the same, i.e., the pmf does not change. But why does this happen? This might be
a property of the distance function itself. But, as can be seen in Figure 2b, similar behavior
is occurring in all tested distance functions (see [28], Chapter 7 for the complete overview
of all distances). In that figure, the normalized function values in function of the parameter
Ry are shown. The vertical gray lines point to the beginning or the end of a step in the
distance function value. Darker shades of gray indicate that several distance functions
have a step located at that specific value of R;. This figure shows that the behavior is not a
property of a certain distance function, as all functions under study have similar behavior.
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Figure 2. Plotting of the objective function values in function of the parameter R; for scenario 9 (PBM
simulation with 35 bins), as shown in [28], Chapter 7 Results for objective functions using (a) the
MMD, (b) all objective functions that were under study. The vertical lines indicate where a step in
the objective function value is located. Darker shades of grey indicate that more objective functions
have a step on that location. The values shown in the figures are normalized to allow straightforward
comparison between objective functions.

So, what is the origin of this behavior? To get to the answer, the aggregation kernel
will be shown in more detail and how these function values are seen by the modelling
framework of choice, PBM.

Let us consider the aggregation kernel of Equation (2) with parameters equal to
the true distribution of scenario 9 in [28], Chapter 7. The values for the parameters are:
Ry =500, top; = 10, and By = 7 x 10712 A 2D contour plot of the aggregation kernel with
these specific parameter values is shown in Figure 3: the aggregation speed is plotted in
function of the size of the two aggregating particles. In that figure, a black line is drawn,
that line is an indication of the domain of the 1D plots in Figure 4a,b. In these figures,
the size of one of the aggregating particles is kept constant while the size of the other is
varied. Figure 4a shows the aggregation kernel values without discretization of the grid,
i.e., a grid with an infinitesimally small cell width. Figure 4b shows these values with
discretization of the grid that is used in the PBM simulations. The parameter R, is varied
between 400 pm and 600 pm.

6765.36

540.46

x

8.46
8.46 540.46 6765.36
Zy

Figure 3. Contour plot of the aggregation kernel values of scenario 9 in [28], Chapter 7 in function
of the size of the two particles that aggregate. The black line indicates the domain of the 1D plot in
Figure 4a,b.
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Figure 4. 1D plot of the aggregation kernel values of scenario 9 in [28], Chapter 7 in function of
the size x;. The size of one of the aggregating particles is kept constant while the size of the other
particle is varied. An indication of the domain of this 1D plot can be seen as black line in Figure 3.
The gray lines in these figures denote the aggregation kernel function values in function of size for a
fixed value of Ry. The parameter R; is varied between 400 and 600. For clarity, the representative
sizes are indicated with yellow dashed lines. Figure (a) shows the aggregation kernel values without
discretization of the grid, i.e., a grid with an infinitesimal small cell width. Figure (b) shows these
values with discretization of the grid that is used in the PBM simulations.

What can be seen in Figure 4a is a smooth step superimposed on a function that in-
creases with increasing particle size. This smooth step was intended as such when writing
down the mathematical description of the newly formed aggregation kernel. It was postu-
lated in [11] that this smoothness is needed for numerical stability of the ODE integrator.
When looking at the discretized version of the aggregation kernel function, i.e., on the
PBM grid, this smooth step does not occur, not even approximately. For one value of Ry,
there exist at most two levels between the low and high point of the step. This means that
for all R, values which fall between two representative sizes, the resulting aggregation
kernel matrix does not change drastically. Interpret the aggregation kernel matrix as an
N x N matrix with all combinations of two particles of the grid with length N, for which
the aggregation kernel value is computed. So the origin of the staircase-like behavior lies in
the fact that we need to discretize the grid to calculate the PBM. As stated before, the grid
is fixed throughout this whole work. Increasing the number of nodes in the grid would
increase the resolution to better capture the step, but this is out of the question for this
work. If we cannot change the grid, how can we then cope we the issue?

Figure 5a,b give a visual cue to what particle sizes new particles can aggregate. From
Figure 5a, it can be seen, that there are a lot of gray lines right of the line for a representative
particle size. These lines are the particles that form as a combination of a particle with that
representative size and a small particle. This can also be seen in Figure 5b as the two legs in
the heatmap have two very similarly colored lines.

As it seems, the aggregation kernel has features whose effect cannot be seen due
to the inherent need to discretize the grid. Further, in in [11], the claim was made that
smooth behavior was needed for numerical stability. However, upon closer inspection of
the problem, these numerical instabilities could not be reproduced. So, the smoothness is
not needed for the computation of the model and its effect can hardly be seen.
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Figure 5. Figure (a) shows a part of Figure 4a with added vertical grey lines illustrating the different
sizes of new particle which can be formed out of two smaller particles by aggregation. The aggregates
lie between 400 pm and 600 pm. Figure (b) shows where these aggregates can be found in a similar
fashion as the 2D contour plot in Figure 3. The aggregation smaller than 400 pm and larger than
600 pm are masked out of this figure.

4.3.2. New Aggregation Kernels

Let us propose two new kernel formulations without the unwanted behavior. For
completeness: the effect of the second step going to zero at 7000 pm is invisible as the
largest representative size is below that value and particles cannot aggregate out of the
system. The first suggestion approximates the original kernel: using a circle in the (x, €)-
plane to determine where the step is located:

B = {7 Lesr ©
X,€) =
stepx /3¢, x? +¢e® > R2

The parameter R is the critical particle size: particle combinations larger than this size
will aggregate faster, step is the increase in aggregation speed for particle combinations
exceeding the critical size. The second alternative is instead of using a circle as a distance
from the origin, the location of the step is defined as a square in the (x, ¢)-plane:

1 / 3 1 / 3
IB(xls):{x 81/’ 1/ ng/\gSR (7)
stepx/3¢’3, x>RVe>R.

To compare the newly proposed kernels with the original kernel, the absolute relative
difference between the kernels is computed. A heatmap with the results is shown in
Figure 6. In that figure, it can be seen that only for three particle combinations, the error
is significant.
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Figure 6. Heatmap of the relative difference between the aggregation kernel defined Equation (2)
and the newly proposed kernels in Equations (6) and (7). The relative difference equal to zero are
masked out. The location of the step is at 500 pm.

4.3.3. Analysis of the New Aggregation Kernels

If these two new kernels are applied to the same problem (scenario 9 from [28],
Chapter 7) its performance can be analyzed. In Figure 7, the results using the MMD as a
distance function are used. From this figure, it can be seen that the kernel in Equation (6)
behaves almost identical to the original kernel. The kernel defined by Equation (7) has
fewer steps and has a true non-smooth step-like behavior.

3101
A -2
S 10
=
1044, . .
100 500 1000
R

original kernel
new square step
= new circle step

Figure 7. Plotting of the objective function values in function of the parameter step for scenario 9
(PBM simulation with 35 bins), as shown in [28], Chapter 7. Results for objective functions using the
MMD (same as Figure 2a) and the new kernels which use a circle or square as a distance function.

Next to the plot of the MMD in function of the parameter, it is important to look at
the effect of a different kernel on the resulting PSD. Because only then it can be assessed
whether the significant difference of three particle combinations (shown in Figure 6) has
a significant effect on the PSD. Consider a region bounded by the MMD values: from
the global minimum to the minimum value of the kernel with the square step. The PSDs
corresponding with step-values within that region are plotted in Figure 8a,b. In these
figures, it can be seen that the PSDs do not differ much. With some expert knowledge, it
can be said that all these distributions are within measurement error. This would mean that
the kernel definition that leads to unambiguous results should be chosen, i.e., the kernel
with the square step.
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Figure 8. Plotting the PSDs corresponding to the parameter range bounded by the MMD values
in Figure 7: from the global minimum to the minimum value of the kernel with the square step.
Figure (a) shows the aggregation kernel with the square step defined by Equation (7), Figure (b) the
kernel with the circle step defined by Equation (7). In each figure, the PSDs of the original kernel are
plotted as well.

4.4. Incorporating Measurement Error into Parameter Estimations

Before the bold statement “this looks to be within measurement error” can be made, it
requires a more rigorous approach. It is difficult to come up with measurement errors on
the type of data we are using. On the other hand, in [28], Chapter 7, it was shown that
there exist good definitions of the distance between two data points, i.e., two pmfs, for the
set up under study. From repeated PSD measurements and measurements of repeated
experiments, pairwise MMD distances are calculated. The median MMD of this collection
of values gives a good indication of what experiments can be distinguished with the current
measurement technology. The median is chosen over the mean to be more robust to outliers
in the data. A visualization of these repeated measurements is given in Figure 9.

0.15 ;

o
—

0.05 1

volume fraction (-)

0-: : : :
8.46 100 1000 6765
particle size (um)

Figure 9. Visualization of measured PSDs in volume fraction for some repeated experiments
and repeated measurements of the same experiment. Note that the measurements get noisier
for larger particles.

In Figure 10, this indication of measurement error is plotted on top the MMD in
function of the parameter R, the same plot that was shown in Figure 7. In this figure, it can
be seen that the only kernel with a single, unique value below the measurement error is the
kernel defined in Equation (7).
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Figure 10. Plotting of the objective function values in function of the parameter step for scenario 9
(PBM simulation with 35 bins), as shown in [28], Chapter 7 Results for objective functions using the
MMD and the new kernels which use a circle or square as a distance function. The horizontal black
line is an indication of the measurement error: the average distance between repeated measurements
or measurements of repeated experiments.

Thus, it would make sense to simplify the kernel in the wetting zone from Equation (2) to
Equation (7) for several reasons:

1.  The original explanation of needing the smoothed step for numerical reasons does
not hold, ergo it is not needed anymore.

2. The new kernel has only two parameters (R and step), whereas the original kernel
has six, which means a significant simplification for a parameter estimation problem.

3. The new kernel has a single unique value below the measurement error threshold:
this excludes ambiguity for choosing the right value.

As a final remark, the kernel is a piece-wise function, so to avoid some computational
hurdles, the parameter R should be chosen out of some discrete levels instead of changed
continuously. In this setup, the parameter R can be chosen out of the representative values
of the bins. Moreover, due to its clear interpretation, it can just be directly estimated from
the data instead of calibrated which further simplifies the parameter estimation problem
that will be tackled in the next section.

5. Results and Discussion

This section presents the results of the implementation of the new aggregation kernel
resulting after the identifiability analysis, as well as an extra modification that was necessary
to implement it for all formulations. In addition, a strategy to reduce the number of
unknown model parameters and its results is shown.

5.1. New Aggregation Kernel for the Wetting Zone

As it was referred in the previous Section 4, the original aggregation kernel for the
wetting zone was improved by an identifiability analysis. Using parameter space map-
ping and measurement error thresholds, a new kernel was selected which has a smaller
number of parameters while at the same time still exhibiting the desired behavior. These
decisions were made based on a thorough understanding of the modeling framework and
incorporating information on measurement error.

A selection of calibrated PSDs in the wetting zone using the new kernel are visualized
in Figures 11 and 12 corresponding to a hydrophobic formulation (API1) and a hydrophilic
formulation (API2) respectively. For all scenarios, the bimodal distribution is dominant.
At the lowest L/S ratio, the first peak of smaller sizes is more noticeable. However,
from these figures, it is possible to elucidate a limitation in the resulting PSD for both types
of formulations for both concentrations at the different liquid to solid ratio conditions.
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The distance between both peaks was not possible to achieve correctly at the same time,
even though the height of each peak was captured correctly most of the time. Two possible
causes arose here, first related to the parameter R included in the kernel (Equation (7)). Due
to its physical meaning, which represents the critical particle size, where particles larger
than this size will aggregate significantly faster than those that are smaller, and represents
where the step is located or in other words, the beginning of the transition from small
particles to big agglomerates. The value of R thus determines the mode of the first peak.
Low R values mean that the first peak will be at lower particles sizes, moreover, it is related
to the features of the initial blend (nature of the blend) that will be discussed in the next
Section 5.2. The second, is related to the value of the power in the expression.
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Figure 11. Resulting PSD in the wetting zone using the new aggregation kernel at different L/S ratio
conditions for a hydrophobic formulation (API1).
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Figure 12. Resulting PSD in the wetting zone using the new aggregation kernel at different L/S ratio
conditions for a hydrophilic formulation (API2).
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From the preliminary results of the calibration of the parameters R and Step, as well as
Bo in the wetting zone, the resulting PSD that were obtained are shown in Figure 13. As a
result of low values of R, that is, smaller particles or non-granulated material located
further to the left, the second peak in the distribution, which means that the fraction
corresponding to the largest granules during the simulation, exhibited a shift to the left for
both hydrophobic and hydrophilic formulation at low and high concentration of the APL
The initial API 150% pre-blend was found to exhibit a wider distribution located in higher
sizes, as can be seen in Figure 11 a and b, the distance between both peaks of the resulting
distribution for that specific formulation is smaller with respect to the other formulations
and, being achieved for some of the experiments. The power of the expression in the kernel
(Equation (7)) was included as a parameter to be calibrated once the R-value was set as
explained in Section 5.2, thus modifying the expression resulting in a new aggregation
kernel Equation (8), with the same capabilities to obtain a bimodal response from an initial
unimodal distribution, granting it greater flexibility to achieve at the same time the location
of both peaks for a different nature of the formulation and process conditions, aiming
towards the development of a generic model capable of predicting the final distribution of
granules from the properties of the material.
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Figure 13. Preliminary results of the calibration using the new kernel at different process conditions
of the DoE for API1 and API2 at low and high concentrations in the wetting zone.

5.2. Reducing Unknown Model Parameters

A comparison of the PSD measurements in the wetting zone under different L/S ratio
conditions for each formulation is presented in Figure 14. A strong trend of a decreasing
fraction of the first peak was detected as the L /S ratio increases for API 1 5 and 50% as well
as for API3 at 50% concentration, while a weak trend was found in API2. Furthermore,
the granule size distribution progresses from left to right when the L/S ratio increases
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in the second peak, neglecting the noise of some experiments. However, regardless of
the trend that each formulation follows or the condition of the L/S ratio, a pattern was
identified at the location of the first peak for all formulations. The depletion point towards
larger sizes is always placed in the same size category, ergo, allowing to determine the
R-value recalling the definition given above, which is represented by the vertical black line
for each formulation in Figure 14 and their values are shown in Table 2. The R-value for
the API1 5% and API2 5% formulations were found identical and this fact is associated
with the similarity in the formulation due to the low API content and the composition
of fixed excipients. Since the hydrophilicity increases from API1 to API3, which means
that API3 is the most hydrophilic in the set of formulations studied, it was observed that
the R-value decreased with hydrophilicity comparing the formulations with the same
API concentration. Note that this entails that, according to this work, the R-value is only
affected by the nature and concentration of the API. Process parameters such as L/S ratio,
throughput, screw speed or barrel fill level have no significant effect. Taking the values
of the parameter R as input for the simulations, the only parameters that remain to be
calibrated in the wetting zone are Step and By. The simulated PSD in the wetting zone can
be seen in Figures 15-17.
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Figure 14. Comparison among different L/S ratios of the resulting PSD in the wetting zone for each
formulation showing its respective R-value.
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Table 2. R-values for each formulation.

Formulation R (pum)
API1 (5%) 168.35
API1 (50%) 301.64
API2 (5%) 168.35
API2 (50%) 204.47
API3 (5%) 138.61
API3 (50%) 114.12
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Figure 15. Resulting PSD in the wetting zone for API1 at different L/S ratio conditions within
the DoE.
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Figure 16. Resulting PSD in the wetting zone for API2 at different L/S ratio conditions within
the DoE.
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Figure 17. Resulting PSD in the wetting zone for API3 at different L/S ratio conditions within
the DoE.

The general performance of the new aggregation kernel in the wetting zone is satisfac-
tory, for all the formulations the location of both peaks was achieved and the experimental
behavior was captured. As the L/S ratio increased, the percentage of fine material de-
creased due to the availability of the binder liquid between the particles, therefore, a larger
portion of PSD in small size categories is expected to be aggregated in large particles [§],
leading to a first reduced peak in the distribution of that compartment, and even increasing
the presence of fractions of intermediate sizes between both peaks. This effect was also
captured by the model and was more pronounced for the API3. In most cases, nonetheless,
the simulated PSDs presented a dip between both parts of the distribution, which can be
interpreted as an underprediction of the intermediate size fractions. On the other hand,
the results proved that the strategy adopted to reduce the number of unknown parame-
ters satisfied all the formulations studied, in addition, the complexity of the calibration
procedure was reduced. Furthermore, the observed trend of the parameter that was set
can be taken as an opportunity to link the model parameter with the features of the blend.
Regarding the kneading zones (C3, C5 and C6), as concluded in the original model, a clear
trend was not observed for the parameters y and ¢ during calibration, in the present
work similar results were obtained [11]. Therefore, a strategy similar to that applied in
the wetting zone was implemented after comparing the experimental data collected at
different process conditions. A comparison at different L /S ratios for formulations with
50% of API concentration in each compartment is visualized in the Figure 18, where the
black vertical line symbolizes the i parameter defined in Section 3 in Equation (3) as the
mean of the Gaussian normal distribution corresponding to the particles that result from
erosion, namely, the mean size of the smallest particles within the resulting distribution
after the breakage that occurs in the kneading zones due to the high-shear environment.
Note that the position of the mean value of the remaining fine material and the smaller
particles, corresponds to the same value attained for the R parameter from the aggregation
kernel in the wetting zone. Then, u was consequently set for all the compartments using
the values shown in Table 2. Assuming neither high nor low dispersion ¢ was set equal to
50, leaving as a result only three parameters to be calibrated in the kneading zones: 3, So,
and fp,l-m. The formulations with a concentration of 5% suggested a pattern akin to those
of high concentration. In order to evaluate the use of these assumptions, calibrations were
performed, representative results can be seen in Figure 19. For experiments at low L/S
ratio the resulting distribution exhibited a bimodal behavior less stark at C6, contrarily to
the experiments at high L/S ratio conditions, where a uni-modal distribution was obtained
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even from C3. For all scenarios, the model could accurately capture the location of the
peaks. Furthermore, the model is able to capture the shifts in the resulting distribution in
each compartment due to the applied shear and compression forces inside the kneading
block and the redistribution of liquid binder within the powder [8,31,32].

Overall, the achieved results using fixed parameters are satisfactory, as for formula-
tions it was possible to reproduce the experimental behavior, capturing the final positions
of the distributions and reduce the complexity of the calibration process, which in turn
reduces identifiability issues. This work therefore, constitutes a leap forward in the develop-
ment of a generic model for the twin-screw granulator. In the next steps of the work, some
improvements are to be made: The patterns identified to establish the model parameters
could be further investigated to understand their relationship with the process conditions
or material properties and build sub-models that,when integrated, allow the construction
of a more generic and and even more robust model.
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Figure 18. Comparison of the experimental PSD for formulations with high concentration at different
L/S ratio conditions within the DoE in each compartment.
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Figure 19. Representative results of the calibration taking y# and ¢ constant for each formulation. (a—c)
were simulated at low L/S ratio for API1 5%. (d—f) were obtained with the L/S ratio at the center
point within the DoE for API2 5%. (g-i) were simulated at high L/S ratio condition for API3 5%.

6. Conclusions

In this work, a new aggregation kernel was presented to obtain the granule size
distribution in the wetting zone for a twin-screw wet granulation process based on the
model by Van Hauwermeiren et al. [11]. A complementary strategy based on the principle
of identifiability was used to reduce the unknown parameters of the model not only
in the wetting zone but also in the kneading zones. The results proved that the new
kernel combined with the reduction of unknown parameters can simulate the observed
experimental behavior, capturing accurately the position of both peaks in the wetting zone
as well as simulating the effects of screw configuration on the distributions in the kneading
zones. This model is a necessary improvement aimed at the development of a generic tool
to track the size distribution of granules along the barrel as well as at the outlet of the
twin-screw granulator.
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Abbreviations
The following abbreviations are used in this manuscript:

DoE Design of Experiments

L/S Liquid-to-Solid

MMD  Maximun Mean Discrepancy
PBM Population Balance Modeling
PSD Particle Size Distribution
TSWG  Twin-Screw wet granulation
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