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Abstract: 

 

The study focused on the fluid-bed granulation process of a product with two active 

pharmaceutical ingredients, intended for coated tablets preparation and further transfer to 

industrial scale. The work aimed to prove that an accurate control of the critical granulation 

parameters can level the input material variability and offer a user-friendly process control 

strategy. Moreover, an in-line Near-Infrared monitoring method was developed, which 

offered a real time overview of the moisture level along the granulation process, thus a 

reliable supervision and control process analytical technology (PAT) tool. The experimental 

design’s results showed that the use of apparently interchangeable active pharmaceutical 

ingredients (APIs) and filler sorts that comply with pharmacopoeial specifications, lead to 

different end-product critical attributes. By adapting critical granulation parameters (i.e. 
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binder spray rate and atomizing pressure) as a function of material characteristics, led to 

granules with average sizes comprised in a narrow range of 280 – 320 µm and low non-

granulated fraction of under 5%. Therefore, the accurate control of process parameters 

according to the formulation particularities achieved the maintenance of product within the 

design space and removed material related variability. To complete the Quality by design 

(QbD) strategy, despite its limited spectral domain, the microNIR spectrometer was 

successfully used as a robust PAT monitoring tool that offered a real time overview of the 

moisture level and allowed the supervision and control of the granulation process. 

 

 

 

Keywords: Quality by design； Design space； Risk assessment； Process analytical 

technology； Fluid bed granulation； microNIR 
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1. Introduction 

 

Fluid bed granulation is frequently an indispensable step in solid oral dosage form 

manufacturing, which consists in obtaining granules by spraying a binder solution over a 

fluidized powder bed. The main purposes of granulation are to improve flow characteristics, 

blend uniformity, compression properties and to reduce the dust in the manufacturing areas 

[1]. Like in the case of all complex manufacturing processes, there are a series of critical key 

parameters that need to be monitored and controlled during the fluid bed granulation to 

ensure the delivery of constant quality products, such as inlet air flow rate, air temperature, 

air humidity, spray angle, flow rate, atomization pressure [2]. The effects assessment of all 

mentioned variables requires high amounts of experimental work and data analysis. 

Moreover, materials used in pharmaceutical product preparation are also exposed to some 

variability. It is not uncommon for a pharmaceutical company to be forced to change the 

suppliers of active pharmaceutical ingredients (API) or excipients because of changes in the 

quality of the raw material, shortages of raw material, regulatory aspects or even natural 

disasters [3]. To overcome these issues, companies often initiate a dual-supply strategy for 

each API/excipient as backup for unanticipated interruptions. However, even if the 

substances seem to be equivalent and meet all the pharmacopoeial specifications, they are not 

necessarily inter-changeable: processability and critical quality attributes of the end-product 

may be affected [4,5]. 

Quality by design (QbD) approach endorsed by the drug regulatory authorities, offers a 

manner to identify and evaluate the sources of variability involved in a manufacturing 

process. After having established the quality target product profile (QTPP) and critical 

quality attributes (CQAs) of the desired product, Ishikawa diagrams and failure mode effects 

analysis (FMEA) can be used as risk assessment tools to rate the critical process parameters 

(CPPs) and critical material attributes (CMAs) [6,7]. Out of a plethora of factors that can 

influence the quality of the end-product, those associated to high risk scores can be further 

studied through design of experiments (DoE). This strategy was successfully applied for 

numerous dosage forms, including immediate release tablets, prolonged release drug delivery 

systems, oral lyophilisates and as a result it yielded design spaces that granted process 

flexibility and high product robustness [8,9]. Kushner et al. identified the changes caused by 

excipient variability in a QbD approach, however a proper mitigation strategy was not 

proposed to overcome the variability effects [10]. Working within the design space equalizes 
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the effects of input material variability and leads to products that consistently meet the final 

requirements [4]. To confirm that the manufacturing process was carried out within the limits 

of design space and the quality of intermediate and final products, a real-time measurement 

of CQAs is necessary, with the possibility to perform immediate adjustment to correct the 

errors and prevent batch loss. This is why modern analytical technologies were developed 

and encouraged by regulatory authorities within the process analytical technology (PAT) 

initiative. PAT framework envisages the real-time information collection/gathering regarding 

all critical aspects of a manufacturing process, through process analysers as Raman and NIR 

spectrometers. PAT environment allows real-time process measurements by including the 

process analysers into the process stream or in its close proximity for at-line, on-line or in-

line assessment [11–14]. 

In-line process monitoring is a promising solution that could enhance the understanding 

of a process and increase its reliability. But in order to be suitable for real time monitoring, an 

analytical method should have some distinct characteristics, such as high detection speed, the 

samples or the product should remain intact after the analysis, it should be process adaptable 

and with no interference in the processes. Near-infrared (NIR) spectroscopy holds all the 

mentioned characteristics, which is why it is being implemented for such purposes for a few 

years now [15]. Several authors have already developed real time NIR monitoring methods 

for the moisture content assessment during fluid-bed granulation and process end-point 

determination [2,16–19]. The moisture level reached along the binder spraying phase plays 

the most important role in the formation of granules, their growth, morphology and density. 

This parameter is also worth monitoring further, during the drying phase, to signal the end-

point of the process; otherwise, unnecessary drying could lead to a decrease of granule size 

through erosion [1,15,20]. 

Lately, due to the widely known potential of NIR spectroscopy in pharmaceutical 

product quality and process monitoring, considerable attention has been given to the 

miniaturization and portability of the spectroscopic devices [21]. The microNIR spectrometer 

is an ultra-compact, light weight device, suitable for integration in many process points in a 

non-invasive manner, but with limited spectral domain, 950 to 1650 nm. Its use was reported 

for the assessment of active principles in coffee beans and acerola fruits but to our knowledge 

its utility in in-line monitoring of fluid-bed granulation processes was not described yet [22]. 

This work focused on the fluid-bed granulation process of a product with two active 

pharmaceutical ingredients, intended for coated tablets preparation and further transfer to 

industrial scale. The experiment aimed to prove that an accurate control of the critical 
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granulation parameters can level the input material variability and offer a user-friendly 

process control strategy. Risk assessment strategy was applied to rank the formulation and 

process variables as risk sources. Following an experimental design, design space was 

defined for granulation process.  For CQAs’ assessment, in-line monitoring of granules’ 

moisture content was performed by NIR spectroscopy coupled with multivariate data 

analysis. 

 

2. Materials and methods 

 

2.1. Materials 

 

Different sorts of the two APIs and intragranular filler were used in the formulation. The 

ingredient sorts were obtained from different suppliers or the same supplier, but presenting 

different characteristics. All samples were of commercial grade and complied with the 

European Pharmacopoeia specifications. For confidential reasons, samples were codded as: 

Ibu A, B, C for ibuprofen sorts; Par A, B, C for paracetamol sorts and MCC A, B for the two 

tested microcrystalline cellulose sorts. 

The sodium starch glycolate used as disintegrant was Explosol from Blanver (Brazil) and 

the chosen binder was hydroxypropyl methylcellulose-Methocel E5LV kindly donated by 

Colorcon (UK). 

During preformulation studies, in order to gain as much information as possible about the 

different sorts of APIs and excipients, X-ray powder diffraction and differential scanning 

calorimetry studies were performed (results not shown). Those studies did not reveal any 

polymorphism or behaviour differences between the different sorts. Besides this, all 

substances were stored in the same conditions, with the intention to minimize any differences 

in the materials’ moisture content. 

 

2.2. Scanning electron microscopy (SEM) 

 

Active ingredients from different suppliers were evaluated for their morphology by SEM. 

Samples were sputter-coated with Pt/Pd in an Agar Automatic Sputter coater (Agar 

Scientific, USA), then images were captured at 15 kV with a Quanta 3D FEG electronic 

microscope (FEI, USA). 
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2.3. Granulation formulation and process parameters 

 

The same formulation was used during all granulation runs, this consisted of a mixture of 

ibuprofen, paracetamol, microcrystalline cellulose, sodium starch glycolate and 

hydroxypropyl methylcellulose, resulting into a batch size of 200 g. The binder was sprayed 

over the fluidised powder bed as a 10% aqueous solution in order to granulate the dry 

components. The experimental runs were performed in a laboratory scale fluid bed granulator 

(Aeromatic Strea 1, GEA, Switzerland). During each run, the powder bed was fluidised with 

an air flow of 3-4.5 m
3
/min, heated at an inlet temperature of 30 °C. At first, the powder 

mixture was preheated and homogenized for 10 min. After this first step, the binder solution 

was sprayed from the top of the granulation vessel, through a 0.8 mm nozzle, with variable 

pressures and the spraying rates according to the experimental design specifications (Section 

3.2 and Table 3). After the binder spraying, the formed granules were dried in the same 

apparatus, over a period of 10 min. 

 

2.4. Sampling and evaluation of granules 

 

Along each run, samples of ~3 g were withdrawn from process, through a sampling valve 

placed on the side of the expansion vessel wall, at the height of the fluidised bed. A total of 6 

samples were collected, 3 during the binder spraying and 3 during the drying, each time at 

one third, two thirds and at the end of each phase. The samples moisture content was 

analysed off-line for loss on drying (LOD), by keeping the samples in a Venticell 55 drying 

cabinet (MMM Medcenter Einrichtungen, Germany) for 48 h, at 50 °C. 

The granulometry was measured for each end product by using a set of 8 sieves (Retsch, 

Germany) with sizes ranging between 100 and 800 µm. A quantity of ~130 g was analysed 

from each granulation batch. Mean size and distribution were calculated. An important 

purpose of the industrial granulation process is reducing the dust [1], for this reason, one 

more property of obtained granulates was analysed, namely the non-granulated fraction. The 

particles under 100 µm found in the collecting pan after the sieve analysis were considered 

non-granulated fraction and expressed as dust percentage from the total amount of analysed 

granules. 
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2.5. NIR process monitoring 

 

All granulation runs were monitored using a MicroNIR PAT-U spectrometer (Viavi 

Solutions, USA), controlled with JDSU MicroNIR Pro software. The apparatus is equipped 

with Linear Variable Filter technology, which allows the reduction of the devices size and the 

direct attachment to the expansion vessel wall. The spectrometer was attached on the 

expansion vessel at the same height as the sampling valve, using a custom 3D printed support 

to ensure direct contact of the NIR detector with the fluidised powder bed and avoiding any 

interferences with process. Spectra were recorded continuously at 10 s intervals, in 

reflectance mode, over the whole range of the spectrometer, 950 to 1650 nm, with a 

resolution of 6 nm. Each spectra was the average of 200 scans, recorded with an integration 

time of 7 ms per scan, which resulted in a total of 1400 ms necessary for a full spectral 

acquisition. Until the next measurement, in the spare time of the 10 s interval the device 

entered automatically in stand by mode. 

 

2.6. Analysis of the spectral data 

 

By continuously collecting spectra during all performed runs, a large amount of spectral 

data was gathered, therefore requiring proper multivariate data analysis in order to obtain the 

desired information. For this purpose the data was imported and analysed using the SIMCA 

14.0 software (Sartorius Stedim, Sweden). Principal Component Analysis (PCA) was 

performed in order to identify which spectral domain is specific for changes in the moisture 

content of the powder bed. This dimensionality reduction technique is designed to efficiently 

extract and describe systematic variation present in the NIR spectra, represented by the 

physico-chemical properties of the powder bed and to facilitate data interpretation [23,24]. 

By analysing the loading plots and comparing them with the pre-processed spectra, an 

appropriate spectral domain could be identified. 

The multivariate prediction model was developed using orthogonal partial least squares 

(OPLS) method, which had the purpose to separate X-specific spectral systematic variation 

into predictive and orthogonal (uncorrelated) fractions. An optimal number of OPLS factors 

was chosen based on the highest fraction of X variation modelled in the component (R2X), 

fraction of Y variation predicted according to cross-validation, using the X model (Q2) and 
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low root mean square error of cross-validation (RMSEcv), avoiding in the same time the 

overfitting of the model [24]. 

 

2.7. Identification of granules’ Quality Target Product Profile (QTPP), Critical Quality 

Attributes (CQAs) and the risk analysis of CQAs 

 

According to the International Council of Harmonisation (ICH) Q8, QTPP is the basis of 

product development design. Thus, defining QTPP, as shown in Table 1, was the starting 

point of the present research study. Further, out of QTPP, CQAs were revealed as physical 

characteristics that should be in appropriate limits to ensure the desired product quality. The 

CQAs were evaluated by means of Ishikawa diagrams, in order to identify the potential 

variables that could have an impact on the CQAs [6, 8]. 

 

2.8. Risk assessment by Failure Mode Effects Analysis (FMEA) 

 

Further, failure mode and effect analysis (FMEA) was applied in order to identify and 

prioritize the failure modes that are most probable to lead to process failure and thus to an 

improper product [8]. The overall failure risk was assessed based on three criteria: occurrence 

frequency (O), effect severity (S) and detection difficulty (D), each of them ranked on a scale 

from 1, as the low level of the mentioned criteria to 5, as the high level of the criteria. The 

final score, the risk priority number (RPN) was obtained by the multiplication of the scores 

registered for each of the three criteria [25]. CPPs and Critical Material Characteristics 

(CMCs) that met the highest risk scores were studied in detail in DoE. 

 

2.9. Design of experiments 

 

Before the development of an appropriate experimental design which would allow the in 

depth study of the process, some preliminary experiments were performed in order to 

establish a stable and reliable granulation process (data not shown). This part aimed to define 

the granules composition, batch size and the basic process parameters. The MODDE 11.0 

software (Sartorius Stedim, Sweden) was further used in order to develop a D-optimal DoE, 

which allowed the introduction of anticipated variability that could normally occur in an 

industrial scale manufacturing process and also the study of the effects of such variability. A 

D-optimal approach is based on the selection of experimental runs so that they span the 
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largest possible volume of the variability matrix and for this reason, it is recommended when 

combinations of qualitative and quantitative multilevel factors are studied in the same 

experimental design [26]. 

 

3. Results and discussions 

 

3.1. QTPP, CQAs, CPPs and FMEA 

 

A team of researchers with in-depth knowledge on the fluid bed granulation process was 

brought together. During several discussion sessions, QTPP of the granules was established 

according to the type of dosage form and its intended use, for the preparation of coated 

tablets, as shown in Table 1. The selected CQAs that emerged from QTPP were those 

susceptible to variations during a large scale manufacturing process: granule average size, 

polydispersity index and humidity. 

Further, risks associated with every step of process, from the raw materials properties to 

the final granules characteristics were identified, analysed and evaluated in detail [25]. The 

variables related to granule formulation, manufacturing process, analytical methods and 

equipment performance were summarized in an Ishikawa diagram (Fig. 1). CPPs and CMCs 

were further analysed using FMEA method for their associated risk, revealed as RPN (Table 

2). 

Once the qualitative and quantitative composition of a pharmaceutical product is 

established, few changes can occur with respect to formulation; however, variations in 

particle size, shape, polymorph of APIs or excipients could appear when switching suppliers. 

Such variability could influence the quality of granules, especially when the major 

components are concerned. Therefore, in our particular case, FMEA revealed that variations 

in the sort of APIs or filler could exert a higher risk (RPN = 60) than in the disintegrant agent 

or the binder (RPN = 24 and 16 respectively). 

Among the process parameters, the mixing phase was considered less critical to the 

process, compared to the spraying and the drying phases.  The inlet air temperature during 

mixing/heating of the powder blend was considered less important due to the fact that the 

binder solution is added only when the powder reaches an established temperature. The 

binder spray rate and atomizing pressure were evaluated as the most hazardous, as their 

values could change because of equipment malfunction or human error and they have a high 
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impact on granule size and distribution. The drying parameters are also critical to the product 

quality: if the drying time is exceeded, granules could become friable and erode with impact 

on flow properties. These phenomena can be prevented by NIR monitoring, thus they were 

ranked lower than the granulation step, with RPN 48.  An experimental design was developed 

based on the parameters that expose product quality to the highest risk, with RPN of 60: the 

APIs and filler sorts, binder spray rate and atomizing pressure.  

 

3.2. Design of Experiments 

 

When developing a D-optimal DoE, that includes quantitative as well as qualitative 

factors, the selection of experiments included in the design matrix is critical and needs to be 

decided based on scientific means. In this case, two evaluation criteria had to be considered: 

condition number and G-efficiency. The condition number assesses the sphericity and 

symmetry of the design, representing the ratio of the largest and smallest values of the 

variability matrix. Its ideal value is 1, representing an orthogonal design, the orthogonality of 

the design evolving inversely proportional with this parameter. In the case of an optimisation 

design with a mixture of quantitative and qualitative factors, the condition number value 

could increase substantially, hence a DoE with a condition number < 8 is still considered very 

good. The G-efficiency is a criteria that expresses the design performance by comparing it to 

the performance of a fractional factorial design, being expressed in perfectness. For a high 

quality, reliable D-optimal DoE, a G-efficiency above 60%-70% is recommended [26]. 

The risk analysis indicated that supplier changes can occur during the life span of a 

product, so most of the companies rely on a dual-supply strategy that comes with a variation 

in the physical characteristics of the materials. Three CMCs, namely the different sorts of 

APIs and filler were selected to be studied as qualitative variables of the DoE. 

Based on the Ishikawa diagram and the conducted risk assessment, two quantitative 

variables represented by the binder spraying parameters were chosen for further investigation. 

Their control was meant to level the effects of the qualitative variables. 

The DoE was developed based on the data presented in Table 3, consisting in a total 

amount of 39 experimental runs, including 4 center points (Table S1). 

 

The generated DoE registered a G-efficiency value of  70.21% and a condition number of 

7.08. The studied responses were the moisture content levels of the samples withdrawn 

during each experimental run, the average size and the non-granulated fraction of the 
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obtained granules (see Section 2.4). For the experimental design matrix and results, consult 

Table S1. 

The registered response values were centralised, introduced into the design matrix and 

further, the fitting of the experimental data was accomplished by applying multiple linear 

regression (MLR) and was evaluated using the standard, most reliable statistical parameters, 

namely R
2
 – goodness of fit, Q

2
 – goodness of prediction and the response reproducibility. R

2
 

reflects the fraction of the response variation explained by the model, while Q
2
 gives the 

model prediction capacities. The model reproducibility is calculated and represented strictly 

based on the replicates specified in the design matrix. A good fitting is represented by high 

values of the model performance indicators, as close to one as possible. Furthermore, for a 

valid model, the difference between R
2
 and Q

2 
should not exceed 0.2-0.3, and the 

reproducibility should be well over 0.5 [26]. 

The summary of fit and the statistical parameters were calculated based on the 

experimental design data. The chosen model presented excellent quality, with R
2 

greater than 

0.86 and Q
2
 greater than 0.64 for all the eight studied responses. The model validity was also 

confirmed by a reliable reproducibility, with statistical values of over 0.84 for all studied 

responses/outputs (statistical values included in Table S2). 

 

 

3.3. Independent variables effects on the process and granules properties 

 

Based on the developed DoE model, regression coefficients were automatically 

calculated for the studied output variables. Fig. 2 presents the scaled and centered coefficient 

plots which describe the influence of the studied factors over the moisture levels registered at 

the end of the binder spraying phase and drying phase, i.e. end of the process, and over the 

average granule size and non-granulated fraction of each batch. 

The first important observation is that the binder spraying rate had the highest effect over 

the average granule size and as expected, an increase of the spraying rate would also lead to 

an increase of granule size [20]. Naturally, a higher spraying rate will lead to higher moisture 

levels along the process, which promotes the granule forming and growth, especially when 

the formulation contains ingredients that are soluble in the spraying solvent, as it is the case. 

The influence of the second studied process parameter, the atomizing air pressure used 

for the spraying of the binder solution, seemed to be minor, but still significant, representing 

that an increase of atomising pressure would reduce the average granule size. By increasing 
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the atomizing pressure, the size of the formed droplets decreases, favouring their evaporation 

before they actually get in contact with the fluid powder bed, thus limiting the binder effect 

[27]. 

Neither of the two studied process parameters seemed to have statistical significant 

influence over the non-granulated fraction size of each batch, which meant that only the 

formulation ingredients needed to be considered in this case. 

Regarding the sort of paracetamol used in the formulation, it resulted that using Par A 

would lead to obtaining slightly larger granules, with a lower non-granulated fraction, while 

Par C presented opposite effects. The actual total granule size variation was about 10-20 µm. 

In the present model, this global effect is shared between all the three Par sorts, meaning that 

the sum of model coefficients equals zero, therefore the coefficients having opposite signs 

does not imply a substantial change in terms of particle size. However, this API sort 

presented a positive influence over the LOD% registered at the end of the process, which 

translates through a higher moisture content of the final product. On the other hand, Par C 

significantly decreased the final LOD%, due to its slightly lower bulk density (declared in the 

product’s bulletin of analysis), favouring the final drying process, thus representing a viable 

alternative to a more reliable process. 

The most influential qualitative factor was the sort of ibuprofen, the strongest effect in 

the coefficient plot appearing for Ibu C. This sort appeared to increase the granulometry, 

substantially reducing the dust fraction of the final product and, in the same time, favouring 

the drying process. The two other API sorts tested in the formulation had opposite effect 

compared to Ibu C, reducing the average granule size and increasing the dust fraction. 

In order to identify the occurring phenomena causing those substantial differences, 

scanning electron microscopy was performed, the obtained images are shown in Fig. 3. It is 

well known that ibuprofen comes as acicular crystals, fact also observed in the figure for the 

first two sorts. The Ibu C had homogenous, large particles, with sizes averaging 500 µm; Ibu 

A however, presenting a much higher dispersity of particles size and shapes. In the case of 

Ibu B, which was a micronized sort, the particles were much finer and the acicular shapes can 

not be identified any more, most probable being broken through the micronisation process. 

The larger particles size of Ibu C is the property which aids to dust reduction, the 

particles being already larger than the considered non-granulated fraction of under 100µm. 

The granule growth phenomenon caused by Ibu C could be explained by the particle size and 

shape differences between it and the particles of all three studied paracetamol sorts (Fig. S1). 
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It is probable that the larger, acicular ibuprofen crystals would act as cores, on whose surface 

adhere the much smaller, irregular paracetamol particles, thus forming granules. 

The high influence of the ibuprofen sort over the studied responses suggests that this 

would be an important formulation factor that needs to be taken into consideration when 

adapting the CPPs. The influence of the MCC sort used in the granules composition did not 

seem to have statistically significant effects, nor had the factor interactions that can be 

observed in Fig. 2. Still, those factors aided the fitting of the experimental data, assuring the 

obtaining of a statistically valid model. 

Up to this stage of the research, results showed that the use of apparently interchangeable 

APIs and filler sorts that comply with pharmacopoeial specifications, lead to different end-

product critical attributes. Thus, in order to maintain the final product’s desired 

characteristics, the critical process parameters and the Design Space should be adapted 

accordingly. 

 

3.4. NIR monitoring method development 

 

Parallel with the experimental design analysis, a noninvasive NIR method was developed 

for the in-line monitoring of the fluid bed granulation process by predicting the moisture 

content. 

At first, all the acquired NIR spectral data was loaded into the SIMCA software and pre-

processed by applying the first Savitzky-Golay derivative which removed the baseline shifts, 

reduced the additive effects and improved the overall spectral resolution [28]. 

The raw recorded reflectance spectra are illustrated in Fig. 4A, while Fig. 4B illustrates 

the spectral data pre-processed with the first Savitzky-Golay derivative. The highest spectral 

intensity variation can be noticed around the first –OH group overtone, around 1390 to 1450 

nm. Especially in this specific region, the 1
st
 derivative pre-processed spectral intensity 

increases with the increase of water content registered during the binder spraying and 

decreases when the water content reduces during the drying of the product [2]. 

A PCA model was developed including only the 1300 to 1600 nm spectral domain, 

situation where only one principal component (PC) was sufficient to explain 97% variability. 

Further, for the moisture prediction model development, the 39 performed and recorded 

experimental runs were divided into two groups, chosen so that each of the two groups 

covered the entire studied variability. The first group contained 25 runs and was used for the 

multivariate calibration of the model, the second group contained the rest of 14 experiments 
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and was used for validation. The calculated OPLS model included two factors, one for each 

fraction of the model. For the predictive fraction, high statistical parameters could be 

registered, with values of 0.937 for R2X and 0.906 for Q2. On the other hand, the orthogonal 

(uncorrelated) fraction registered only a low R2X value of 0.057 but which improved the 

overall model quality. The RMSEcv calculated for the model with 2 factors was 1.55. The 

second group, formed from the remaining 14 experimental runs, was used for the validation 

of the OPLS prediction model. The method was validated with a good prediction recovery, 

close to 100% and low relative bias. 

The measured LOD% values were plotted against the NIR predicted values; Fig. 5 

illustrates 3 of the monitored granulations, framed in the validation data set, preformed using 

different binder spraying rates. The correlation coefficient calculated between the measured 

LOD% and the NIR predicted values was greater than 0.98 for all 39 granulation runs, which 

shows good predictive capacities. 

Even though the microNIR spectrometer has limited spectral domain compared to FT-

NIR spectrometers, the development of accurate moisture content prediction method was 

possible, thus proving to be a powerful tool for pharmaceutical applications. 

 

3.5. Design space and process optimisation 

 

The DoE approach lead to an in depth understanding of the variables’ influence over the 

process. Further, based on the initial investigation domain, the statistics software was used to 

generate a design space by introducing a set of constraints according to the QTTP [29,30]. 

The pre-set ingredients and the CQAs targets and variation intervals are presented in the 

upper part of Table 4. The intermediate LOD% limits were set based on the values obtained 

along the performed experimental runs with set process parameters inside the design space. 

The final LOD% and average granule size were set based on the QTPP specifications, and the 

non-granulated fraction was minimised. Depending on APIs and filler sort, each of them 

varied on 3, 3 and respectively 2 levels, 18 Design Spaces could be generated. As an 

example, three of them as a function of Ibu sort are shown in Fig. 6. Ibu was chosen for its 

high impact over all studied responses. The Par C sort was kept constant for its positive 

influence over the granule drying phase, while MCC B, due of its tendency to aid the granule 

growth, reducing the dust fraction (see Section 3.3). 

Each of the three plots includes a different area where the specified constraints are 

fulfilled,  highlighting that the same characteristics of granules can be obtained with different 
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API sorts, by rigorously controlling the CPPs throughout the process. The different 

acceptable areas of the three Design Spaces plotted in Fig. 6 can be easily explained based on 

the influence of the different ibuprofen sorts described in Section 3.3 and depicted in Fig. 2. 

As it can be observed, the first two Design Spaces (Fig. 6A and 6B) present similar 

acceptable areas – by using a formulation with Ibu A or Ibu B, the granulation process needs 

to be performed with high spraying rate and low atomizing pressure in order to ensure the 

required granulation conditions, leading to a final product which would comply with the 

QTPPs specifications. The high spray rate is needed to compensate the tendency of Ibu A and 

Ibu B to provide smaller granules and a higher dust fraction. Moreover, the acceptable area of 

the Ibu B formulation is slightly smaller than the one calculated for the Ibu A formulation, 

fact explained based on the Ibu B tendency to reduce the granule size and to increase the non-

granulated fraction even more than Ibu A, thus lowering the probability of obtaining 

appropriate granules. 

By using Ibu C in the granules’ formulation, the process parameters acceptable variation 

range is completely different compared to the ones obtained for the previously two Ibu sorts. 

This sort substantially increases the particle size and reduces the dust fraction, favouring the 

drying process of the final product. The use of Ibu C in the formulation allows the performing 

of a successful granulation with average binder spraying rate, tolerating a variation of the 

atomising pressure over almost all the studied domain. 

To confirm the robustness of the model and NIR monitoring method, the design space 

explorer function of the software generated the following process parameters: spraying rate 

of 11 g/min and atomizing pressure of 0.6 atm for the qualitative formulation indicated in 

Table 4. The aforementioned granulation process was carried out and simultaneously 

monitored using the same NIR setup. The measured vs. predicted intermediate and end-

product characteristics are listed in the lower part of Table 4.  Fig. 7 pictures the LOD% 

evolution throughout the granulation process: NIR predicted LOD% values overlapped with 

the DoE predicted ones and were confirmed by the experimental measurements. All the 

outputs fell within the set intervals, hence the DoE could be considered valid for further use 

for the optimisation of process parameters according to the desired formulation factors. 

Moreover, as a non-invasive in-line method, the developed NIR spectroscopic technique 

yields LOD% values each 10 s of the process, compared with the classical measurements 

which allowed the analysis of a total of 6 samples per process. 
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4. Conclusion 

 

The study demonstrated that the fluid bed granulation can be adapted through an accurate 

control of CPPs to eliminate the variability brought by possible API or excipient changes. 

Therefore, assuring a consistent end product quality and maintaining its characteristics within 

the QTPP is possible with a constant monitoring of the manufacturing process. 

Practically, a multiple supplier strategy for all used substances prevents unexpected 

shortages in the manufacturing process. A simple QbD research provides enough information 

to handle ingredient variability in order to ensure constant product quality which falls into the 

limits of the Design Space.  The developed model allows the easy and timely adaptation of 

CPPs as a function of the selected excipient, improving the process control. Process 

adjustment can be performed immediately, without the need of a process variation approval 

from the authorities. 

However, if a new API or excipient sort, which has not been studied from beginning, 

needs to be introduced in the formulation, some additional experimental runs need to be 

performed. This does not mean repeating the entire study, sometimes the influence of a new 

substance sort over the end-product’s critical attributes, may be similar to one that was 

already studied. This observation highlights how important it is for the manufacturer to 

choose reliable suppliers. 

Moreover, the developed in-line microNIR monitoring method offers a real time 

overview of the moisture level and allows its maintenance in the desired intervals, thus a 

reliable PAT tool for the supervision and control of the granulation process. 

Such an approach grants that the quality of the medicine gets not only to be tested, but 

built into the product. 
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Figures: 

 

 

Fig. 1. Ishikawa diagram highlighting parameters that could have an impact on the final 

product properties. 
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Fig. 2. Scaled and centered coefficient plots – factor influence over the: (A) LOD% at the end 

of the binder spraying phase; (B) LOD% at the end of the drying process; (C) average size of 

the granules; (D) the non-granulated fraction. 
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Fig. 3. Scanning electron microscopy micrographs for the 3 studied ibuprofen sorts. 
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Fig. 4. Raw (A) and pre-processed first derivative (B) spectra registered during the performed 

granulation runs. 
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Fig. 5. LOD% measured vs. NIR predicted values for 3 granulation runs performed with 

different binder spraying rate. Abbreviations: N11, N14, N32 – experimental runs performed 

in different conditions, according to the Design of Experiments. 
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Fig. 6. Design Spaces for granulation processes that provide optimal granules, adapted 

according to the sort of ibuprofen used in the formulation. (A): Ibuprofen A (Ibu A); 

Paracetamol (Par C); Microcrystalline cellulose (MCC B); (B): Ibuprofen B (Ibu B); 

Paracetamol (Par C); Microcrystalline cellulose (MCC B); (C): Ibuprofen C (Ibu C); 

Paracetamol (Par C); Microcrystalline cellulose (MCC B) 
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Fig. 7. Moisture content measured and predicted along the optimal granulation process. 
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Tables: 

 

Table 1. Quality target product profile of granules containing paracetamol and ibuprofen 

QTPP element Target Observations 

Route of administration 

Intermediate product for oral 

solid dosage form 

preparation 

The granules will be further 

used for coated tablet 

preparation 

Dosage form Granules  

Dosage form API content 
32.68% (w/w) paracetamol 

40.22% (w/w) ibuprofen 

 

Drug product quality 

attributes 

 

 

Mean granule size 280-320 µm 

Granule size distribution Gaussian distribution 

Granule polydispersity index < 50% 

Moisture content 2%- 4% 

Disintegration time < 7.5 min 

Assay 90% - 110% of the declared 

content of APIs 
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Table 2. Failure mode effects analysis for risk assessment 
CPP/CMC Failure mode Failure effects Potential causes Control methods O S D RPN 

Paracetamol 
Changes in API particle 

size, shape, polymorphism 

Variations of granule 

size, polydispersity 

index, humidity 

Supplier change 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 5 3 60 

Ibuprofen 
Changes in API particle 

size, shape, polymorphism 

Variations of granule 

size, polydispersity 

index, humidity 

Supplier change 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 5 3 60 

Filler 
Changes in filler particle 

size, shape, polymorphism 

Variations of granule 

size, polydispersity 

index, humidity 

Supplier change 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 5 3 60 

Disintegrant 
Changes in disintegrant 

particle size, shape, 

polymorphism 

Variations of granule 

size, polydispersity 

index, humidity, 

disintegration  

Supplier change 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

Disintegration test 

4 3 2 24 

Binder 
Changes in binder particle 

size, shape, disintegration 

speed 

Variations of granule 

size, polydispersity 

index, humidity, 

disintegration 

Supplier change 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

Disintegration test 

4 2 2 16 

Mixing / 

preheating time / 

temperature 

Homogeneity issues  

Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 4 3 48 

Binder spray rate 
Inhomogeneous moistening 

of the powder blend  

Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

5 4 3 60 

Atomising 

pressure 

Inhomogeneous moistening 

of the powder blend  

Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

5 4 3 60 

Inlet air 

temperature 
Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 4 3 48 

Drying 

time/temperature 
Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 4 3 48 

Inlet air flow rate Variations in the drying rate 

Variations of granule 

size, polydispersity 

index, humidity 

Human errors 

Equipment failure 

Granule size, distribution and 

moisture content  measurements, NIR 

spectra 

4 4 1 16 

Abbreviations: CPP – critical process parameter, CMC – critical material characteristic, O – occurrence, S – severity, D – detectability, RPN – risk priority number 
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Table 3. Variables of the experimental design 

Quantitative independent variables 
Levels of 

variation 
Range of variation 

Binder spraying rate (g/min) 3 5 - 12.5 - 20 

Atomizing pressure (atm) 2 0.5 - 0.75 

Qualitative independent variables  Sort of ingredient 

Paracetamol 3 Par A Par B Par C 

Ibuprofen 3 Ibu A Ibu B Ibu C 

Microcrystalline cellulose 2 MCC A MCC B 
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Table 4. CQAs and results of the optimal granulation process 

Qualitative independent variables Pre-set ingredient sort 

Paracetamol Par C 

Ibuprofen Ibu C 

Microcrystalline cellulose MCC B 

Dependent variables (responses) 
CQAs 

Minimum Target Maximum 

LOD (%) – 1/3 binder spraying 5.5 - 8.5 

LOD (%) – 2/3 binder spraying 10.2 - 15.0 

LOD (%) –  end of binder 

spraying 
13.3 - 19.9 

LOD (%) – 1/3 drying 9.0 - 14.5 

LOD (%) –  2/3 drying 4.5 - 9.0 

LOD (%) – end of drying 2.0 3.0 4.0 

Average granule size (µm) 280 300 320 

Non-granulated fraction (%) minimisation 
 

Dependent variables (responses) 
Values 

DoE NIR Experimental 

 Predicted 
Recovered 

(%) 
Predicted 

Recovered 

(%) 
 

LOD (%) – 1/3 binder spraying 6.75 90.0 8.0 106.6 7.5 

LOD (%) – 2/3 binder spraying 12.1 88.9 14.2 104.4 13.6 

LOD (%) –  end of binder 

spraying 
15.4 97.5 15.7 99.4 15.8 

LOD (%) – 1/3 drying 10.7 98.2 11.1 101.8 10.9 

LOD (%) –  2/3 drying 6.5 98.5 6.5 98.5 6.6 

LOD (%) – end of drying 2.0 80.0 2.5 100 2.5 

Average granule size (µm) 306 101.3 - 302 

Non-granulated fraction (%) 4.5 104.6 - 4.3 

Abbreviations: LOD – loss on drying; CQA – critical quality attributes; DoE – design of 

experiments; NIR – near-infrared 
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