
pharmaceutics

Article

Enhanced Loading Efficiency and Mucoadhesion
Properties of Gellan Gum Thin Films by
Complexation with Hydroxypropyl-β-Cyclodextrin

Alessandra Adrover 1,* , Laura di Muzio 2, Jordan Trilli 2, Chiara Brandelli 2,
Patrizia Paolicelli 2,* , Stefania Petralito 2 and Maria Antonietta Casadei 2

1 Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Universitá di Roma, Via Eudossiana 18,
00184 Rome, Italy

2 Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5,
00185 Rome, Italy; laura.dimuzio@uniroma1.it (L.d.M.); jordan.trilli@uniroma1.it (J.T.);
chiara.brandelli@uniroma1.it (C.B.); stefania.petralito@uniroma1.it (S.P.);
mariaantonietta.casadei@uniroma1.it (M.A.C.)

* Correspondence: alessandra.adrover@uniroma1.it (A.A.); patrizia.paolicelli@uniroma1.it (P.P.)

Received: 26 July 2020; Accepted: 25 August 2020; Published: 28 August 2020
����������
�������

Abstract: Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan
gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films
were investigated as potential systems for buccal drug delivery using fluconazole (Class I of
the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly
drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration
of mucoadhesive and mechanical properties was observed. One possible way to overcome all
these problems could be the addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) to the GG-Gly
formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on
the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated.
In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II)
and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics
and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-β-CD,
fluconazole and complex fluconazole/HP-β-CD in the swelling film. Experimental results, supported
by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-β-CD
represent a suitable formulation for fluconazole drug delivery. A sustained release was observed
when GG-Gly film is loaded with a preformed complex fluconazole/HP-β-CD.

Keywords: thin films; drug delivery; gellan gum; cyclodextrins; USP II; millifluidic flow-through
device; mathematical modeling

1. Introduction

The oral dosage form for GI-tract delivery represents the preferred way for drug administration
as it is the most convenient, practical and easily accessible way for the assumption of biological active
agents. However, some unfavorable conditions, such as degradation through the gastrointestinal tract
or first-pass metabolism, can decrease the bioavailability of therapeutic molecules administered by
this route [1,2]. For this reason, over the last years, research in the pharmaceutical technology field has
been looking for effective and well-accepted alternatives to the oral route.

The oral mucosa has been identified as an interesting option for the administration of bioactive
molecules [3]. It is easily accessible and offers ease of application of pharmaceutical dosage forms,
but also their prompt removal in case of need [4]. Furthermore, oral mucosa presents a relatively low
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enzyme activity, thus enabling the preservation of labile drugs from degradation and it can be used
to obtain both local and systemic therapeutic effects. In the latter case, a therapeutic molecule can
directly access the systemic circulation through the internal jugular vein, avoiding first-pass hepatic
metabolism, and therefore reaching high plasma concentrations [4]. All these advantages stimulated
the design of innovative buccal dosage forms such as oral thin films (OTFs) that attracted increasing
attention and attained a preeminent position over other formulations.

OTFs are polymeric films with reduced thickness and an area of 5–20 cm2, which can be applied
directly on the oral mucosa [5–7]. OTFs can be formulated as fast-acting or prolonged drug delivery
systems and can be used to treat a wide range of diseases and disorders, both local, such as candidiasis
and gingivitis, and systemic, such as migraine, schizophrenia, pain, nausea and vomiting [6]. OTFs can
also be used for the effective treatment of oral mucosal lesions as they combine drug delivery capability
and mechanical protection to the surface of the wound. The double effect produced by polymeric films
contributes to a better outcome in pain relief [8]. The extreme ease of application and removal of OTFs
makes them also a valid and convenient alternative to conventional oral dosage forms particularly
for pediatric or geriatric patients with swallowing problems or for patients with gastroesophageal
disorders, for which the assumption of conventional drug formulations may cause worsening of
symptoms of the disease [9].

Despite their potential, there is still the need for extensive studies to optimize the performance
of thin films accurately. Major limitations of OTFs are low drug loading capacity, non-uniform drug
distribution and precipitation. For these reasons, the phases of formulation, development and
manufacturing of polymeric thin films are particularly challenging [10–12]. In order to expand the
capabilities of OTFs, scientists are exploring novel techniques and formulation approaches to increase
their loading efficiency. In this scenario, we have recently investigated the effect of glycerol, employed
as a plasticizer, on the characteristics of OTFs made of gellan gum loaded with fluconazole [13]. Indeed,
we chose fluconazole as a model drug to show that drug precipitation can occur in OTFs even for
highly water soluble molecules (Class I of the Biopharmaceutical Classification System). We observed
that only high concentrations of glycerol (6% w/v) were capable to avoid drug precipitation during the
preparation and the subsequent storage of the film. However, high concentrations of the plasticizer
significantly worsened mechanical and mucoadhesive properties of the film.

We proposed, as an alternative, the addition to the formulation of hydroxypropyl-β-cyclodextrin
(HP-β-CD) to avoid fluconazole precipitation. Cyclodextrins are classified as GRAS (Generally
Recognized as Safe) expicipients by the U.S. Food and Drug Administration and those with high
water solubility, such as HP-β-CD, have been proposed as effective precipitation inhibitors [14,15]
and frequently used to improve solubility and bioavailability of drugs [15]. Despite the fact
that cyclodextrins have been widely applied for drug delivery from OTFs [16], hydrogels [17,18],
nanofibers [19], vesicles [20], only few reports have investigated the feasibility of enhancing loading
efficiency of drugs in OTFs using this functional excipient. Therefore, the analysis of how cyclodextrin
affects the mechanical, mucoadhesive, swelling and release properties of the OTF formulations was
deepened in this work. All these features were investigated considering that an ideal film should be
soft, elastic, flexible and resistant in order to withstand without breakage all the mechanical stresses
produced during manufacturing, storage and application [11,21]. Moreover, it should be retained in the
mouth with adequate bioadhesive strength to produce the desired pharmacological effect, but avoiding
too extensive swelling of the film in order to prevent patient discomfort.

The produced OTF formulations were characterized for their drug release profiles, which were
obtained by employing two different types of apparatus for in-vitro release studies, namely the official
paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD) [22].
The MFTD has been designed to mimic mouth physiological conditions, i.e., a low hold-up volume
(order of 1 mL) and laminar tangential solvent flow rates comparable with salivary flow rates,
Q = 2–4 mL/min.
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A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate
the effective diffusivity of solvent, HP-β-CD and fluconazole (free and complexed form) in the swelling
film. The estimate of all these diffusivities led us to a clear interpretation of release data in MFTD
and to a quantification of the amounts of fluconazole (free form) and complex fluconazole/HP-β-CD
actually present in the dry film.

Experimental results, supported by theoretical modeling, confirmed that gellan gum-low
glycerol thin films including HP-β-CD represent a suitable formulation for fluconazole drug delivery.
A sustained release was obtained when the film is loaded with a preformed complex
fluconazole/HP-β-CD.

2. Materials and Methods

2.1. Materials

All the used reagents were of analytical purity grade. Gellan gum (GG, GelzanTM CM, CP
Kelco U.S., Inc., Atlanta, GA, USA), fluconazole, glycerol (Gly), ethanol, mucin type III from porcine
stomach were purchased from Sigma Aldrich. Methanol, glacial acetic acid, distilled water, potassium
di-hydrogen phosphate, di-sodium hydrogen phosphate, sodium chloride and hydrochloric acid were
purchased from Carlo Erba. Parenteral grade hydroxypropyl-β-cyclodextrin (HP-β-CD, Kleptose®)
was provided by Roquette Italia S.P.A (Cassano Spinola AL, Italy). Simulated salivary fluid (pH 6.7)
consisted of 16.8 mM NaHPO4, 1.4 mM KH2PO4 and 136.9 mM NaCl.

2.2. Film Production

Films with different GG:Gly weight ratios (from 1:0.25 to 1:3 w/w) were prepared using the
solvent casting technique. Gellan gum (GG, 120 mg) and different amounts of glycerol (Gly, 30, 60,
120, 180, 300 and 360 mg) were solubilized in 6 mL of distilled water (Gly 0.5, 1, 2, 3, 5, 6 % w/v)
and maintained at the temperature of 60.0 ± 0.5 ◦C for 5 h under magnetic stirring and for further
30 min without shaking, in order to eliminate air bubbles formed during the solubilization process.
At the end of the solubilization process, the polymeric solutions were poured into an inert silicone
tray mold (5.6 cm diameter), leveled and oven-dried at 40.0 ± 2 ◦C for 15 h. Medicated films were
obtained by adding fluconazole (17 mg, 14% w/w with respect to GG) to the polymeric mixture; films
containing cyclodextrin were prepared adding HP-β-CD (78 mg) to the initial polymeric mixture.
Further OTF samples were obtained by adding the preformed Flu/HP-β-CD inclusion complex (98 mg,
see Section 2.4) to the GG-Gly 2% mixture.

2.3. Phase Solubility Studies of Fluconazole with Hydroxypropyl-β-Cyclodextrin (HP-β-CD)

Phase solubility studies were carried out according to the method reported by Higuchi and
Connors [23]. Excess amounts of fluconazole were added to 10 mL of distilled water containing
increasing concentrations of HP-β-CD, specifically 0.071, 1.43, 2.14, 2.86, 5.72 and 9.23 mM of
cyclodextrin. The resulting dispersions were maintained under magnetic stirring at 37.0 ± 0.1 ◦C for
72 h. After this time, the suspensions were left to settle, then 1 mL of supernatant was taken and
appropriately diluted with distilled water (1:10), taking care to not alter temperature. Fluconazole
concentration was determined by measuring the UV absorption at 260 nm and 37.0 ± 0.1 ◦C with
a Perkin Elmer Lambda 40 UV-Vis spectrophotometer. Calibration curve for fluconazole reference
standard was obtained by measuring the UV absorption (λ = 260 nm) in an ethanol/water 50:50
(v/v) solution at 37.0 ± 0.1 ◦C. The linearity of the calibration curve was confirmed in the range
0.066–1.32 mg/mL with a regression coefficient (R2) value of 0.995 [24–26].

2.4. Preparation of Drug-Cyclodextrin Inclusion Complex

The inclusion complex between fluconazole and HP-β-CD was prepared with 1:1 molar ratio
by the kneading method [27]. Equimolar amounts of the two components were ground in a mortar
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until a homogeneous mixture was obtained. Then, the mixture was thoroughly kneaded for further
30 min with 0.5 mL of an ethanol/water 50:50 (v/v) solution to obtain a paste, which was subsequently
oven-dried for 24 h at 70 ◦C. The dried inclusion complex was then reduced to powder and stored in a
sealed container at room temperature until its use for film preparation.

2.5. Mechanical and Mucoadhesion Properties of Films

Mechanical properties of the produced thin films were investigated using a traction machine to
evaluate elastic modulus, stress and strain at break. Traction studies were carried out with the
ZWICK-ROELL-Z010 instrument (Zwick GmbH & Co., Ulm, Germany) loaded with 1 kN and
setting a deformation speed of 1 mm/min. For each film, ten standard-sized samples of rectangular
sections were prepared and each sample was fixed to the two machine clamps in a vertical position.
The measurements were conducted in three different directions (0◦, 45◦ and 90◦) to verify the isotropy
of the films. Each analysis was conducted in triplicate and the results were reported as mean
values ± standard deviation. The mucoadhesion properties of the films were evaluated in-vitro
measuring the force required for detaching the films from a mucin tablet. The method, based on a
water counterweight system, has already been described in our previous study [13].

2.6. Fluconazole Content Uniformity

To determine the drug content uniformity, films were cut into square pieces (2 × 2 cm).
Each sample was extracted exhaustively with 10 mL of simulated saliva at a temperature of 37 ◦C.
The quantity of fluconazole was determined by HPLC analysis with a Perkin Elmer system (Waltham,
MA, USA) consisting of a Series 200 LC pump, a 235 Diode Array Detector, a Total Chrom data
processor and an RP-18 column (250–4.5 µm) Merck Hibar LiChrocart, monitoring the drug at
λ = 260 nm. The analyses were carried out under isocratic conditions, using as mobile phase a mixture
methanol/bidistilled water/acetic acid 50:48:2 in volume, with a flow rate of 0.7 mL/min. The linearity
of the calibration curve was confirmed in the range 10–500 µg/mL with a regression coefficient (R2)
value of 0.998. The analyses were repeated on 6 different samples of each OTF and the results were
reported as mean values ± standard deviation.

2.7. Swelling Tests

To evaluate the swelling behavior, OTFs were cut into square pieces (2 cm × 2 cm), weighted
and immersed in simulated salivary fluid at 37.0 ± 0.1 ◦C. At regular time intervals, wet films were
drained to remove excess water and weighed. The solvent-uptake capacity (Q) was evaluated as

Q(t) = (W(t)−W0)/W0 (1)

where W0 is the weight of the dry film and W(t) the weight of the swelling film at time t. Each test
was repeated in triplicate and the results were reported as mean values ± standard deviation.

2.8. In-Vitro Release Studies with Paddle Type Dissolution Apparatus (Usp II)

The release studies were performed in a USP rotating paddle dissolution apparatus (USP II Sotax
Smart AT7 Dissolution Tester) at 37 ◦C and 50 rpm. OTFs were kept floating in the bottom of the
vessel (hold in place by an inert lead retina) filled with 500 mL of preheated simulated saliva (pH 6.7).
Aliquots (2 mL) of the release medium were withdrawn at fixed time intervals and replaced with equal
volumes of fresh simulated saliva. Tests were repeated in triplicate.

2.9. In-Vitro Release Studies with the Millifluidic Flow-Through Device (MFTD)

Drug release studies from OTFs were also performed using a continuous millifluidic flow-through
device [16,22,28,29], henceforth referred to with the acronym MFTD. The MFTD has been designed to
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mimic mouth physiological conditions because of the low hold-up volume (less than 1 mL), the laminar
tangential solvent flow and flow rates comparable to salivary flow rates.

A schematic representation of the millifluidic flow-through device is shown in Figure 1.

solvent flowing
in laminar condition

Plexiglass wall

Plexiglass wall

inlet outlet

Thin film of swelling polymer

Z

X

Figure 1. Schematic representation of the flow-through cell.

In the MFTD, thin film strip was placed on the bottom plate of a dissolution cell with dimensions
2 × 9 × 30 mm. These dimensions of the dissolution cell were chosen to assure a laminar regular
flow through the device also after complete film swelling. The surface area of the OTF exposed to
the solvent tangential laminar flow was 9 × 30 mm. Only one side of the film was exposed to the
tangential solvent flow. As soon as wetted, strips adhered firmly to the plate, and there was no need to
make use of a double-sided tape, thus avoiding unpredictable and ruinous detachments or floating
problems often encountered with other existing devices (USP I, USP II).

The dissolution medium (simulated saliva) was kept in a reservoir at 37 ± 1 ◦C and circulated
through the dissolution cell in open loop by means of a volumetric pump. Flow rates investigated in
this work were in the range Q ∈ [1–5] mL/min, comparable with salivary flow rates Q = 2–4 mL/min
and corresponding to laminar flow conditions with Reynolds numbers Re = ρ < v > de/µ ∈ [1–20],
de being the hydraulic radius de = 4 × cross section area/wetted perimeter = 3.27 mm.

In order to quantify the amount of drug released from the swelling film, the solution coming out
the cell was sent to the UV/Vis spectrophotometer (UV-2401 PC, Shimadzu Corporation, Kyoto, Japan,
continuous flow cell, optical path 1 mm). Drug concentration values cs(t) mg/mL were recorded every
2–4 s. The amount of drug released was calculated with a calibration curve. Calibration curve for
fluconazole reference standard (RS) was obtained by measuring the UV absorption (λ = 260 nm) in
simulated saliva. The linearity of the calibration curves was confirmed in the range 1–300 µg/mL with
a regression coefficient (R2) value of 0.997. Limits of detection and quantification were 0.2 µg/mL.
Tests were repeated in triplicate.

The differential F(t) and integral M(t) release curves were computed from the experimental
concentration data cs(t) by evaluating

F(t) = Q cs(t) , Mt =
∫ t

0
Qcs(t′)dt′ =

∫ t

0
F(t′)dt′ (2)

where t f is a final time for the experimental test. The final time t f , sufficiently long to ensure the
complete drug release, was changed according to the flow rate Q. Specifically, longer time intervals
were chosen for smaller flow rates Q.

3. Transport Models

In this section we present the mathematical models adopted for the analysis of experimental
data of swelling tests and drug release in the USP II apparatus from which we evaluated the solvent
diffusivity Ds, the fluconazole diffusivity DF and the HP-β-CD diffusivity DCD in the swelling films.
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3.1. Swelling Modeling of Thin Films

Swelling of thin films can be modeled as a one-dimensional moving-boundary problem along the
z direction, orthogonal to the x–y plane representing the flat surface of the OTF. When only the solvent
and the polymer are involved in the swelling process, the pointwise swelling velocity vs(z) is assumed
equal (and opposite in sign) to the volumetric solvent flux [29–33]

vsw(z) = Ds
∂φs

∂z
(3)

where φs is the solvent volume fraction and Ds the solvent effective diffusivity in the swelling film.
For thin films under investigation, this well established approach must be modified in order to

account for the presence of glycerol and cyclodextrin (when present). While solvent is penetrating
the film, glycerol and cyclodextrins are simultaneously released by the swelling film and therefore
contribute to the pointwise swelling velocity that can be rewritten as

vsw(z) = Ds
∂φs

∂z
+ DG

∂φG
∂z

+ DCD
∂φCD

∂z
(4)

where φG and φCD are the glycerol and cyclodextrin volume fractions, DG and DCD the corresponding
effective diffusivities in the swelling film.

The advection–diffusion transport equations for solvent, glycerol and cyclodextrin read as

∂φs

∂t
= −∂Js

∂z
= − ∂

∂z

(
−Ds

∂φs

∂z
+ vsw φs

)
(5)

∂φG
∂t

= −∂JG
∂z

= − ∂

∂z

(
−DG

∂φG
∂z

+ vsw φG

)
R(t) < z < S(t), t > 0 (6)

∂φCD
∂t

= −∂JCD
∂z

= − ∂

∂z

(
−DCD

∂φCD
∂z

+ vsw φCD

)
(7)

where S(t) and R(t) are the positions of the erosion front (gel–solvent interface) and of the swelling
front (glassy–rubbery interface), both evolving in time.

On the gel-solvent interface z = S(t), solvent/polymer thermodynamic equilibrium φs = φeq is
assumed for the solvent, consistent with the perfect sink boundary conditions φG = φCD = 0 adopted
for glycerol and cyclodextrins. The temporal evolution of S(t) is described by the Stefan condition [31]

φs = φeq, φG = 0, φCD = 0,
dS
dt

= vsw|S(t) at z = S(t). (8)

On the glassy-rubbery front R(t), a threshold concentration to initiate swelling φs = φglass > φ0
s is

assumed for the solvent [34], while for glycerol and cyclodextrin the Stefan conditions apply

φs = φglass (9)

(φG − φ0
G)

dR
dt

= JG at z = R(t) (10)

(φCD − φ0
CD)

dR
dt

= JCD (11)

where φ0
s , φ0

G and φ0
CD are the initial volume fractions of solvent, glycerol and cyclodextrin in the dry

film. Correspondingly, the temporal evolution of R(t) reads as

(
(φs − φglass) + (φG − φ0

G) + (φCD − φ0
CD)

) dR
dt

= Js + JG + JCD at z = R(t) (12)
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When R(t) reaches z = 0, the glassy phase disappears and the zero-flux boundary condition
applies to all the components

∂φs

∂z
=

∂φG
∂z

=
∂φCD

∂z
= 0 =⇒ Js = JG = JCD = 0 at z = 0. (13)

The zero-flux boundary condition at z = 0, Equation (13), represents a symmetry boundary
condition when both film surfaces are exposed to the solvent like in a swelling test or in a release
experiment in USP apparatuses. In these two cases, the initial conditions for the two moving fronts
are R(0) = S(0) = L0/2 , L0 being the half-thickness of the dry film. Equation (13) represents an
impermeability condition when film swelling occurs in the millifluidic device. Indeed, the thin film
adheres firmly on the bottom wall of the device and no solvent permeation is allowed. Consequently,
in the MFTD, the initial conditions for the two moving fronts are R(0) = S(0) = L0.

The diffusivity of glycerol in simulated saliva has been estimated from the correlation proposed
by D’Errico et al. [35] for the diffusivity of Gly in water at 25 ◦C

DGly [m2/s] =
1.024− 0.91xGly

1 + 7.5xGly
× 10−9 (14)

where xGly is the glycerol molar fraction, approximated as

xGly =
φGlyρ̃Gly

φGlyρ̃Gly + φsρ̃s
(15)

due to the very low values of the molar densities [moL/cm3] of gellan gum and HP-β-CD with respect
to that of glycerol ρ̃Gly and solvent (water) ρ̃s.

3.2. Drug Release Modeling in the Usp II Apparatus

The fluconazole release process from the OTFs in the USP II apparatus can be simply modeled by
a one dimensional advection-diffusion equation describing drug transport in the swelling film along
the preferential swelling direction z (orthogonal to the flat surface of the thin film)

∂cF
∂t

= −∂JF
∂z

= − ∂

∂z

(
−DF

∂cF
∂z

+ vsw cF

)
, R(t) < z < S(t). (16)

where cF(z, t) is the fluconazole concentration and DF the effective diffusivity of fluconazole in
the swelling film. Equation (16) must be solved simultaneously with the equations describing the
swelling-erosion dynamics (presented in Section 3.1) because they furnish, at each time instant, all the
necessary information regarding the pointwise swelling velocity vsw and the position of the gel-solvent
S(t) and the glassy-rubbery R(t) interfaces (moving boundaries).

The boundary condition for the fluconazole concentration cF at the glassy-rubbery interface
z = R(t) is the Stefan condition

(cF − c0
F f )

dR(t)
dt

= JF at z = R(t) (17)

where c0
F f is the fluconazole concentration in its free form (not complexed), supposed uniform in the

dry film. Moreover, a perfect sink condition cF = 0 is assumed at z = S(t), supported by the large
volume of solvent solution (500 mL) and the good mixing induced by paddle rotation.

The total amount of drug Mt, released up to time t, is evaluated as

Mt = A
∫ t

0
DF

∂cF
∂z

∣∣∣
S(t′),t′

dt′ = A
(

c0
F f L0 − 2

∫ S(t)

R(t)
cF(z′, t)dz′

)
(18)
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A and L0 being the thin dry film surface area and initial thickness, respectively.
In the case when the fluconazole is included in the film as the complex Flu/HP-β-CD, we assume

that a small amount of fluconazole AL0c0
F f is initially present in the film in its free form, while a larger

amount AL0c0
Fc is present as a complex Flu/HP-β-CD. The fluconazole in its free form is released

according to the model equations Equations (16) and (17), with initial concentration c0
F f = εc0

F and
diffusivity DF. The parameter ε < 1 represents the partition coefficient between the free and the
complexed forms. The larger amount of fluconazole AL0c0

Fc = AL0(1− ε)c0
F is released as a complex

and therefore its release kinetics is controlled by the same transport equation and the same diffusivity
DFc = DCD adopted for cyclodextrin in the swelling film, presented in Section 3.1.

In this case, the total amount of drug released up to time t must be evaluated as

Mt = A
∫ t

0
DF

∂cF
∂z

∣∣∣
S(t′),t′

dt′ + A ρCD(1− ε)
MWF

MWCD

∫ t

0
DCD

∂φCD
∂z

∣∣∣
S(t′),t′

dt′ (19)

where ρCD ' 1.41 g/cm3 is the density of HP-β-CD, MWF = 306.27 g/mol and MWCD = 1541.5 g/mol
are the molecular weights of Flu and HP-β-CD, respectively.

4. Results and Discussion

4.1. Rheological, Mechanical and Mucus-Adhesion Properties

OTFs were produced by the solvent casting technique. This technique requires the initial
deposition and successive spreading of the polymeric solution on a solid support. As a consequence,
the viscosity of the starting polymeric solution strongly influences the quality and properties of the
final product.

Rheological properties of GG-Gly films were already investigated in our previous study [13]
and briefly reviewed here. To avoid casting defects within the dried products, 2% w/v gellan gum
was selected as the optimal polymer concentration for the film preparation, as it could be freely and
homogeneously spread and leveled in the silicone tray molds. However, after drying, GG solutions at
2% w/v formed very brittle films, difficult to remove from the silicone molds. For this reason, different
amounts of glycerol, ranging from 0.5% to 6% w/v, were added to 2% w/v GG solutions. It was
observed that, irrespective of the amount of plasticizer used, all the investigated GG-Gly mixtures
showed almost the same flow curves as the pure GG 2% w/v solution, i.e., a viscosity ranging from
1 to 0.1 Pa·s in the range of shear stresses [10−2 ÷ 103] s−1. The effect of the plasticizer on the gelation
process of the polymer was also studied. It was observed that the gelation temperature slightly shifted
from 50 to 52 ◦C when glycerol was added to GG solutions, from 0.5% to 6% w/v.

In the present study, the influence of the addition of HP-β-CD to the GG-Gly mixture and on
the resulting thin films was addressed in detail. No significant differences were observed on the
viscosity as well as on the gelation temperature when 1.3 % w/v of HP-β-CD was added to the GG-Gly
mixture. Film thickness resulted in a monotonically increasing function of the glycerol content, with an
increase of about 20% when HP-β-CD are included, as shown in Figure 2, where data from the previous
experimental campaign on GG-Gly films without cyclodextrins [13] are reported together with new
data for GG-Gly films including HP-β-CD.

Films were also subjected to tensile tests, in order to evaluate the influence of HP-β-CD on
mechanical properties [36], i.e., elastic modulus, stress and deformation at break, shown in Figure 3A–C
for increasing values of % Gly. Indeed, Figure 3A–C report data from the previous experimental
campaign on GG-Gly films without cyclodextrins [13] together with new data for GG-Gly films
including HP-β-CD.

Experimental results show that the addition of 1.3% w/v of HP-β-CD in the formulation slightly
influences the mechanical properties, in terms of a small decrease in the stress (less than 10% for 3%
Gly films) and deformation at break (less than 25% for 3% Gly films). This can be due to the formation
of interactions, such as hydrogen bonds, between the cyclodextrin and the gellan gum that reduce
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the mobility of the polymer chains, causing an increase in the elastic modulus and a decrease in the
capacity of deformation, thus leading to the formation of a more rigid and less resistant material.
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Figure 2. Film thickness for increasing amounts of glycerol, % Gly (w/v), with and without
hydroxypropyl-β-cyclodextrin (HP-β-CD).
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Figure 3. Elastic modulus (A), deformation (B) and stress (C) at break of films for increasing amounts
of glycerol, % Gly (w/v), with and without HP-β-CD.

The histograms in Figure 3A–C also show data for film without HP-β-CD and higher Gly content,
namely Gly 5% w/v and Gly 6% w/v. This is to show that films with 2%Gly and 3%Gly including
HP-β-CD exhibit mechanical properties slightly better than that of 6%Gly film, especially for the
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deformation at break, for example, greater than 45 % for 3% Gly+HP-β-CD with respect to that for
6% Gly.

The presence of HP-β-CD has a very relevant influence on the mucoadhesion properties of the gel.
A film suitable for buccal drug administration has to remain at the application site for a time long
enough to perform the therapeutic effect, so that the mucus adhesiveness of the formulation is a
fundamental property for this type of formulation. The average values of the mucoadhesion strength
were obtained by measuring the force necessary to detach the film from a mucin tablet and shown in
Table 1.

Table 1. Mucoadhesion strength (N).

Film GG-1%Gly GG-2%Gly GG-2% Gly-HP-β-CD GG-6%Gly

Strength (N) 0.5782 ± 0.0014 0.1274 ± 0.0016 0.6762 ± 0.0012 0.0052 ± 0.0014

Mucoadhesion is due to the formation of hydrogen bonds between the carboxyl of glucuronic
acid and the hydroxyl groups of the gellan gum and the appropriate H-group donor/acceptor groups
of the mucin [37]. The mucoadhesion decreases progressively as the amount of plasticizer increases.
Considering the formation of hydrogen bonds as the most relevant adhesion mechanism, the decrease
in mucoadhesion strength as the plasticizer concentration increases is probably due to the onset of weak
interactions between glycerol and gellan gum, which causes a progressive decrease in the interactions
between gellan gum and mucin, with consequent loss of mucoadhesive strength. In the formulations
containing cyclodextrin, a net increase of the mucoadhesive strength is observed with respect to the
film with the same glycerol concentration. It is likely that cyclodextrin, having free hydrophilic groups
in its external structure, is able to establish hydrogen bonds with mucin, increasing the mucoadhesive
characteristics of the formulation.

4.2. Fluconazole Content Uniformity

The fluconazole content uniformity has been investigated for GG-2%Gly films including HP-β-CD
and for GG-6%Gly films without HP-β-CD, i.e., for two formulations for which no drug precipitation
occurs. Experimental results are 0.482± 0.005 mg/cm2 for GG-6%Gly film and 0.488± 0.024 mg/cm2

for GG-2%Gly films including HP-β-CD. The drug content uniformity is quite satisfactory as well as
the loading capacity for both formulations.

4.3. Analysis of Phase Solubility of Fluconazole with HP-β-CD

Figure 4 shows the phase solubility plot, i.e., fluconazole concentration at saturation cF [mol/L]
vs. cyclodextrin concentration cCD [mol/L]. The system exhibits an AL type solubility curve [23]
characterized by the linear behavior.

cF = α + β cCD , α = 0.02821± 0.0001841 [mol/L] , β = 0.5911± 0.04201 [ad] (20)

with a slope β lower than unity. This indicates the formation of a 1:1 complex fluconazole/HP-β-CD.
Indeed, the cyclodextrin cavity has selectivity for the two triazole rings and for the di-fluoro-phenyl
ring, while the three sp3 hybridized carbon atoms that connect the triazole groups guarantee good
flexibility to the molecule [38]. According to this hypothesis, a complexation equilibrium constant K1:1

K1:1 =
β

α(1− β)
= 51.237 [(mol/L)−1] (21)

has been estimated as in Brewster and Loftsson [39].
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Figure 4. Phase solubility diagram of fluconazole with HP-β-CD in distilled water at T = 37 ◦C.

4.4. Analysis of Swelling Tests

Figure 5A shows the results of dynamic swelling tests in simulated saliva (pH 6.7) for films with
and without HP-β-CD. The arrow indicates increasing content of Gly in the film. In agreement with
what was already observed in our previous work [13], the equilibrium value Qeq = Q(∞) is reached
within 20 min and decreases for increasing amount of Gly. A further decrease of Qeq is observed when
HP-β-CD is included in the formulation. However, it should be taken into account that both Gly
and HP-β-CD can diffuse out from the film, towards the swelling medium, during the course of the
swelling process.

Since no degradation or erosion occurred, one can assume that, when the swelling equilibrium
is reached, the swollen film is composed exclusively by solvent (absorbed plus that initially present in
the dry film) and polymer. Starting from this assumption, the film weight at equilibrium Weq = W(∞)

can be expressed as
Weq

W0
= 1 + Qeq =

Was(∞) + W0
s + WGG

W0
(22)

where Was(∞) is the weight of the absorbed solvent at equilibrium, W0
s and WGG are the amounts of

solvent and gellan gum in the dry film. Since no erosion occurs, WGG is constant during the swelling
process. Equation (22) can be further rearranged to obtain the following expression for the amount of
absorbed solvent Was(∞) at equilibrium, rescaled onto the polymer weight WGG

Was(∞)

WGG
= (Qeq + 1− α)

(
W0

WGG

)
− 1 = (Qeq + 1− α)

(1 + β+ γ)

(1− α)
− 1 (23)

α =
W0

s
W0

= 0.12, β =
W0

Gly

WGG
∈ [0.25÷ 3], γ =

W0
CD

WGG
= 0.65 (24)

where W0
Gly and W0

CD are the amounts of Gly and HP-β-CD in the dry film, respectively. The value
of α = 0.12± 0.02 has been estimated from thermogravimetric curves as reported in our previous
study [13] and is almost independent of the amount of Gly in the formulation. The parameter β

is the weight ratio Gly:GG ranging from 0.25:1 to 3:1 (w/w). The parameter γ is the weight ratio
HP-β-CD:GG, equal to 78:120 (w/w) when HP-β-CD is included in the formulation.

Points in Figure 5B show experimental data for Was(∞)/WGG, evaluated from Equation (23) for
OTFs with and without HP-β-CD. The arrow indicates increasing content of Gly, i.e., increasing values
of β. It can be observed that the amount of absorbed solvent increases for increasing values of β and a
further increase is observed when HP-β-CD is included in the formulation.
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Figure 5. Dynamic swelling data in simulated saliva (pH = 6.7) at T = 37 ◦C for GG-Gly films with
and without HP-β-CD. Continuous lines represent model predictions. The corresponding diffusivity
values Ds and DCD are reported in Table 2. (A) Q(t) = (W(t)−W0)/W0 vs. t; (B) rescaled amount of
absorbed water as a function of time. Points represent the asymptotic experimental values evaluated
from Equation (23).

A higher capability of absorbing solvent corresponds to a higher solvent diffusivity Ds in
the swelling film. This can be assessed through the application of the swelling model described
in Section 3.1. Indeed, the simple visual inspection of the rate of growth of the solvent uptake Q(t)
could be misleading, being it related not only to Ds but also to the initial film thickness L0 (different
for different OTF compositions) and to release rates of Gly and HP-β-CD (if present).

The swelling model for GG-Gly films not including HP-β-CD requires the estimate of three
parameters, i.e., equilibrium solvent volume fraction φeq, the glassy-rubbery transition solvent volume
fraction φglassy and the effective solvent diffusivity Ds. For films including HP-β-CD, the model also
requires the estimate of the HP-β-CD effective diffusivity DCD.

The equilibrium solvent volume fraction φeq can be directly estimated from the experimental
asymptotic values of Qeq. Indeed, by assuming that the fully swollen film is exclusively made by
solvent and polymer, the film volume Veq and weight Weq at equilibrium can be expressed as

Veq =
WGG

ρGG (1− φeq)
(25)
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Weq = W0(1 + Qeq) = W0(ρsφeqVeq + WGG) (26)

By replacing Equation (25) into Equation (26), one arrives to the following expression for φeq

φeq =
1

1 + δ
, δ =

ρGG
ρs

(
(1 + Qeq)

( W0

WGG

)
− 1
)
=

ρGG
ρs

(
(1 + Qeq)

(1 + β+ γ)

(1− α)
− 1
)

(27)

where ρs = 0.998 g/cm3 and ρGG = 0.55 g/cm3 are the densities of solvent and gellan gum, respectively.
The resulting value of φeq, evaluated from Equation (27) and from the experimental values of Qeq,
is φeq = 0.85± 0.02 for films with and without HP-β-CD and is independent of the amount of Gly,
thus confirming the basic assumptions.

The glassy-rubbery transition solvent volume fraction φglassy has been set to φglassy = 0.3
significantly larger than φ0 ∈ [0.07÷ 0.1] for all the different formulations. Moreover, model results
exhibit very low sensitivity to φglassy because this parameter mainly controls the time required for the
disappearance of the glassy phase, a phenomenon that is very fast (less than one minute) if compared
to the time scale (20 min) for complete swelling.

Continuous lines in Figure 5A show model results for Q(t) in excellent agreement with
experimental data (points). Continuous lines in Figure 5B show model results for the temporal
evolution of the amount of absorbed solvent Was(t)/WGG in agreement with asymptotic experimental
data (points) evaluated from Equation (23).

The values of solvent diffusivities Ds adopted in the swelling model are reported in Table 2 and
plotted in Figure 6 as a function of the glycerol volume fraction φ0

Gly in the dry film.

Table 2. Solvent diffusivity Ds × 1010 [m2/s] and HP-β-CD diffusivity DCD × 1010 [m2/s] in oral thin
films (OTFs) with and without HP-β-CD.

0.5% Gly 2%Gly 2%Gly-HP-β-CD 3%GLy 3%Gly-HP-β-CD 6%Gly

Ds 1.35 ± 0.05 3.3 ± 0.5 3.4 ± 0.2 5.2 ± 0.5 5.3 ± 0.4 11.5 ± 0.8

DCD - - 0.45 ± 0.06 - 0.69 ± 0.05 -

DF - 0.92 ± 0.08 3.02 ± 0.25
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Figure 6. Log-normal plot of solvent diffusivity Ds × 1010 [m2/s], HP-β-CD diffusivity DCD × 1010

[m2/s] and fluconazole diffusivity DF × 1010 [m2/s] vs. glycerol volume fraction φ0
Gly in the dry film.

Dashed lines represent the exponential behavior D ∼ exp (5.1 φ0
Gly).
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It can be observed that the solvent diffusivity Ds is an increasing function of the Gly content.
The presence of HP-β-CD is responsible for a very small further increase of Ds. HP-β-CD diffusivity in
the swelling film is one order of magnitude smaller than Ds and even smaller than glycerol diffusivity,
Equation (14). Therefore, the glycerol is released very rapidly from the swelling film, as expected for a
small molecule highly soluble in water, while HP-β-CD release occurs during the entire course of the
swelling process.

The solvent diffusivity Ds and the HP-β-CD diffusivity exhibit a well defined exponential behavior
as a function of φ0

Gly

Ds[m2/s] = 8.24× 10−11 exp (5.1 φ0
Gly), DCD[m2/s] = 1.37× 10−11 exp (5.1 φ0

Gly) (28)

characterized by the same dimensionless exponent (' 5.1), as shown in Figure 6. This is reasonably due
to the fast loss of the plasticizer that facilitates the solvent penetration as well as the HP-β-CD diffusion.

The results of the swelling model represent the starting point for the subsequent analysis of
release data in USP II apparatus. The estimated value of HP-β-CD diffusivity in GG-2%Gly-HP-β-CD
film is assumed as the effective diffusivity DFc of the complex Flu/HP-β-CD in the swelling film.

4.5. Analysis of Release Kinetics in Usp II (Paddle) Apparatus

Figure 7A shows experimental release data of fluconazole from different OTFs. The first two
experiments (red squares and blue triangles) refer to fluconazole release from GG-6%Gly and
GG-2%Gly films. Orange diamonds refer to GG-2%Gly films in which the mixture made by fluconazole
and HP-β-CD is added to the casting solution and not the preformed complex Flu/HP-β-CD as in
the fourth set of release data (magenta circles). Different formulations correspond to different initial
thicknesses L0 of the dry films and therefore to different diffusional pathways for fluconazole to be
released from the swelling film. For this reason, for a better comprehension of the release kinetics,
experimental release data are shown in Figure 7B as a function of the rescaled dimensionless time
τ = tD0

F/L2
0 where D0

F = 5.89−10 [m2/s] is the fluconazole diffusivity in water at 37 ◦C [40] that is
assumed as a reference diffusivity.

Figure 7B clearly shows that drug release is significantly faster for GG-6%Gly film, as expected
from the larger solvent diffusivity and swelling rate. Slower and almost overlapping release curves are
obtained from GG-2%Gly film without HP-β-CD and that including the mixture fluconazole/HP-β-CD.
Indeed, the phase-solubility study highlighted that the complexation equilibrium is reached in 72 h
whereas only 5.5 h are used to solubilize the solution before casting. This time could not be sufficient
to achieve the complexation equilibrium and therefore the fluconazole is included in its free form
in both formulations, characterized by almost the same solvent diffusivity (see Table 2). The real
difference between the two formulations was that the presence of HP-β-CD prevented the precipitation
of fluconazole, which instead occurred in the first few hours after the preparation of the GG-2%Gly
film without HP-β-CD. A significant slow down of the release kinetics is observed for GG-2%Gly film
including the complex Flu/HP-β-CD, it being controlled by the release kinetics of HP-β-CD, in turn
controlled by the low HP-β-CD diffusivity in the swelling film. Indeed, the 80% release is attained
after 5 min, while it takes less than two minutes in the GG-6%Gly film.

Continuous lines in Figure 7A,B represent model predictions as obtained from the numerical
integration of the release model developed in Section 3.2. The model was preliminarily applied to
fluconazole release data from GG-6%Gly and GG-2%Gly films to estimate the effective diffusivity of
fluconazole in its free form (not complexed). Indeed, this is the only parameter of the model since
solvent diffusivity Ds was preliminarily estimated from dynamic swelling experiments.

Fluconazole diffusivities are reported in Table 2 and plotted in Figure 6 in order to show that
they exhibit the same exponential dependence on the glycerol volume fraction φ0

Gly as Ds and DCD.

Fluconazole diffusivity in GG-6%Gly swelling films is about half of that in the pure solvent solution D0
F

while it reduces to D0
F/6 in GG-2%Gly films. In GG-2%Gly films, the effective diffusivity of fluconazole
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in its free form is significantly higher (almost double) than HP-β-CD diffusivity DCD in the same film.
The diffusivity DFc of the complex fluconazole/HP-β-CD in GG-2%Gly films was assumed equal to
DCD and the two diffusivities DF and DCD were adopted to predict the release curve of fluconazole
in GG-2%Gly films (magenta filled circles and continuous line). The only assumption made was that
25% of fluconazole is in its free form (ε = 0.25 in Equation (19)) and diffuses out from the swelling
film with diffusivity DF while the complementary 75% is complexed and diffuses with diffusivity
DCD. This assumption is supported by the analysis of release data from the MFTD, where the release
kinetics are significantly slower and can be monitored in detail with time due to the fast acquisition
method adopted.
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Figure 7. Release data of fluconazole from OTFs in USP II apparatus. Red squares: GG-6%Gly; blue
triangles: GG-2%Gly; orange diamonds: GG-2%Gly including the mixture fluconazole/HP-β-CD;
magenta circles: GG-2%Gly including the preformed inclusion complex Flu/HP-β-CD. Continuous
lines represent model predictions. The corresponding diffusivity values DF and DCD are reported in
Table 2. (A) M(t)/M∞ vs. time t [min]; (B) M(τ)/M∞ vs. rescaled dimensionless time τ = tDo

F/L2
0.

4.6. Analysis of Release Data from MFTD

Drug release tests of commercially available melatonin strips [22] and furosemide-loaded HPMC
OTFs [16] were recently performed in the millifluidic flow-through device and compared with release
curves obtained with the official USP XXXVII basket (USP I) and paddle (USP II) apparatuses. For flow
rates comparable to salivary flow rates Q = 2–4 mL/min, the MFTD furnished release profiles were
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significantly slower (approximately 10–15 min of delay) than that obtained with the other two methods.
Also in the present case, we observed that the official method (USP II) significantly overestimated the
release kinetics, and therefore underestimated the time for complete drug release, when compared to
the millifluidic device.

Figure 8A,B show rescaled integral release curves Mt/M∞ vs. t [min] as obtained with the USP
II apparatus and with the MFTD with flow rates Q = 1–5 mL/min. Figure 8A shows release curves
for GG-2%Gly films including the complex Flu/HP-β-CD while Figure 8B shows fluconazole release
curves from GG-6%Gly films without HP-β-CD. Drug precipitation manifests itself in the form of
dendritic aggregates within a few hours after the drying process is complete. The lower the Gly content,
the faster the appearance of drug aggregates, in the absence of HP-β-CD. Fluconazole release in the
MFTD occurs on time scales significantly longer than that required in the USP II apparatus. For this
reason, we chose to compare release data from MFTD for 2% Gly films including HP-β-CD with 6%
Gly films without HP-β-CD, in order to assure that release data were not affected, in any way, by drug
precipitation on the time scales of the release process.
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Figure 8. Rescaled integral release curves M(t)/M∞ vs. time t [min] of fluconazole in millifluidic
flow-through device (MFTD) and USP II device. (A) GG-2%Gly films loaded with the preformed
inclusion complex Flu/HP-β-CD; (B) GG-6%Gly films loaded with not complexed fluconazole.

For both formulations, release curves from the MFTD are extremely sensitive to the solvent flow
rate Q and significantly slower than that from USP II apparatus. Indeed, the smaller is Q, the slower
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is the release because the higher is the mass-transfer resistance at the gel-solvent interface. The time
t80% required for attaining the 80% release is reported in Table 3. For Q = 2 mL/min the time t80% in
MFTD is more than three times larger than that in USP II device for both formulations.

Table 3. Time t80% [min] required for attaining the 80% release in the MFTD (Q = 1–5 mL/min) and
USP II apparatus for two different film formulations: complex Flu/HP-β-CD in GG-2%Gly and Flu in
GG-6%Gly.

Film USP II 5 mL/min 4 mL/min 3 mL/min 2 mL/min 1 mL/min

complex in GG-2%Gly 4.58 7.21 9.62 10.96 13.67 16.33

Flu in GG-6%Gly 1.22 3.89 5.26 6.62 8.27 13.2

By comparing the two formulations, it can be observed that, despite the larger thickness of
GG-6%Gly films, fluconazole release from GG-6%Gly films is faster than that from GG-2%Gly films
including the complex Flu/HP-β-CD. This can be explained by considering two factors: (1) the
higher solvent diffusivity Ds in GG-6%Gly films, corresponding to a higher swelling rate and (2) the
higher diffusivity DF of fluconazole in its free form with respect to the diffusivity DFc of the complex
Flu/HP-β-CD.

The slightly wigging behavior of the integral release curves shown in Figure 8A is due to the
coexistence, in the dry film, of fluconazole in its free and complexed form. This can be readily verified
by analyzing the behavior of the corresponding differential release curves F(t) shown in Figure 9A.
The presence of two peaks is indicative of two different time scales for the release of fluconazole.
The first peak corresponds to the faster release of the fluconazole in its free form, while the second
peak is associated to the slower release of the complex Flu/HP-β-CD. As a confirmation, the double
peak disappears in the differential release curves from GG-6%Gly films (Figure 9B), where the entire
amount of fluconazole is included in the dry film in its free form.
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Figure 9. Rescaled differential release curves F(t)/M∞ vs. time t [min] of fluconazole in MFTD.
(A) GG-2%Gly films loaded with the complex Flu/HP-β-CD. (B) GG-6%Gly films loaded with not
complexed fluconazole. Continuous black lines in Figure A show the best-fitted bimodal function,
Equation (29).

From the differential release curves shown in Figure 9A it is possible to estimate the fraction of
fluconazole in its free (ε) and complexed form (1− ε). To this end, the differential release curves have
been fitted with the following bimodal function

F(t)
M∞

=
FF(t)
M∞

+
FFc(t)
M∞

(29)

linear superposition of two log-normal distribution functions



Pharmaceutics 2020, 12, 819 18 of 21

FF(t)
M∞

=
ε

t σF
√

2π
exp

(
− (ln t− µF)

2

2 σ2
F

)
(30)

FFc(t)
M∞

=
(1− ε)

(t− νFc) σFc
√

2π
exp

(
−
(

ln(t− νFc
)
− µFc)

2

2 σ2
Fc

)
(31)

Continuous black lines in Figure 9A show the excellent capability of the bimodal function
Equation (29) to describe the two peaks and the long exponential tails of the differential release curves.
The asymptotic exponential behavior F(t)/M∞ ∼ exp (−λt) is highlighted in Figure 10A where the
differential release curves for Q = 2, 4, 5 mL/min are plotted on a log-normal scale. It should be
observed how the parameter λ, characterizing the exponential decay, is an increasing function of Q,
being controlled by the mass-transfer resistance at the gel-solvent interface.

Figure 10B shows the behavior of the two contributions FF(t)/M∞ (continuous lines) and
FFc(t)/M∞ (dashed lines) separately, for Q = 2, 4, 5. Data for Q = 3 mL/min are not reported
for the sake of clarity of the picture but actually analyzed. By observing that

ε =
∫ ∞

0

FF(t′)
M∞

dt′ (32)

the following values of the partition coefficient ε = 0.2857, 0.265, 0.248, 0.2876 have been evaluated for
Q = 2, 3, 4, 5 mL/min, respectively. Therefore an average value of 27.15% ± 1.87 is estimated as the
fraction of fluconazole in its free form, in perfect agreement with the 25% assumed in Section 4.4 to
obtain an excellent agreement between model prediction and the experimental release curve in USP
II apparatus.
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Figure 10. Analysis of rescaled differential release curves in MFTD for GG-6%Gly films loaded with the
complex Flu/HP-β-CD. (A) Log-normal plot of F(t)/M∞ vs. t for Q = 2, 4, 5 mL/min. (B) FF(t)/M∞

and FFc(t)/M∞ vs. t [min], Equation (29), for Q = 2, 4, 5 mL/min.

5. Conclusions

In this work gellan gum thin films containing low amounts of glycerol and
hydroxypropyl-β-cyclodextrin are proposed as a suitable formulation for fluconazole buccal
drug delivery. The inclusion of HP-β-CD prevents drug precipitation and significantly increases the
mucoadhesive property of the film.

Dynamic swelling studies allowed us to estimate the effective solvent diffusivity Ds as well as the
HP-β-CD diffusivity in the swelling film. Swelling data confirm that the small amount of HP-β-CD
included in the formulation does not influence the solvent penetration. This result is in agreement with
in-vitro drug release tests performed in the USP II apparatus, showing comparable release kinetics of
fluconazole in GG-2%Gly films and GG-2%Gly films including an equimolar mixture of fluconazole
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and HP-β-CD. On the contrary, the release kinetics significantly slows down when the preformed
inclusion complex Flu/HP-β-CD is included in the GG-2%Gly formulation. This phenomenon is due
to the low diffusivity of the complex in the swelling film, comparable to the HP-β-CD diffusivity,
and perfectly predicted by the swelling-release model developed.

A more reliable estimate of fluconazole release kinetics from GG-Gly films is obtained from in-vitro
release tests performed in a millifluidic flow-through device, which mimics mouth physiological
conditions thanks to the laminar tangential solvent flow and flow rates comparable to salivary
flow rates Q = 2–4 mL/min. Indeed, the time t80% required for attaining the 80% of release,
for Q = 2 mL/min, is more than three times larger than that in the USP II device for the two films,
namely GG-6%Gly and GG-2%Gly including the complex Flu/HP-β-CD.

The high sampling rate of the drug outlet concentration in the MFTD allows us to have a very
detailed description of the temporal evolution of the differential and integral release curves. Specifically,
the differential release curve of fluconazole from GG-2%Gly including the complex Flu/HP-β-CD
exhibits a peculiar double-peak behavior due to the coexistence, in the dry film, of the fluconazole in
its free and complexed forms, characterized by very different effective diffusivities in the swelling film.
The amount of fluconazole in its free (not-complexed) form has been estimated as about 27.15% of the
total amount of drug initially loaded in the film.

Experimental results, supported by theoretical modeling, confirm that gellan gum-low glycerol
thin films including HP-β-CD represent a suitable and interesting strategy to enhance the loading
efficiency of OTF formulations for fluconazole buccal drug delivery, still keeping excellent physical
properties. A sustained release is observed when GG-Gly film is loaded with a preformed complex
fluconazole/HP-β-CD.
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