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ABSTRACT 
The hierarchical Bayesian modeling approach was used to select the appropriate empirical kinetics model of sustained 
release and to optimize the in vitro dissolution rate of the sustained-release suppository by controlling the composition 
of Eudragit L-100 and Eudragit S-100 in the experimental mixture. Thirteen formulations of suppositories were 
prepared with 2 g (10%) mixture of Eudragit® R-100 and S-100 according to a personalized mixture experimental 
design. The cumulative release of active ingredient was measured at five times (20, 50, 80, 160, and 235 minutes). 
The best model was selected using Rsq (Adjust) and akaike information criterion for standard method and by using the 
weight of widely applicable information criterion (WAIC) and leave-one-out (LOO) cross-validation for the Bayesian 
approach. Frequentist approach gave three best model depending on the formulation. Compared to this, the Bayesian 
method was able to define a single model, which is the first-order model. The relative probability of this model is 
0.97, 0.99 based on the WAIC, and LOO, respectively. The relationship between K1 (Release rate constant) and the 
quantities of the two Eudragits is quadratic, for Eudragit_L, Qrelease (%) = 0.0031X2–0.0026 X + 0.0069 and X is the 
Eudragit L100 and K1 (Rate release) = 0.41 minutes−1. The Bayesian method allowed finding the most adequate model 
among several models that can be generated by the standard frequentist approach.

INTRODUCTION
Mathematical models play a crucial role in the 

interpretation of drug release mechanism (Gouda et  al., 2017; 
Grassi et al., 2006; Paarakh et al., 2018; Varma et al., 2004). The 
drug release kinetics for given formulations has been usually 
fitted to predefined semi-empirical models using non-hierarchical 
frequentist modelling approach. The appropriate model for each 
formulation is selected based on the highest Rsq (Adjust) and the 
lowest Akaike Information Criterion (AIC) (Gouda et al., 2017; 
Paarakh et al., 2018; Victor and Francis, 2017). Such a situation 
may lead to variation in the best-fitting model among formulations, 
in particular when the number of points in the curve is limited. 

This is not meaningful biologically given the interdependency 
between data and the model convergence may be problematic 
(Piray et  al., 2019). Hierarchical Bayesian modelling can solve 
these issues by expressing the model over all formulations and 
consequently addressing both model fitting and model comparison 
within the same framework (Piray et  al., 2019). Hierarchical 
Bayesian modelling approach assumes that the formulations share 
the same best model and differ only in some or all parameters 
values of  the model (Andrews et al., 2002; Millar, 2009; Wiecki 
et al., 2013). The differences between the two statistical concepts 
have their root in differing conceptions of probability. In practice, 
frequentist approach quantify the properties of data-derived 
quantifies, as for Bayesian approach quantify the incertitude of 
measure (VanderPlas, 2014).

For pharmaceutical development, the application of 
Bayesian statistics remains modest and mainly affects the field of 
clinical trials and not the field of formulation. This will be one of 
the strongest points of our formulation study (Natanegara et al., 
2014; Price and LaVange, 2014) .
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The use of polymers in the drug delivery system increased 
during the last years as a result of the advantages offered by these 
molecules (Andrews et al., 2002; Malekmohammadi et al., 2019;;  
Zuo et al., 2014). For sustained-release system, Eudragits, good 
safety profile molecules, may give the formulator the possibility 
of choosing between different categories depending on the 
purpose of the formulation such as oral, colon, rectal, and even 
transdermal (Joshi, 2013; Nikam et al., 2011; Thakral et al., 2013). 
For clonic targeting, both Eudragit L-100 and S100 are widely 
used for molecule delivery as they offer muco-adhesiveness 
and pH-dependent release (Khan et al., 1999; Lee et al., 2020). 
Only one study has been reported in the scientific literature on 
the use of these polymers in rectal drug delivery (Baloglu et al., 
2002). In this study, authors prepared and evaluated the kinetics of 
sustained-release suppositories of polyethylene glycol (PEG) 400, 
PEG 4000, Witepsol, and Eudragit L-100. In our study, the choice 
of these Eudragits comes from the fact that the physiological 
conditions of the colon (especially the distal colon) and those of 
the rectum were similar for the pH (pH = 7–8); hence, the interest 
of these polymers called pH-Dependent Drug Delivery Systems 
in the formulation of Hydrophilic suppositories (Hua, 2019; Lee 
et  al., 2020). By optimizing the mixture composition of these 
polymers (EL-100 and ES-100) and the total polymers content of 
the matrix, a specific release rate for the active molecule can be 
obtained by modifying the diffusivity through the gelled of the 
matrix structure (Di Colo et al., 2002; Misra, 2014; Nikam et al., 
2011; Surti et al., 2020).

The novelty of this study is the combination of two 
Eudragit polymers in the formulation of sustained release 
suppositories and the application of the Bayesian hierarchical 
approach to the modeling of the release kinetics. The first objective 
of this study is to use the hierarchical Bayesian modeling approach 
to select the appropriate empirical kinetics model of Barbital 
sustained release. The second objective is to optimize the in vitro 
release rate of sustained-release suppository by controlling the 
composition of E-L100 and E-S100 in the experimental mixture.

MATERIALS AND METHODS

Materials
All the materials used in this study, i.e., “Sodium 

Barbital”, PEG 6000, Eudragit® L100, Eudragit® S100 (Rohm 
Pharma, GmbH, Germany), NaH2PO4 (monobasic), and Na2HPO4 
(dibasic) were acquired by the galenic pharmacy laboratory of the 
Faculty of Medicine and Pharmacy.

Design of experiments and statistical analysis
In the present study, we used a personalized design 

of experiment with constraint and with process factor, which 
was time. The quantities of the two Eudragits varied from 0 to 
2 g each, with upper constraint of 2 g for the sum of the two 
Eudragits L and S, based on preliminary tests. Beyond this limit, 
there would be little flow, poor filling of the metal molds, and 
an unacceptable appearance of the prepared suppositories. The 
quantity of Macrogol 6000 and Barbital were set to 17.4 and 0.6 
g, respectively (Table 1). For each of the 13 formulations, three 
experiments was made and five sampling performed at 20, 50, 80, 
160, and 235 minutes.

Preparation of suppositories by fusion molding
The preparation consisted in melting the quantity 

of PEG 6000 of each formulation at 46°C in the stainless steel 
capsule, then adding the other components under agitation (risk of 
gelation of the mass) and without incorporation of air bubbles. The 
prepared suppositories was scraped and stored in glass bottles.

Chemical and pharmaco-technical assay of the prepared 
suppositories

The prepared suppositories have been evaluated 
following the USP monographs for appearance, weight variation, 
content uniformity of dosage form, hardness, disintegration time, 
and dissolution assay. The Barbital content was determined using a 
UV–visible spectrophotometer. The hardness was performed with 
the Erweka AR 400 hardness tester (Erweka Apparatebau-GmbH 
Germany). The disintegration was performed in a 6.8 pH buffer 
solution at 37°C (+/−0.5) using the U.S.P. tablet disintegration 
apparatus (SOTAX DT 3, Heusenstamm, Germany). 

Dissolution testing
The suppository was placed in the basket, lowered to 

the precise level in 1L vials filled with 500 ml phosphate buffer 
(pH 7.2), and conditioned at 37°C ± 0.5. The basket apparatus 
was set at 50 rpm. Three millilitre of the dissolution medium was 
withdrawn with a syringe at defined time intervals (t20, t50, t80, 
t160, and t235 minutes). The volume withdrawn was replaced 
by its equivalent in phosphate buffer. The optical density of the 
filtrate (filters 0.24 μm) was measured at 245 nm with the UV-
visible spectrophotometer (Spectrophotometer 6305 UV-VIS 198 
at 1000 nm Jenway, Bibby Scientific France SAS) (Onyeji et al., 
1999; Özgüney et al., 2007; Ranjita and Kamalinder, 2010). 

Modeling dissolution kinetics
For modified release suppositories, the release of the 

active principle is due to different parameters such as disintegration, 
diffusion of the active principle through a membrane, swelling, 
and diffusion through a polymer, erosion of a matrix (Costa and 

Table 1. Matrix of experiments with proportions of fixed (PEG 6000 and 
Barbital) and variable (EL-100 and ES-100) components.

Formulation
Fixed components (%) Variable components (%)

PEG 6000 Barbital EL-100 ES-100

1 87 3 3.5 6.5

2 87 3 10 0

3 87 3 9 1

4 87 3 1.5 8.5

5 87 3 7.5 2.5

6 87 3 6 4

7 87 3 5 5

8 87 3 6.5 3.5

9 87 3 1 9

10 87 3 2.5 7.5

11 87 3 4 6

12 87 3 8.5 1.5

13 87 3 0 0
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Lobo, 2001; Faisant et  al., 2002; Varma et  al., 2004). Various 
kinetics models were used to describe the release kinetics (Faisant 
et al., 2002; Peppas and Narasimhan, 2014).

The zero-order model (Equation 1) is applied to 
pharmaceutical forms that do not disintegrate and that release the 
product over a long period of time. These are of matrix modified-
release forms with poorly soluble active ingredients, coated forms 
and osmotic forms (Moodley et al., 2012). The first-order model 
(Equation 2) was proposed by Wagner for forms whose release 
depends on pH (Basak et al., 2008). The Higuchi model (Equation 
3) is applicable if diffusion is the only mechanism responsible for 
the release of the active ingredient (Craig, 2002). The Korsmeyer–
Peppas model (Equation 4) is used to classify drug release from 
polymers as fickian and non-fickian (Güneri et  al., 2004). The 
Hixson–Crowell model (Equation 5) describes the release of 
systems in which the surface area and diameter of the matrix 
change over time (Dash et al., 2010).

The so-called Zero Order:

Q0 = K0t� (1)

The first-order model: 

Q1 = (1 −e−kt)� (2)

The Higuchi kinetics model:

QKp = kKPtn� (3)

The Korsemyer–Peppas kinetics model:

QH = KH t
n� (4)

Hixson–Crowell model

� (5)

where Q is the cumulative percent of drug release of Barbital, Q0, 
QH, QKP, and QHC are the intercepts of the models, k0, K1, KHC, and 
KKP are the rate of release, n is the diffusional exponent indicating 
the drug-release mechanism. When the values of n equal to 0.5, 
the drug release, follow the Fickian diffusion law. When 0.5 < n < 
1, the drug release follow a non-Fickian diffusion. When n = 1.0, 
the drug release is caused by swelling of the polymer (Costa and 
Lobo, 2001; Zhang et al., 2010).

Statistical analysis
Frequentist approaches study the behaviour of the data, 

i.e., the probability of repetition of events. Bayesian approaches 
are based on the measurement of uncertainty.

Frequentist approach
Data of each Formulation were fitted individually to the 

five above-mentioned models using DD-Solver which is an add-in 
program in Microsoft Excel. DD-Solver uses the nonlinear least-
squares fitting technique, and models parameters were determined 
based by minimizing the sum of squares errors (Nakata, 2010; 
Zuo et  al., 2014). The initial values of the model were set 
individually before the iterative optimization. The best model 
for each formulation is selected based on several criteria such as 
R-sq Adjusted and AIC. Both Rsq and AIC present a limitation 
in the model selection and inference process when the number of 
parameters are different between candidate models (Nakata, 2010). 

In addition, the DD-solver does not allow for hierarchization of 
one or all model parameters. Given that, the selected model (best-
fitting model) may vary from formulation to another in particular 
when the number of points in the curve is limited (Nakata, 2010).

Bayesian approach
Data of all formulations were fitted to the five above 

mentioned models using a hierarchical Bayesian model using the 
PyMC3 packages of Python (Patil et  al., 2010; Salvatier et  al., 
2016). This approach assumes that the formulations share the same 
best model and differ only on values of some or all parameters of 
the model, for each of the five models. Prior parameters of each 
model were as follows: the variation was assumed zero and model 
parameters were set to the initial value obtained when the model 
was fitted to all data.

The trace plot, the posterior distribution of the 
parameters over each Markov chain Monte Carlo (MCMC) and the 
convergence of the chains were used to examine the performance of 
the models (Bates and Campbell, 2001; Cowles and Carlin, 1996). 
MCMC is a class of algorithms which can efficiently characterize 
even high dimensional posterior distributions through drawing of 
randomized samples such that the points are distributed according 
to the posterior. For each model, chain MCMC of 2000 cycles 
were considered with a burn-in period of first 200 cycles.

We used two methods for Bayesian model selection such 
as the widely applicable information criterion (WAIC) and Leave-
one-out cross-validation (LOO) (Vehtari et  al., 2017; Watanabe 
and Opper, 2010). The methods evaluate models based on their 
predictive validity. LOO method examines each left out piece of 
data, the performance of the model. WAIC uses the entire posterior 
distribution of models to assess model performance  (Gelman 
et al., 2014; Luo and Al-Harbi, 2017; Vehtari et al., 2015). Widely 
available information criterion is calculated as Gelman et  al. 
(2014) as:

WAIC = −2lppd + 2pWAICn� (6)

The lppd is the log point-wise predictive density and can 
be approximated as:

lppd = ∑log (Epostp (yi|θ))� (7)

and

pWAICn = ∑varpostlog(p(yi|θ))� (8)

The simpler way to perform model selection is to rank 
models based on their WAIC or LOO value and to choose the 
model with the lowest one, However, this simple method do not 
take in to account the uncertainty of WAIC of each model given 
the standard error of WAIC. As such, we performed a model 
selection calculating an average weight for each model relative to 
the best model (the lowest WAIC or LOO):

wi = exp (−1/ 2dICi)/ ∑j 
Mexp (−1/2dICj)� (9)

where wi is the weight of the model i, which corresponds to its 
relative probability relative to all tested models.

For the model selection, we have five hierarchical 
models cited above, in addition we add the corresponding pooled 
models for each category of the model, which aim to test the 
hypothesis of the significant effect of the quantities of the two 
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Eudragits on the rate of release. In other words, the selection of 
hierarchical model corresponds to a significant effect of Eudragits 
quantities on release rate; inversely the selection of pooled model 
corresponds to the lack of effect of Eudragits quantities on the 
kinetic of release.

The effect of Eudragits on the release rate was assessed 
by investigating the relationship between the parameters of 
the selected model and the weight of EL-100 or ES-100 in the 
formulation using the non-linear regression technique in Scipy 
package.

RESULTS AND DISCUSSION
All suppositories satisfy the requirement of the European 

pharmacopeia content uniformity, weight variation, hardness, and 
disintegration time. Although, the uniformity of content varied 
from 96.1% to 101.5%, and the weight variation from 2.23 to 2.67 
g. The hardness of all formulations was superior to 4.8 kg and the 
disintegration time ranged between 30 and 203 minutes.

In vitro release modeling
In vitro dissolution tests have shown that the prepared 

suppositories have an sustained-release effect, even if it does not 
contain Eudragit (formulation No. 13 with PEG 6000 only). The 
percentage of Barbital dissolved in 4 hours (235 minutes) was 
more than 90% for four formulations (F3, F5, F12, and F13), more 
than 80% for formulations F2, F6, F7, and F8 and less than 80% 
for five formulations (F1, F4, F9, F10, and F11).

Frequentist model selection approach
In vitro release characteristics of sustained-release 

suppositories were evaluated to determine the best-fitted kinetic 
model (Table 2). The release rates of all formulations were best 
described with first-order model, which presented an Rsq (Adjust) 
> 0.90 and AIC < 16 model (Fig. 1). Based on the Rsq(Adjust)

 ,the 
first-order model was the best model for formulations 1, 2, 3, 4, 

5, 8, and 13, the Higuchi model is best for formulation 9, the 
Korsmeyer–Peppas model was best for formulations 6, 10, and 
11 and the Hixson–Krowell model was best for both formulations 
7 and 12. Based on AIC, the first-order model was best for 
formulations 1, 2, 3, 4, 5, 8, and 13, Korsmeyer–Peppas is the 
best model for formulations 9, 10, and 11 and finally the best 
model for formulations 6 and 7 was Hixson–Krowell (Zhang 
et al., 2010; Zuo et al., 2014). This showed that the release for the 
same formulations can have different best models in vitro, which 
is one of the weaknesses of the Frequentist approach. In fact, the 
findings from this approach made no clear biopharmaceutical 
meaning.

Bayesian model selection approach
The first order model presented the lowest value 

of WAIC and LOO. The standard errors (SE) varied from 3 to 
15. The weight of the model was 0.97 and 0.99 based on both 
WAIC and LOO, respectively. The relative probability (weight) 
of the selected model was greater than 0.5, indicating that no 
competing model was possible. The LOO and WAIC estimate the 
same predictive performance criteria. The selection of the pooled 
model represented the H0 hypothesis, i.e., K1 is not affected by 
the quantities of the two Eudragits, while the selection of the 
hierarchical model represented the alternative hypothesis, i.e., K1 
is affected by the quantities of the two Eudragits. According to 
results, the alternative hypothesis H1 was accepted, the quantities 
of the two Eudragits have a significant effect on K1. (Tables 3 
and 4). The Bayesian estimation of the parameters of the selected 
model was completed based on the posterior normal distribution 
of the estimate. The Markov chain has stabilized as indicated by 
the trace plot (Fig. 2). The posterior distribution of the parameter 
of the best model (K1) was normal for all formulations. The 
estimated K1 varied from 0.006 to 0.012 and it SE from 0.0001 
to 0.001. The SE of the model was 6.154 based on WAIC and 6.4 
based on LOO, which confirms the strength of the results. LOO 

Table 2. The Rsq (Adjust) and AIC for the release kinetics of Barbital using different mathematical models obtained by DD-Solver.

Parameters F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Zero order 
model

R² adjust 0.89 −0.74 −0.32 0.78 0.66 0.93 0.87 0.59 0.72 0.89 0.93 −0.37 −0.65

K0 0.37 0.51 0.52 0.39 0.46 0.41 0.44 0.47 0.35 0.34 0.34 0.52 0.55

AIC 30.82 44.4 43.5 34.4 37.66 29.87 33.37 38.98 33.47 29.53 27.62 44.41 43.9

First order 
model

R² djust 0.99 0.92 0.97 0.96 1 0.97 0.98 0.97 0.95 0.96 0.98 0.91 0.97

K1 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02

AIC 16.68 28.7 23.7 25.4 15.51 25.02 24.75 25.76 24.52 24.15 21.35 30.9 23.0

Higuchi model R² adjust 0.94 0.61 0.77 0.92 0.96 0.91 0.91 0.9 0.98 0.93 0.92 0.64 0.78

KH 4.84 7.03 7.11 5.02 6.14 5.28 5.63 6.17 4.58 4.34 4.32 7.12 7.56

AIC 28.11 36.9 34.84 29.5 27.28 31.59 31.47 31.97 19.91 27.15 28.74 37.67 33.8

Korsmeyer-
peppas

R² adjust 0.99 0.7 0.8 0.93 0.95 0.98 0.96 0.87 0.99 0.98 0.99 0.64 0.91

K 1.93 16.5 13.72 2.74 4.84 1.53 2.19 5.04 3.34 1.72 1.32 14.44 16.5

n 0.68 0.33 0.37 0.62 0.55 0.75 0.69 0.54 0.56 0.69 0.74 0.36 0.34

AIC 21.31 36.2 34.66 29.5 28.6 24.08 28.47 33.77 18.48 22.03 19.79 38.25 30.2

Hixson-
crowoll

R² adjust 0.99 0.89 0.96 0.94 0.98 0.89 0.99 0.96 0.91 0.95 0.98 0.9 0.95

KHC 0 0.05 0.05 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.05 0.06

AIC 19.68 30.6 26.41 27.5 22.37 19.3 20.26 27.57 27.92 25.22 21.72 31.5 26.2

AIC = The Akaike Information Criterion.
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and WAIC estimated the same predictive performance criteria and 
were asymptotically equal (Gelman et  al., 2014; Vehtari et  al., 
2016; Vehtari and Ojanen, 2012).

The hierarchical method gives a single stable model 
(First-order model) for the same series of formulations whereas 
the standard method (frequentist approach) gives several models. 
The K1 of the first-order model estimated by frequentist and 
Bayesian method were strongly significantly related (Fig. 3). The 
Bayesian method gave a good estimate of observed data (Fig. 
4) and was used for further analysis (VanderPlas, 2014). The 
relationship between K1 and the quantities of the two Eudragits 
was quadratic (Equation 10). The release rate (K1) was low for 
Eudragit L values up to 0.5 g (2.5%) and increases until it reaches 
its maximum at 2 g (10%) of this Eudragit, on the contrary for 
Eudragit S, K1 decrease from 0 g to reach it minimum at 1.5 g 
(7.5%) (Fig. 5).

Y = 0.0031 X2 − 0.0026 X + 0.0069 (Req = 0.8214)� (10)

with K = −2b/a = 02*0.0026/0.0031 = 0.41
By this equation which relates the rate of dissolution 

to the quantity of EL-100, and therefore the mixing of the two 
Eudragits (total =10%). Drug release from suppository bases 
generally depends upon the drug solubility in the base and 
chemical composition of the base. Barbital is a drug in the 
sodium salt form with a high affinity for hydrophilic bases, i.e., 
PEG 6000. PEG bases are also known to have a solubility effect, 
which may partly explain the higher drug release rates of t20 
minutes formulations. Both Eudragits create a swellable matrix 
through which water-soluble active ingredients are released. The 
mixture advantage became in the difference in solubility of the 
two polymers in a range of pH =7 to 8, i.e., with EL-100 Intestinal 
soluble-fluid from (pH 6) and ES-100 is intestinal soluble-fluid 

Figure 1. First order kinetic release of Barbital for all formulation.

Table 3. Model comparaison based on WAIC, pWAIC (the effective number of parameters), dWAIC (the difference between the 
WAIC scores of the other models with the best model), weight (the relative probability that the model explains the data).

Rank WAIC se p_waic d_waic weight

First_Order_hierarchical 0 −169.64 6.15 11.92 0.00 0.97

Higuchi_hierarchical 1 −191.57 17.93 17.44 21.93 0.01

Korsemyer_hierarchical 2 −196.96 15.17 23.02 27.32 0.02

First_Order_pooled 3 −203.46 8.95 5.13 33.83 0.00

Zero_order_hierarchical 4 −240.27 12.16 28.97 70.64 0.00

Hixson_hierarchical 5 −272.72 2.97 0.34 103.08 0.00

Table 4. LOO Statistics of models comparison, p_loo, the effective number of parameters; d_loo (the difference between the 
LOO scores of the other models with the best model), weight (the relative probability that the model explains the data).

Rank Loo se p_loo d_loo weight

First_Order_hierarchical 0 −170.08 6.41 12.36 0.00 0.99

Higuchi_hierarchical 1 −192.76 16.97 18.63 22.68 0.01

Korsemyer.P_hierarchical 2 −199.53 13.48 25.59 29.45 0.00

First _Order_pooled 3 −203.46 8.66 5.13 33.38 0.00

Zero_order__hierarchical 4 −244.76 10.43 33.45 74.68 0.00

Hixon C_hierarchical 5 −272.72 3.03 0.34 102.64 0.00
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from (pH 7) (Di Colo et al., 2002; Hong et al., 2013). The first-
order kinetics model as validated by the Bayesian method as the 
most adequate model to describe and predict the release of active 
ingredient, this result is due to the dissolved matrix as a function 
of the pH of the rectal region (Dash et  al., 2010). Gibaldi and 
Feldman were the first to propose first-order kinetic models of 

liberation in 1967, followed by Wagner in 1969, for this model 
the rate of liberation depends on concentration (Costa and Lobo, 
2001).

CONCLUSION
In this study, Bayesian approach was applied to 

drug release modeling and formulation of sustained-release 
suppositories containing a mixture of EL-100 and ES-100. This 
approach allowed finding a unique and the most adequate model, 
which was the first-order model, when the standard frequentist 
approach gave three best models. At the same time, the Bayesian 
approach is a tool for predicting the optimal composition for 
the formulation of a suppository with prolonged effect. In drug 
development field, this represented an original and new way to 
master the kinetics modeling of sustained-release products in 
order to minimize the number of experiments, save time, and save 
expensive chemicals.
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Figure 2. Trace plot and posterior distribution of the the best model parameter (K1) and it standard deviation (sigma).

Figure 3. K1 estimated by Bayesian method plotted against K1 estimated by 
standard method. (p value an coefficient of determination (R2) were computed 
in Scipy using least-squares nonlinear regression technique).

Figure 4. Observed cumulative release plotted against predicted values by the 
bayesian method (p value an coefficient of determination (Rsq) were computed 
in Scipy using least-squares linear regression technique).

Figure 5. Release rate (K1) based on the quantities of two Eudragits L and S. (p 
value an coefficient of determination (Rsq) were computed in Scipy using least-
squares linear regression technique).
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