

GRANUTOOLS

Does Magnesium Stearate influence the electrical charge of lactose powder?

Naveen Mani Tripathi¹, Filip Francqui¹, Geoffroy Lumay² ¹GranuTools, Rue Jean-Lambert Defrêne 107, 4340 Awans, Belgium, ²University of Liège, Allée du 6 août, 4000 Liège, Belgium, E-mail: naveen.tripathi@granutools.com

ABSTRACT

In Pharmaceutical processes, the powder flow properties are connected with the solid dosage. These properties are investigated by various methods such as, angle of repose (dynamic and static), packing dynamics, electrostatic charge etc. These characteristics are related either to the grain properties (morphology, chemical composition etc.) or bulk behaviour of powder (flowability, electrostatic charge etc.). In this research, the influence of magnesium stearate (MgSt) concentration, as an additive, is investigated on the flowability of lactose powder. The flowability is measured using the electrostatic charge parameter. It is found that, with addition of only 3% of MgSt, the electrostatic charge (measured by GranuCharge) can be limit up to 23% of (77% reduction in charge) virgin lactose powder flow in contact with Stainless-Steel 316L pipes.

1. Introduction

GranuCharge

3. Materials

Excipient: InhaLac 400 (Provided by Meggle Germany)

Properties:

> InhaLac 400 is a high-quality crystalline lactose powder, designed for DPIs (Dry Powder) Inhalers).

Anti-static Agent:

Magnesium Stearate (MgSt)

GranuCharge

4. Result and Discussion

Table 1: Synthesis of the resultsobtained with the GranuChargeinstrument.		$\sum_{i=1}^{0.0} \frac{1}{i_{i}} + $
MgSt content (%)	∆q (nC/g)	Solution of the magnesium stearate mass fraction, a decrease in the charge density variation is observed.
0	-4.6	Bessel Above a magnesium stearate mass fraction close to 3% a plateau
1	-2.6	⁵ -3.5 / is reached (charge density variation close to -0.75 nC/g).
3	-1.1	-4.0 -4.5
4	-1.0	-5.0 InHalac 400 + x% MgSt MgSt mass fraction (%)
5	-0.7	Figure 3: Influence of Magnesium Stearate (MgSt) mass content on the charge density of an InhaLac 400 lactose powder.
5. Conclusior		

- \succ The GranuCharge instrument is able to quantify the triboelectric effect of the powders and the influence of flowing agents addition easily.
- > This instrument is highly sensitive, accurate, and it can quantify the product formulation.
- \succ The charge density versus Magnesium Stearate mass fraction (%) chart can serve this purpose.
- > With only 3% Magnesium Stearate, we manage to limit electrostatic charge build up after a flow in contact with stainless-steel 316L pipes.

REFERENCES

[1] How tribo-electric charges modify powder flowability, A. Rescaglio, J. Schockmel, F. Francqui, N. Vandewalle, and G. Lumay, Annual Transactions of The Nordic Rheology Society 25, 17-21 (2016). [2] Combined effect of moisture and electrostatic charges on powder flow, A. Rescaglio, J. Schockmel, N. Vandewalle and G. Lumay, EPJ Web of Conferences 140, 13009 (2017). [3] Effect of an electric field on an intermittent granular flow, E. Mersch, G. Lumay, F. Boschini, and N. Vandewalle, Physical Review E 81, 041309 (2010).