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Abstract: In response to the increasing application of machine learning (ML) across many facets of
pharmaceutical development, this pilot study investigated if ML, using artificial neural networks
(ANNSs), could predict the apparent degree of supersaturation (aDS) from two supersaturated LBFs
(sLBFs). Accuracy was compared to partial least squares (PLS) regression models. Equilibrium
solubility in Capmul MCM and Maisine CC was obtained for 21 poorly water-soluble drugs at
ambient temperature and 60 °C to calculate the aDS ratio. These aDS ratios and drug descriptors were
used to train the ML models. When compared, the ANNs outperformed PLS for both sLBFCapmulI\’IC
(2 0.90 vs. 0.56) and SLBFyaigine“C (2 0.83 vs. 0.62), displaying smaller root mean square errors
(RMSEs) and residuals upon training and testing. Across all the models, the descriptors involving
reactivity and electron density were most important for prediction. This pilot study showed that ML
can be employed to predict the propensity for supersaturation in LBFs, but even larger datasets need
to be evaluated to draw final conclusions.

Keywords: lipid-based drug delivery; computational pharmaceutics; machine learning; supersatu-
rated lipid-based formulations

1. Introduction

In the face of increasing pressures for accelerated development, the work of formu-
lation scientists could be advanced through miniaturised screening tools, computational
methods, and a structured approach in preclinical testing [1,2]. Currently, more conserva-
tive “tried-and-tested” approaches to formulation design are typically employed, often
leading to suboptimal formulations that may disregard influential molecular and physico-
chemical drug properties or compound interactions with formulation excipients. However,
such classical formulation development is likely to change as different computational tools
are already widely used in drug discovery and are gaining momentum in pharmaceutical
development. Quantity structure-activity relationships (QSARs) have streamlined the
selection of candidates with optimal binding profiles [3], physiologically based pharma-
cokinetic (PBPK) models have aided the simulation of pharmacokinetic parameters [4],
while theory- or data-driven modelling applications have improved formulation develop-
ment [5-12]. Using data-driven machine learning (ML) approaches, improved success rates
are achievable by ascertaining the statistical relationships between molecular descriptors
and the intended response.
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The main goal of predicting an outcome using input variables is the same for both
partial least squares (PLS) and artificial neural network (ANN) ML algorithms. However,
the mathematical approaches used differ in terms of the dimensionality reduction in data
versus the potential for non-linear data fitting. PLS is a well-established multivariate
regression dimensionality reduction method. The model calculates the X- and Y-matrices
to find the principal components in X (independent variables) that capture most of the
variance in Y (dependent variable). These initial data are projected into a latent variable
space, thereby maximising the covariance between X and Y [13]. While PLS aims to find
a linear (or polynomial) relationship between X and Y, ANNSs represent an emerging ML
algorithm. ANNSs differ in their capability to detect complex non-linear X-Y relationships
while detecting possible interactions between X variables [14]. ANNs mimic basic human
biological information processing methods, as the structure of the multilayer perceptron
(MLP) algorithm contains some main elements: input layer, hidden layer, output layer,
activation functions, and connection weights. Each neuron receives signals/inputs from
other neurons in the preceding layers or directly from the independent variables. This signal
has an associated weighted value, which determines the strength of this interconnection. A
weighted sum of these inputs is computed and transformed using an activation function to
produce an output signal, which is sent to the next neurons in subsequent layers. During
training, samples are passed through the network and synaptic weights are continuously
adjusted until a minimum prediction error is achieved. While an in-depth analysis of
ANN s can be found in the literature [15,16], current research suggests that ANNs may
provide a promising alternative tool to decode complex pharmaceutical datasets.

Over the last decade, interest regarding the use of ML algorithms across diverse disci-
plines in pharmaceutical design and development has grown [11,17-26]. While ML models
have been produced to optimise lipid-based formulation (LBF) development [3,22,27-33],
the application of more novel ML approaches for bio-enabling formulations currently fo-
cuses on solid dispersions (SDs) [21,34,35]. However, their application to LBFs, particularly
supersaturated LBFs (sLBFs), remains unexplored. LBFs, in their most utilised form of lipid
solutions, aim to solubilise poorly water-soluble drugs (PWSDs) and to improve biophar-
maceutical properties by simulating endogenous lipid absorption pathways [36]. However,
commercial utilisation has been declining [37], likely partly attributable to the dose loading
limitations given by the inherent drug solubility in the lipid vehicle [38,39]. One delivery
solution has involved the development of sLBFs. These are kinetically stable solutions
containing a drug concentration above the thermodynamic solubility, where increased drug
loads and exposure are achieved through thermally inducing supersaturation [38,40,41].
Previously, supersaturated solutions such as sLBFs have been characterised by the appar-
ent degree of supersaturation (aDS) ratio [42—44], calculated to determine the propensity
of drugs to supersaturate in specific lipid systems (i.e., fold increase in drug solubility
with elevation of temperature). This has been used as an indicator of the likelihood of
designing sLBFs and is critical regarding the ability to maintain drug supersaturation upon
storage [43]. Therefore, we hypothesise that an in silico ML model predicting aDS from
molecular properties would support streamlined screening of sLBFs.

Consequently, this pilot study sought to investigate if ANN modelling could be used
to predict the aDS in sLBFs using a dataset generated for 21 PWSDs. PLS regression
models produced from the same dataset facilitated a comparison of the two computa-
tional techniques for this dataset. Two medium-chain (MC) and long-chain (LC)-based
mono/di-glycerides formulations were chosen as mono-/di-glyceride systems that pre-
viously facilitated improved supersaturation propensity and streamlined drug-excipient
screenings [38,45,46]. PLS has been previously employed in computational modelling
for LBFs [29,30]. However, this study provides, to the best of our knowledge, the first
investigation into the application of ANNSs to predict maximum dose loading in LBFs.
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2. Materials and Methods
2.1. Chemicals and Materials

Celecoxib was purchased from Astatech Inc. (Bristol, PA, USA), while cinnarizine,
JNJ-2A, ibuprofen, and itraconazole were obtained from Janssen Pharmaceutica (Beerse,
Belgium). Fenofibrate and indomethacine were purchased from Sigma-Aldrich (Wicklow,
Ireland). Progesterone, felodipine, sulfalazine, haloperidol, danazol, naproxen, veneto-
clax, carvedilol, dipyridamole, niclosamide, griseofulvin, fenofibric acid, ketoconazole,
and clotrimazole were purchased from Kemprotec (Carnforth, UK), and Capmul MCM
C8 was kindly donated by Abitec (Columbus, OH, USA). Maisine CC was a kind gift
from Gattefossé (Lyon, France). All other chemicals and solvents were of analytical or
high-performance liquid chromatography (HPLC) grade, purchased from Sigma-Aldrich
(Wicklow, Ireland).

2.2. Formulations

Two prototype single-component LBFs were chosen based on their previous successful
applications as sLBFs [43]. The MC system contained Capmul MCM, a blend of MC mono-
and di-glycerides where caprylic acid (C8) is considered the predominant fatty acid. The
LC system contained Maisine CC, a blend of LC mono- and di-glycerides where linoleic
acid, C18:2, is considered the predominant fatty acid. These formulations are termed
sLBFCapmulMC and SLBFyfagine"C when referring to solubility testing at 60 °C.

2.3. Dataset Selection/Drug Physiochemical and Molecular Properties

Twenty-one structurally diverse PWSDs were selected (Table 1), where the criteria
included the availability of physicochemical properties and potential utilisation as part
of a commercial LBF, or a sSLBE. The compounds were classified according to their glass-
forming ability (GFA) [44], where eight drugs were Class 1, three drugs Class 2, and
10 drugs Class 3. Greater than 250 molecular descriptors were predicted from ADMET
Predictor 9.5 (Simulations Plus, USA) and added to the experimental drug properties of
melting point (Tm), glass transition temperature (Tg), entropy of fusion (ASgs), enthalpy of
fusion (AHps), Tm/Tg, and reduced glass transition temperature (Trg), obtained from the
literature [9,38,47-49]. As the molecular properties can be obtained for any drug once the
structure is known, they were used as input data.

2.4. Equilibrium Solubility Determination

Equilibrium drug solubility studies were conducted in both LBFs at ambient tempera-
ture (AT) (22 °C) and at an elevated temperature (60 °C). The solubility at both temperatures
for cinnarizine, celecoxib, and JNJ-2A was obtained previously [43]. Solubilities for the re-
maining drugs were conducted using an equivalent protocol as follows: An excess amount
of drug was added to 2 mL of either Capmul MCM or Maisine CC in screw cap glass
vials containing a magnetic stirrer. The resulting suspensions were stirred on a stirring
plate (Mixdrive 15, 2MAG, Miinchen, Germany) at 200 rpm and incubated in temperature-
controlled ovens (APT.line™ BD (E2), Binder, GmbH, Tuttlingen, Germany) at and 60 °C.
Aliquots were sampled at 24, 48, and 72 h (or further, if required) and centrifuged at 21,380 x
g (i.e., relative centrifugal force) (Mikro 200 R, Hettich GmbH, Tuttlingen, Germany) at
22 and 40 °C, respectively, for 15 min. Daily sampling was continued until equilibrium
solubility was reached, i.e., solubility between two consecutive samples differed by less
than 10%. The supernatant was centrifuged under identical conditions. To solubilise the
oily excipient, the supernatant was diluted 1:10 (v/v) in acetonitrile/ethyl acetate (1:3, v/v),
followed by further 1:10 (v/v) dilution with acetonitrile/ethyl acetate (3:1, v/v) and a final
dilution with mobile phase. The efficiency of extraction recovery was >94%, tested using
a known amount of each compound. All samples were run in triplicate, and the drug
concentrations were determined using an Agilent 1200 series HPLC system. The columns
and HPLC testing conditions for each drug can be found in the Supplementary Materials
(Table S2).
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Table 1. Selection of the physicochemical and molecular properties of the investigated compounds collated from the literature, predicted from ADMET Predictor 9.5 or obtained

experimentally using DSC. AMPH refers to ampholyte.

Acid/
Drug MW GFA . . AHg,, ASg,s X 0.01 Rotatable
Compound (@/mol) clogP logDg 5 N]:lstigl P Tm °C)  Tg (°O) K/ n{"ol) (kf/lmol /K) Tm/Tg Ty  HBA  HBD
Carvedilol 406.49 3.88 2.36 B I 1145 41.9 53.00 13.67 1.23 081 5 3 10
Celecoxib 381.38 3.81 3.81 A i} 163 58 34.10 7.80 1.32 076 4 1 2
Cinnarizine 368.53 492 3.98 B I 121 8.5 37.50 9.50 1.39 072 2 0 5
Clotrimazole  344.85 5.08 5.06 B I 148 30 33.34 7.97 1.39 072 1 0 4
Danazol 337.47 426 426 N i} 2255 88.3 35.50 7.12 1.38 073 3 1 1
Dipyridamole  504.64 3.11 3.02 B I 163 40.4 72.00 16.51 1.39 072 12 4 12
Felodipine 384.26 5.03 5.03 B I 145 45 30.98 7.38 131 076 5 1 4
Fenofibrate 360.84 5.20 5.20 N I 79 -19 33.00 9.32 1.39 072 4 0 5
Fenofibricacid ~ 318.76 3.98 1.25 A I 184 35.4 99.00 21.66 1.48 068 4 1 3
Griseofulvin 352.77 2,51 2,51 N I 245 89 39.12 7.96 1.36 073 6 0 3
Haloperidol 375.87 3.82 2.06 B I 148 33 54.26 12.80 1.38 073 3 1 5
Ibuprofen 206.29 3.64 1.69 A I 77 —45 26.50 7.56 1.54 065 2 1 4
Indometdacin ~ 357.80 4.03 1.45 A I 161 45 37.60 8.64 1.37 073 4 1 3
Itraconazole 705.65 489 489 B I 168 58 57.60 13.00 1.33 075 9 0 10
INJ-2A 498.90 5.40 5.40 N I 142 91.2 22.90 5.50 1.14 088 4 3 7
Ketoconazole  531.44 3.67 3,51 B I 146 45 52.85 12.50 1.32 076 7 0 8
Naproxen 230.27 321 1.10 A I 152 5.9 25.65 6.03 1.52 066 3 1 3
Niclosamide 327.13 4.03 4.02 A I 230 86 40.70 8.01 1.40 071 5 2 2
Progesterone  314.47 3.94 3.94 N I 130 55.2 23.67 5.87 1.23 081 2 0 1
Sulfalazine 398.40 3.15 —0.35 A I 245 54.6 99.00 20.08 1.58 063 9 3 3
Venetoclax 868.46 6.68 6.54 AMPH 111 138 64 18.40 4.50 1.22 0.82 12 3 11
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Subsequently, to assess the short-term stability upon storage at AT, following the
second centrifugation step, an aliquot of supernatant from the 60 °C samples was allowed
to cool at for 2 h. Then, sampling and analysis was conducted as outlined above, with
values obtained presented as aDS,},. These short-term stability studies were conducted for
the majority of the compounds.

2.5. Apparent Degree of Supersaturation (aDS)

The apparent degree of supersaturation (aDS), as previously defined [42], was deter-
mined as the ratio of the concentration of the drug in the supersaturated solution according
to this experimental methodology and the concentration in the saturated solution. This
theoretical aDS was calculated according to Equation (1) for both sLBFs loaded with drugs
at 60 °C:

aDS§ = Csupersatumtion /Sequilibrium, M)

where Cgypersaturation 18 the concentration of the drug determined after heating the sLBF (to
60 °C) and Seguitiprium is the equilibrium solubility at AT.

Subsequently, to facilitate comparisons of the short-term stability of the sLBFs after
2 h, a second aDS (aDS,y,) was calculated according to Equation (2):

aDSyy, = Csupersatumtion(Zh) /Sequilihrium, 2)

where, in this case, Cgypersaturation2n) 1 the drug concentration in the lipid system that
was heated to 60 °C, followed by cooling to AT for 2 h. The values are reported as aDS
(% standard error (SE)), with the SE calculated from Equation (3):

SA?  SB?

SE = aDS§ x ?4’?,

®)
where A, B, SA, and SB refer to the mean measured solubility values and standard errors for
the equilibrium solubility at AT (A) and the concentration of the drug in the lipid system at
60 °C with/ without 2 h of cooling (B). The graphs were obtained using Prism (Version 5,
Graphpad, San Diego, CA, USA).

2.6. Differential Scanning Calorimetry

The majority of GFA classifications and Tg values were obtained from the literature.
However, for fenofibric acid, progesterone, and sulfasalazine, this information was obtained
experimentally using differential scanning calorimetry (DSC) equipped with a TA Q1000
with a TA Refrigerated Cooling System 90 (TA Instruments, New Castle, DE, USA). The cell
was purged with nitrogen at 50 mL/min. After the midpoint glass transition temperature
(Tg,mia) had been determined, crystallisation screening experiments were conducted using
the protocol by Baird et al. [47]. In brief, 2 mg of drug weighed into a T-zero pan and
heated at 10 °C min~! to 10 °C above the T, of each drug (as per Table 1, held isothermally
for 3 min, cooled at a rate of 20 °C min—! to —75 °C, and reheated to 10 °C at 10 °C min™*
above the Tr, of each drug. Sample weights for each repeat sample were within 1 mg and
experiments were run in triplicate. GFA was categorised, according to Baird et al., into Class
I (in case of crystallisation during cooling prior to the Tg), Class II (for no crystallisation
during cooling, but crystallisation was observed upon reheating above Tg), and Class III
(for no crystallisation observed during cooling nor reheating to Tr,) [47].

2.7. Statistical Analysis

To test the significance between paired solubility values in Capmul MCM versus
Maisine CC and sLBFCapmulMC versus SLBFaisine-C, the distribution of the differences
was used to determine normality, or lack thereof. A two-sided bootstrap-paired test
(5000 samples) determined the significance (p < 0.05). Simple scatter plots were produced
for Capmul MCM versus Maisine CC and sLBFCapmulMC versus SLBFyaisine °C, regression
coefficients fitted for interpretation, and a bootstrap test for the coefficients conducted.
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Statistical analysis was conducted using SPSS Statistics (Version 26, IBM Corporation,
Armonk, NY, USA).

2.8. Partial Least Squares Regression (PLS)

Quantitative prediction of aDS using PLS regression was conducted using Unscram-
bler (Version 11, Camo Analytics, Bedford, MA, USA). PLS model development followed
the standard steps described previously [30]. Molecular structures were acquired as smiles
from PubChem and used as inputs for the ADMET Predictor (Version 9.5, Simulations Plus,
Lancaster, CA, USA) to calculate >250 molecular descriptors, which were added to T,
Ty, AHfus, ASqu, Tm/Tg, and Tig and used as variable inputs. The individual modelling
responses were aDS ratios from both sLBFCapmulMC and sLBFyaisine -C- Principal compo-
nent analysis (PCA) was applied for a randomised assignment of training/test data. The
training set criteria were that it covered the chemical space of the test set, along with a rela-
tively even spread of aDS ratios. A Hotelling’s T? ellipse was applied for outlier detection
(95% confidence interval). The nonlinear iterative partial least squares (NIPALs) algorithm
was utilised, and all variables were mean-centred, de-identified, and standardised through
scaling by standard deviation. To limit the overfitting potential, a limit of two principal
components was used. Variable reduction was performed as previously described [30]
using Martens’ uncertainty test [50], an important variables plot, and correlation loadings
plot. Model accuracy was validated by the root mean square error (RMSE) of the training
and test sets.

2.9. Artificial Neural Networks (ANNs)

Multilayer perception artificial neural networks (MLP-ANNSs) were produced using
SPSS Statistics (Version 26, IBM Corporation, Armonk, NY, USA) to predict aDS. A par-
tition variable using the same training/test set split was utilised to compare PLS versus
ANNSs. The input properties were obtained as described above and were rescaled through
standardisation, where values were converted to their z-scores. A hyperbolic tangent was
chosen as the activation function for the hidden layer, while an identity output function
was used in the output layer [51]. Supervised learning using the scaled conjugate gradient
(SCG) algorithm was chosen for its speed, and a lack of user-critical parameters [52]. Batch
training was selected due to the relatively small dataset size and the learning algorithm
employed. Variable reduction was initially conducted using an independent variable
importance analysis. As an arbitrary criterion, only variables with a relative importance of
>70% were included in the architecture going forward. Topologies with only one hidden
layer were considered to avoid overfitting. The optimum number of neurons in the hidden
layer was identified following a systematic trial-and-error approach, where the number
of neurons in the hidden layer were manually altered between 2 and 20, with runs per-
formed in triplicate. The optimal network size was chosen thorough minimum RMSE in
the training and test sets. The most important variables in each network were elucidated
from the normalised importance chart. The PLS and ANN models produced were directly
compared in terms of different performance evaluation functions, including correlation
coefficient (r?), training set RMSE, test set RMSE, and residuals by predicted charts.

3. Results
3.1. Comparing the Solubility of MC- and LC-based LBFs and sLBFs

The initially solubility in both LBFs (Capmul MCM and Maisine CC) at AT and both
sLBFs (sLBFCapmulMC and SLBFjfaisineC) at 60 °C was compared. Significant differences
were seen at AT (* p < 0.05) and at 60 °C (* p < 0.05). The beta coefficients of the regression
lines of both Maisine CC versus Capmul MCM and SLBFMaisine -C versus sLBFCapmulMC
were also significant (both * p < 0.05). A relatively strong correlation was established
between solubility (logS) in both blends at AT (> = 0.84). This was stronger at 60 °C
(r* = 0.90) (Figure 1). Fourteen of the 21 (66%) drugs demonstrated a higher aDS ratio in
SLBFMaisineC versus sLBFCapmulMC (Figure 2). All 21 drugs showed higher solubility in
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Capmul MCM when compared to Maisine CC at AT. In general, this trend was repeated at
60 °C, except for fenofibrate and cinnarizine, where the order of solubility was switched,
albeit not significantly so.

3 3

%) D

O o

g 2 g 2

@ =

©

= |

£ 1 2

2 =

5 . 5

=] e}

= 0 =2

3| s 3 °

> = .

o . =084 o =09

'1 T T 1 -1 T T 1

0 1 2 3 0 1 2 3
log(Solubility in Capmul MCM) log(Solubility in SLBF capmu™®)

(a) (b)

Figure 1. Scatter plots of the solubility in Capmul MCM versus Maisine CC (a) and sLBFCapmulMC
versus SLBFyisine“C (b). Formulation abbreviations can be inferred from the main text.

Class 1 Class 2 Class 3
4 } 1} T {
] MC
‘:l SI-BFCapmul
1 e
3 - SLBFMaisme
7]
B 24
©
1_
0__
. 5 Y F
(@a vs}b \_)\\\ &8 OQQJ & 0& +e,° q;l'o .‘b@a o“§) &\o c}®+ & ’b&e 49\?; &\q <@ (_}(\e. 1’0\0 51?'
ST LT O LT LE LI T NP S
&£ & o c)"j} T & L O,[,«*‘ o F o"00 5 (& <
@ FF & &P S & ) F o W e
Q\QQQ‘(\ < &> W@ &

Drug

Figure 2. Apparent degree of supersaturation (aDS) ratios achieved for the dataset in both
sLBFCapmulMC and sLBFyisine“C. No clear aDS trend was elucidated in terms of the glass-forming
ability (GFA) classification (as grouped). Details and definitions of the abbreviations are given in
the text.

3.2. Apparent Degree of Supersaturation

Increases in thermally induced solubility were seen for all drugs in both the MC and LC
sLBFs (aDS ratio >1), reflecting increased dose loading relative to conventional LBFs. Drug
solubility in Capmul MCM, Maisine CC, sLBFCapmulMC, and sLBFypaisine -C are presented
as mean + SD (n = 3) in the Supplementary Materials (Table S1). The extent of aDS ranged
from 1.04 to 3.17 in SLBFampw ™ and between 1.06 and 3.4 in SLBFyaisine ™ (Figure 2). In
the rank order of supersaturation propensity, the investigational drug candidates JNJ-2A
and felodipine produced the lowest aDS in sLBFCapmulMC and SLBFpfaisine S, respectively.
Dipyridamole demonstrated the highest aDS using both sLBFs.

While correlations between GFA class and aDS ratios have previously been observed
using solvent shift-mediated supersaturation [42], our data revealed no clear trend between
aDS and GFA (Figure 2). The mean aDS for sLBFCapmulMC and SLBFppaisine~C in each
GFA class was 2.04 and 2.08 (class 1), 2.22 and 2.56 (class 2), and 2.05 and 2.16 (class 3),
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respectively, indicating that between GFA classes, no significant differences were seen. The
mean aDS for the three GFA classes also did not significantly differ according to the sLBFs’
fatty acid chain length.

Upon comparison of the aDS values obtained after cooling of the 60 °C samples
for 2 h at AT (aDS,y,), average differences in aDS ratio units of 0.17 (sLBFCapmulMC) and
0.16 (SLBFpaisine -C) Were observed (Supplementary Materials Table S3), corresponding to
average drug solubility losses of 7.9% and 7.7% upon cooling, respectively. For this dataset,
which comprised drugs of a variety of chemical structures, the range of precipitation upon
removal of heating was moderate, i.e., less than 20%, with 71% of drugs displaying a less
than 10% loss after 2 h.

3.3. Quantitatively Predicting aDS Using PLS and ANNs

Quantitative models predicting aDS were produced using PLS and ANNs. Unabridged
versions of all the drug descriptor abbreviations in this section can be found in the Sup-
plementary Materials (Figure S1). PLS models for both aDS sLBFCapmulMC and aDS
SLBFpaisine*C of two PCs and eight and nine input variables, respectively, were devel-
oped (Table 2). The aDS sLBFCapmulMC model produced relatively weak predictions of
12 = 0.56, and in the training and test sets, the RMSE was 0.4 and 0.79 using eight variables:
VMcGowans, N_Hydrgn, EEM_Afc, EEM_AFnp, SHCH_321, SHaaCH, EEM_NFc, and
Pi_FMi4 (Figure 3). Martens’ uncertainty test designated SHCH_321 and EEM_NFc as
the most important variables. Comparatively, the two PCs aDS SLBFpaisine - PLS model
displayed a correlation coefficient of > = 0.62 and an RMSE in the training and test sets
of 0.4 and 0.45, respectively, using nine input variables: HIVI-TC, N_FrRotB, NPA_Q2,
EEM_Nfc, EEM_NFnp, Pi_Aqo, Pi_AQc, Pi_FPI3, and Pi_FMi6. In this case, N_FrRotB and
Pi_FMi6 were the most important variables.

Table 2. Overview of the ANNs produced to predict aDS for sLBFCapmulMC and SLBFy,isine“C from their drug properties,

including their architecture and various performance indicators. Tr and Te refer to the training and test sets.

Y Variable

Model Type Architecture Input Variables r? RMSETr RMSETe

aDS SLBF CapmuiM©

aDS SLBFcapmu™©

PLS

VMcGowan, N_Hydrogn,
SHCH_321, SHaaCH, EEM_Afc,
EEM_Afnp, EEM_NFc, and
Pi_FMi4
Pi_FP15, NPA_Q6, AHy,s, EEM_F4,
EqualEta, M_CX, MlogP, MolVol,

2PCs 0.56 0.40 0.79

1 hidden

ANN N_CYPAtoms, N_Electr, NPA_Q1, 0.90 0.19 0.36

layer,5nodes 5 b3 pi MinQ, S+ Intrins,

and SolFactor

aDS SLBFyfaigine “C

aDS SLBFyfaisine °C

HIVI-TC, N_FrRotB, NPA_Q2,

PLS 2PCs EEM_Nfc, EEM_NFnp, Pi_AQo, 0.62 0.40 0.45

ANN

Pi_AQc, Pi_FPI3, and Pi_FMi6
F_AromB, HBDch, MaxQ,
1 hidden N_Atoms, N_Bonds, NPA_Q2,
layer, 8 nodes NPA_Q5, Pi_FMil, Pi_FP11,
SsssCH, and T_Rads

0.83 0.28 0.25

Using ANNSs, MLP 15-5-1 for SLBFcpmu™ and MLP 11-8-1 for sLBFyfaisine© were
produced (Table 2). These equated to input layers with 15 and 11 drug properties, one
hidden layer of five and eight nodes, and singular output layers, i.e., predicted aDS. A
strong correlation between the predicted and observed aDS values was observed for the
sLBFCapmulMC network (r? = 0.90) (Figure 3). This demonstrated a low RMSE upon training
(0.19) and testing (0.36) (Table 2). The properties included in the network were Pi_FP15,
SolFactor, N_CYPAtoms EEM_F4, Pi_FP13, NPA_Q6, MlogP, MolVol, NPA_Q1, S+S_Intrins,
EqualEta, AHfus, M_CX, Pi_MinQ), and N_Electr. The normalised importance chart signi-
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fied AHg,s, EEM_F4, and N_Electr as the three most significant variables (Figure 4). The pre-
dicted and observed aDS values for aDS SLBFf,igine - Were strongly correlated (r* = 0.83),
as training and testing RMSEs of 0.28 and 0.25 were observed (Figure 3). The drug prop-
erties in the final network were N_Bonds, Pi_FPI1, T_Rads, MaxQ, N_Atoms, Pi_FMil,

HBDch, F_AromB, NPA_Q2, SsssCH, and NPA_Q5. MaxQ, NPA_Q5, and NPA_Q2 were
the most important variables (Figure 4).
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Figure 3. Scatter plots illustrating the predicted versus observed aDS values obtained for aDS
sLBFCapmulMC using PLS (2 = 0.56) and ANNSs (r2 = 0.90) (a,c). Scatter plots illustrating the pre-
dicted versus observed aDS values obtained for aDS SLBFyfaisine -C using PLS (r* = 0.62) and ANNs

(2 = 0.83) (b,d).
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Figure 4. Normalised importance charts of the ANNs for sLBFCapmulMC (a) and SLBFppisine“C
(b) detailing the percentage importance of the input variables in predicting aDS. Details and explained
abbreviations are given in the main text and Supplementary Materials (Figure S1).

Upon model comparison, the ANNs produced improved aDS predictions for both
sLBFs, as both ANN models displayed substantially stronger correlation coefficients, lower
training and testing RMSEs, and smaller residuals. The residuals for both ANN models
demonstrated almost complete independence and random distribution in residuals by
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predicted charts (Supplementary Materials Figure S2). The relatively poor performance of
the PLS models indicates that their inclusion was primarily for the purpose of comparison
with the ANNS.

4. Discussion

The increasing adoption of model-based approaches across drug design and develop-
ment has aided in improving efficiency in pharmaceutical research. Computational tools
exist across the pharmaceutical industry in many forms. However, for LBFs, thus far, the
drug property-based aspects of computational pharmaceutics have focused on solubil-
ity predictions for traditional solution or self-emulsifying drug delivery system (SEDDS)
formulations [27-30]. The exploration of ANNs to support LBF development remains
relatively unexplored. As a result, the main purpose of this research was to investigate if an
ANN model could be developed to predict the aDS in sLBFs using drug physicochemical
or molecular properties. These predictions could be used to guide whether the degree of
supersaturation in lipids is sufficient to enable dosing in early development.

Accordingly, as part of this pilot study, two ANNs were developed, which predicted
aDS in sLBFs from their drug properties. These ANNs produced superior predictions
compared to PLS models developed using the same available dataset. These ANNs
predicting aDS (SLBFCapmulMC and sLBFppisine -C), containing one hidden layer of five
and eight nodes and using fifteen and eleven drug properties, respectively, yielded strong
prediction accuracy performance (r> = 0.90, 0.83) and low RMSEs upon both training
(0.19, 0.28) and testing (0.36, 0.25). In comparison, when using PLS, a lower accuracy
of prediction (7 = 0.56, 0.62) and higher residuals and RMSEs upon training (0.4, 0.4)
and testing (0.79, 0.45) were observed using eight and nine drug properties. Accordingly,
this study demonstrates that ANNSs can be applied to link molecular drug properties to a
predicted maximum dose loading capacity, i.e., aDS upon thermal induced supersaturation.

These modelling results suggest that aDS prediction is a complex and multifaceted
phenomenon, as for this dataset numerous drug descriptors and non-linear mathemat-
ical algorithms were required for higher accuracy. One explanation for the improved
performance of ANNSs for this dataset may be attributed to its capability in decoding multi-
dimensional highly non-linear relationships in datasets in the hidden layer, as opposed
to linear relationships of the latent variables obtained through PLS. Consequentially, this
work highlights the capability of ANNSs to provide an industrially applicable alternative to
the more established computational pharmaceutics modelling methods such as PLS. While
PLS regression has advantages versus ANNs in terms of model transparency and decreased
complexity in interpretation, in situations of interrelationships or substantial non-linearity,
as seen here, ANNs may improve the accuracy of prediction. Therefore, it is hoped that
this pilot study can initiate future larger-scale studies to strengthen these predictions.

Modelling indicated that drug properties hold key information about aDS. Overall,
a wide range of drug descriptors, reflecting topology, reactivity, structure and size, elec-
trostatics, and thermodynamics, were significant. Trends in important properties were
revealed. The three most important properties predicting aDS for SLBFCapmulMC were
AHgs (enthalpy of fusion), EEM_F4 (fourth component of the autocorrelation vector of
sigma Fukui indices), and N_Electr (total number of electrons in a molecule) (Figure 4).
AHys is a thermodynamic property, involving the amount of thermal energy which must be
absorbed or evolved to change 1 mole of a solid to a liquid with no temperature change [53].
AHg,s was shown to previously inversely correlate with the potential of a drug to supersat-
urate from solvent shift-induced supersaturation [42]. Fukui indices are frontier orbital
indices, indicating atomic electron affinity and a molecule’s ability to become polarised
upon changes to electron density [54,55]. Similar Fukui indices were previously important
properties governing the intrinsic dissolution rate of PWSDs in biorelevant media [56]
and in support vector machine modelling to predict GFA for compounds between 200
and 300 g/mol. In this case, a high value, which denoted increased electron reactivity,
suggested a non-glass former [9]. The number of electrons in a molecule is related to its
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reactivity, as the electrons in the outermost atom shell determine the reactivity. Generally,
polarizability increases as the volume occupied by electrons increases. To predict aDS in
SLBFyaisine -, MaxQ (maximal PEOE partial atomic charge), NPA_Q5, and NPA_Q?2 (fifth
and second components of the autocorrelation vector of estimated NPA partial atomic
charges) were the most significant properties (Figure 4). Both natural population analysis
(NPA) and partial equalization of orbital electronegativity (PEOE) are methods to calculate
partial atomic charges. They describe the charge and electron density distributions within
molecules, providing clues about chemical behaviour [57,58]. Comparatively, the PLS
performance was poor in terms of correlation and residual error, and therefore, PLS is more
suited here as a qualitative model. The fact that PLS and ANNSs use different mathemati-
cal approaches to obtain correlations, and that ANNSs can incorporate interrelationships
between descriptor variables, likely explains the differences in the final model variables.
Despite the observed differences, the Fukui indices, partial atomic charges, and atom-type
E-state indices were significant for PLS and ANN prediction, supporting their importance
for aDS.

As a lack of thermodynamic stability is a fundamental limitation of sLBFs, it is im-
perative that supersaturation is maintained over a sufficient period to facilitate adequate
absorption. In this study, after 2 h of cooling, the sLBFs maintained relatively high levels of
supersaturation across a variety of drugs, i.e., >80% of the drug remained above saturation
solubility. aDS was previously suggested as a guide for the likelihood of precipitation from
sLBFs [43], where drugs that generated higher aDS coupled with high T, / Ty ratios (higher
crystallisation tendency) demonstrated quick precipitation on storage at 25 °C, while drugs
with low aDS and low Ty, /Ty ratios resulted in good storage stability. Similarly, in this
study, Dipyridamole (a Class 1 GFA drug with a high Tr, /Ty ratio and ASgs) produced the
highest aDS in both sLBFs, while Class 3 GFA JNJ-2A and felodipine, both possessing low
crystallisation tendencies produced the lowest aDS. Therefore, this could provide an ex-
tended application of these models to anticipate the precipitation potential, with reference
to the indicators of crystallisation tendency (Tm/Tg, ASp;s) [47]. However, investigations
regarding the overall accuracy of this combination were not within the scope of this current
pilot study.

The influence of fatty acid chain length in terms of both aDS and drug solubility
between the MC- and LC-based mono/di-glyceride blends was also observed. Similarly, to
previous work involving MC and LC triglycerides [29,30], a relatively strong correlation
was found between solubility in both blends at AT. Interestingly, it appeared that the
common effect of heating became more influential for solubility rather than the properties
of the lipids, as heating increased the strength of the correlation. While the solubility was
higher in sLBFCapmulMC for the majority of drugs, approximately 60% demonstrated higher
aDS in sLBFyaisine“C. This was potentially aided by the generally lower drug solvation in
the long-chain formulation at AT, thereby permitting higher aDS gains upon heating.

Finally, as recent expert commentary has emphasised various shortcomings of data-
driven modelling [11], we acknowledge the dataset used in model development here
is limited in size (Supplementary Materials—Modelling Database). As such, this work
was essentially a pilot study seeking to investigate the potential of ANNSs to improve the
accuracy of predictive models. Accordingly, the authors support strategies for further
research using a larger dataset to confirm the correlations obtained and have provided
the ANN models as predictive model markup language (PMML) in the Supplementary
Materials (LC PMML and MC PMML). This will further clarify which molecular properties
are significant for aDS, extending the applicability of the models. Notwithstanding this
limitation, this pilot study successfully achieved the intended goal of demonstrating the
robust predictive power of ANNs to LBF datasets.

5. Conclusions

This pilot study explored the application of ANNs as a computational technique
to predict aDS in sLBFs. The ANN models demonstrated accuracy in the quantitative
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prediction of the aDS ratios versus PLS models from the same dataset. These models, while
demonstrating ANNs’ ability to capture complex data relationships, also facilitated greater
insight into the relationship between drug properties and supersaturation propensity. It
was revealed that this complex phenomenon is related to the molecular descriptors of
electron density and chemical reactivity. The study impacts support the application of
ML-based computational pharmaceutics in early LBF development testing. Future research
with larger datasets will be needed to confirm this pilot study’s findings. Moving forward,
integration and dissemination of computational expertise and in silico tools will be vital
for efficient decision-making in the development of lipid-based drug delivery systems of
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13091398/s1, Table S1: Equilibrium solubility values and aDS for the dataset
of 21 drugs using Capmul MCM and Maisine CC; Table S2: RP-HPLC/UV methods utilised in this
study; Table S3: Equilibrium solubility and aDS,y, in sLBFCapmulMC and sLBFy,isine“C and the aDS
ratio difference from the average aDS and the average aDS,}, used to investigate the short-term
stability of the sLBF after cooling at AT; Figure S1 Unabridged abbreviations of the independent
input variables used in the final PLS and ANN models; Figure 52: Predicted by residual plots for
sLBFCapmulMC and SLBFyfaisine -© using PLS and ANN modelling. Modelling Database: Database
containing the drug molecular descriptors used in model development. LC PMML and MC PMML:
XML-format files containing the two ANN models produced in the study to predict aDS in PMML.

Author Contributions: Conceptualisation, H.B.-L. and B.T.G.; methodology, A.-R.I. and H.B.-L.;
software, H.B.-L. and J.D.M.; writing—original draft preparation, H.B.-L.; writing—review and
editing, B.T.G., M.K,, ].PO. and R.H.; supervision, B.T.G. and J.P.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported under funding from the Irish Research Council Post Graduate
Scholarship Project, number GOIPG/2018/883. Alexandra-Roxana Ilie is part of the PEARRL
European Training network, which received funding from the Horizon 2020 Marie Sktodowska-Curie
Innovative Training Networks programme under grant agreement no. 674909.

Data Availability Statement: The database used for model development in this study is available in
the Supplementary Materials (Modelling Database).

Acknowledgments: The authors would like to thank Marc Joosten for his assistance in the solubil-
ity analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Kuentz, M.; Holm, R.; Elder, D.P. Methodology of oral formulation selection in the pharmaceutical industry. Eur. ]. Pharm. Sci.
2016, 87, 136—163. [CrossRef] [PubMed]

2. Kuentz, M.; Holm, R.; Kronseder, C.; Saal, C.; Griffin, B.T. Rational Selection of Bio-Enabling Oral Drug Formulations—A PEARRL
Commentary. J. Pharm. Sci. 2021, 110, 1921-1930. [CrossRef] [PubMed]

3.  Bergstrom, C.A.S.; Charman, W.N.; Porter, C.J.H. Computational prediction of formulation strategies for beyond-rule-of-5
compounds. Adv. Drug Deliv. Rev. 2016, 101, 6-21. [CrossRef] [PubMed]

4. Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016, 6, 430—440.
[CrossRef] [PubMed]

5. Rane, S.S.; Anderson, B.D. What determines drug solubility in lipid vehicles: Is it predictable? Adv. Drug Deliv. Rev. 2008, 60,
638-656. [CrossRef] [PubMed]

6. Niederquell, A.; Wyttenbach, N.; Kuentz, M. New prediction methods for solubility parameters based on molecular sigma
profiles using pharmaceutical materials. Int. J. Pharm. 2018, 546, 137-144. [CrossRef]

7.  DeBoyace, K.; Wildfong, PL. The Application of Modeling and Prediction to the Formation and Stability of Amorphous Solid
Dispersions. J. Pharm. Sci. 2018, 107, 57-74. [CrossRef]

8.  Birru, W.A,; Warren, D.B.; Han, S.; Benameur, H.; Porter, C.J.; Pouton, C.W.; Chalmers, D.K. Computational Models of the
Gastrointestinal Environment. Phase Behavior and Drug Solubilization Capacity of a Type I Lipid-Based Drug Formulation after
Digestion. Mol. Pharm. 2017, 14, 580-592. [CrossRef]

9.  Alhalaweh, A.; Alzghoul, A.; Kaialy, W.; Mahlin, D.; Bergstrom, C.A.S. Computational Predictions of Glass-Forming Ability and

Crystallization Tendency of Drug Molecules. Mol. Pharm. 2014, 11, 3123-3132. [CrossRef]


https://www.mdpi.com/article/10.3390/pharmaceutics13091398/s1
https://www.mdpi.com/article/10.3390/pharmaceutics13091398/s1
http://doi.org/10.1016/j.ejps.2015.12.008
http://www.ncbi.nlm.nih.gov/pubmed/26687443
http://doi.org/10.1016/j.xphs.2021.02.004
http://www.ncbi.nlm.nih.gov/pubmed/33609523
http://doi.org/10.1016/j.addr.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/26928657
http://doi.org/10.1016/j.apsb.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27909650
http://doi.org/10.1016/j.addr.2007.10.015
http://www.ncbi.nlm.nih.gov/pubmed/18089295
http://doi.org/10.1016/j.ijpharm.2018.05.033
http://doi.org/10.1016/j.xphs.2017.03.029
http://doi.org/10.1021/acs.molpharmaceut.6b00887
http://doi.org/10.1021/mp500303a

Pharmaceutics 2021, 13, 1398 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Hossain, S.; Kabedev, A.; Parrow, A.; Bergstrom, C.A.; Larsson, P. Molecular simulation as a computational pharmaceutics tool to
predict drug solubility, solubilization processes and partitioning. Eur. J. Pharm. Biopharm. 2019, 137, 46-55. [CrossRef]

Kuentz, M.; Bergstrom, C.A. Synergistic Computational Modeling Approaches as Team Players in the Game of Solubility
Predictions. J. Pharm. Sci. 2021, 110, 22-34. [CrossRef] [PubMed]

Wyttenbach, N.; Niederquell, A.; Kuentz, M. Machine Estimation of Drug Melting Properties and Influence on Solubility
Prediction. Mol. Pharm. 2020, 17. [CrossRef]

Panagou, E.; Mohareb, F.; Argyri, A.; Bessant, C.; Nychas, G.-].E. A comparison of artificial neural networks and partial least
squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral
fingerprints. Food Microbiol. 2011, 28, 782-790. [CrossRef] [PubMed]

Farizawani, A.; Puteh, M.; Marina, Y.; Rivaie, A. A review of artificial neural network learning rule based on multiple variant of
conjugate gradient approaches. J. Phys. Conf. Ser. 2020, 1529. [CrossRef]

Bourquin, J.; Schmidli, H.; Van Hoogevest, P.; Leuenberger, H. Basic Concepts of Artificial Neural Networks (ANN) Modeling in
the Application to Pharmaceutical Development. Pharm. Dev. Technol. 1997, 2, 95-109. [CrossRef] [PubMed]

Tu, ]J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical
outcomes. |. Clin. Epidemiol. 1996, 49, 1225-1231. [CrossRef]

Aksu, B.; Paradkar, A.; De Matas, M.; Ozer, O.; Giineri, T.; York, P. Quality by Design Approach: Application of Artificial
Intelligence Techniques of Tablets Manufactured by Direct Compression. AAPS PharmSciTech 2012, 13, 1138-1146. [CrossRef]
Damiati, S.A.; Martini, L.G.; Smith, N.W.; Lawrence, M.].; Barlow, D.J. Application of machine learning in prediction of
hydrotrope-enhanced solubilisation of indomethacin. Int. J. Pharm. 2017, 530, 99-106. [CrossRef]

Yang, Y.; Ye, Z.; Su, Y.; Zhao, Q.; Li, X.; Ouyang, D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta
Pharm. Sin. B 2019, 9, 177-185. [CrossRef]

Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Artificial neural networks (ANNSs) and partial least squares
(PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. . Pharm. Biomed.
Anal. 2018, 158, 214-224. [CrossRef]

Gao, H.; Wang, W.; Dong, |.; Ye, Z.; Ouyang, D. An integrated computational methodology with data-driven machine learning,
molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur. |. Pharm. Biopharm. 2021, 158,
336-346. [CrossRef] [PubMed]

Brinkmann, J.; Exner, L.; Luebbert, C.; Sadowski, G. In-Silico Screening of Lipid-Based Drug Delivery Systems. Pharm. Res. 2020,
37,1-12. [CrossRef] [PubMed]

Galata, D.L.; Farkas, A.; Konyves, Z.; Mészaros, L.A.; Szab¢, E.; Csontos, I; Palos, A.; Marosi, G.; Nagy, Z.K. Fast, Spectroscopy-
Based Prediction of In Vitro Dissolution Profile of Extended Release Tablets Using Artificial Neural Networks. Pharmaceutics 2019,
11, 400. [CrossRef]

Djuris, J.; Cirin-Varadjan, S.; Aleksic, I.; Djuris, M.; Cvijic, S.; Ibric, S. Application of Machine-Learning Algorithms for Better
Understanding of Tableting Properties of Lactose Co-Processed with Lipid Excipients. Pharmaceutics 2021, 13, 663. [CrossRef]
Tosca, E.; Bartolucci, R.; Magni, P. Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like
Molecules. Pharmaceutics 2021, 13, 1101. [CrossRef] [PubMed]

Van Hauwermeiren, D.; Stock, M.; De De Beer, T.; Nopens, 1. Predicting Pharmaceutical Particle Size Distributions Using Kernel
Mean Embedding. Pharmaceutics 2020, 12, 271. [CrossRef]

Alskar, L.C.; Porter, C.J.; Bergstrom, C.A.S. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations. Mol. Pharm.
2016, 13, 251-261. [CrossRef] [PubMed]

Alskar, L.C.; Keemink, J.; Johannesson, J.; Porter, C.J.H.; Bergstrom, C.A.S. Impact of Drug Physicochemical Properties on
Lipolysis-Triggered Drug Supersaturation and Precipitation from Lipid-Based Formulations. Mol. Pharm. 2018, 15, 4733-4744.
[CrossRef]

Persson, L.C.; Porter, C.; Charman, W.; Bergstrom, C.A.S. Computational Prediction of Drug Solubility in Lipid Based Formulation
Excipients. Pharm. Res. 2013, 30, 3225-3237. [CrossRef]

Bennett-Lenane, H.; Koehl, N.J.; O'Dwyer, P].; Box, K.J.; O’Shea, ].P.; Griffin, B.T. Applying Computational Predictions of
Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based Formulations Dispersion to Predict Dose Number. J. Pharm. Sci.
2020, 110, 164-175. [CrossRef] [PubMed]

Sacchetti, M.; Nejati, E. Prediction of drug solubility in lipid mixtures from the individual ingredients. AAPS PharmSciTech. 2012,
13,1103-1109. [CrossRef]

Alsenz, J.; Kuentz, M. From Quantum Chemistry to Prediction of Drug Solubility in Glycerides. Mol. Pharm. 2019, 16, 4661-4669.
[CrossRef]

Brinkmann, J.; Exner, L.; Verevkin, S.P.; Luebbert, C.; Sadowski, G. PC-SAFT Modeling of Phase Equilibria Relevant for Lipid-
Based Drug Delivery Systems. . Chem. Eng. Data 2021, 66, 1280-1289. [CrossRef]

Han, R; Xiong, H.; Ye, Z.; Yang, Y.; Huang, T; Jing, Q.; Lu, J.; Pan, H.; Ren, F; Ouyang, D. Predicting physical stability of solid
dispersions by machine learning techniques. J. Control. Release 2019, 311-312, 16-25. [CrossRef]

Mendyk, A.; Pactawski, A.; Szafraniec-Szczesny, J.; Antosik, A.; Jamréz, W.; Paluch, M.; Jachowicz, R. Data-Driven Modeling of
the Bicalutamide Dissolution from Powder Systems. AAPS PharmSciTech 2020, 21, 111-119. [CrossRef]


http://doi.org/10.1016/j.ejpb.2019.02.007
http://doi.org/10.1016/j.xphs.2020.10.068
http://www.ncbi.nlm.nih.gov/pubmed/33217423
http://doi.org/10.1021/acs.molpharmaceut.0c00355
http://doi.org/10.1016/j.fm.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/21511139
http://doi.org/10.1088/1742-6596/1529/2/022040
http://doi.org/10.3109/10837459709022615
http://www.ncbi.nlm.nih.gov/pubmed/9552436
http://doi.org/10.1016/S0895-4356(96)00002-9
http://doi.org/10.1208/s12249-012-9836-x
http://doi.org/10.1016/j.ijpharm.2017.07.048
http://doi.org/10.1016/j.apsb.2018.09.010
http://doi.org/10.1016/j.jpba.2018.06.004
http://doi.org/10.1016/j.ejpb.2020.12.001
http://www.ncbi.nlm.nih.gov/pubmed/33301864
http://doi.org/10.1007/s11095-020-02955-0
http://www.ncbi.nlm.nih.gov/pubmed/33230602
http://doi.org/10.3390/pharmaceutics11080400
http://doi.org/10.3390/pharmaceutics13050663
http://doi.org/10.3390/pharmaceutics13071101
http://www.ncbi.nlm.nih.gov/pubmed/34371792
http://doi.org/10.3390/pharmaceutics12030271
http://doi.org/10.1021/acs.molpharmaceut.5b00704
http://www.ncbi.nlm.nih.gov/pubmed/26568134
http://doi.org/10.1021/acs.molpharmaceut.8b00699
http://doi.org/10.1007/s11095-013-1083-7
http://doi.org/10.1016/j.xphs.2020.10.055
http://www.ncbi.nlm.nih.gov/pubmed/33144233
http://doi.org/10.1208/s12249-012-9830-3
http://doi.org/10.1021/acs.molpharmaceut.9b00801
http://doi.org/10.1021/acs.jced.0c00912
http://doi.org/10.1016/j.jconrel.2019.08.030
http://doi.org/10.1208/s12249-020-01660-w

Pharmaceutics 2021, 13, 1398 14 of 14

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

O'Diriscoll, C.; Griffin, B. Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact
of lipid-based formulations. Adv. Drug Deliv. Rev. 2008, 60, 617-624. [CrossRef]

Bennett-Lenane, H.; O’Shea, ].P.; O’Driscoll, C.M.; Griffin, B.T. A Retrospective Biopharmaceutical Analysis of >800 Approved
Oral Drug Products: Are Drug Properties of Solid Dispersions and Lipid-Based Formulations Distinctive? J. Pharm. Sci. 2020, 109,
3248-3261. [CrossRef]

Koehl, N.J.; Henze, L.J.; Kuentz, M.; Holm, R.; Griffin, B.T. Supersaturated Lipid-Based Formulations to Enhance the Oral
Bioavailability of Venetoclax. Pharmaceutics 2020, 12, 564. [CrossRef]

Thomas, N.; Holm, R.; Miillertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying
drug delivery systems (super-SNEDDS). ]. Control. Release 2012, 160, 25-32. [CrossRef] [PubMed]

Michaelsen, M.H.; Wasan, K.M.; Sivak, O.; Miillertz, A.; Rades, T. The Effect of Digestion and Drug Load on Halofantrine
Absorption from Self-nanoemulsifying Drug Delivery System (SNEDDS). AAPS ]. 2016, 18, 180-186. [CrossRef]

Thomas, N.; Holm, R.; Garmer, M.; Karlsson, J.J.; Miillertz, A.; Rades, T. Supersaturated Self-Nanoemulsifying Drug Delivery
Systems (Super-SNEDDS) Enhance the Bioavailability of the Poorly Water-Soluble Drug Simvastatin in Dogs. AAPS J. 2013, 15,
219-227. [CrossRef] [PubMed]

Blaabjerg, L.I.; Lindenberg, E.; Lobmann, K.; Grohganz, H.; Rades, T. Is there a correlation between the glass forming ability of a
drug and its supersaturation propensity? Int. |. Pharm. 2018, 538, 243-249. [CrossRef]

Ilie, A.-R.; Griffin, B.T.; Kolakovic, R.; Vertzoni, M.; Kuentz, M.; Holm, R. Supersaturated lipid-based drug delivery systems—
exploring impact of lipid composition type and drug properties on supersaturability and physical stability. Drug Dev. Ind. Pharm.
2020, 46, 356-364. [CrossRef] [PubMed]

Palmelund, H.; Madsen, C.M.; Plum, J.; Miillertz, A.; Rades, T. Studying the Propensity of Compounds to Supersaturate: A
Practical and Broadly Applicable Approach. J. Pharm. Sci. 2016, 105, 3021-3029. [CrossRef]

Ilie, A.-R.; Griffin, B.T.; Vertzoni, M.; Kuentz, M.; Cuyckens, F.; Wuyts, K.; Kolakovic, R.; Holm, R. Toward simplified oral
lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Dev. Ind. Pharm. 2020, 46, 2051-2060.
[CrossRef] [PubMed]

Holm, R. Bridging the gaps between academic research and industrial product developments of lipid-based formulations. Adv.
Drug Deliv. Rev. 2019, 142, 118-127. [CrossRef]

Baird, J.A.; Van Eerdenbrugh, B.; Taylor, L. A Classification System to Assess the Crystallization Tendency of Organic Molecules
from Undercooled Melts. J. Pharm. Sci. 2010, 99, 3787-3806. [CrossRef]

Baghel, S.; Cathcart, H.; Redington, W.; O’Reilly, N. An investigation into the crystallization tendency /kinetics of amorphous
active pharmaceutical ingredients: A case study with dipyridamole and cinnarizine. Eur. J. Pharm. Biopharm. 2016, 104, 59-71.
[CrossRef]

Alhalaweh, A.; Alzghoul, A.; Bergstrom, C.A. Molecular Drivers of Crystallization Kinetics for Drugs in Supersaturated Aqueous
Solutions. J. Pharm. Sci. 2019, 108, 252-259. [CrossRef]

Forina, M.; Lanteri, S.; Oliveros, M.C.C.; Millan, C.P. Selection of useful predictors in multivariate calibration. Anal. Bioanal. Chem.
2004, 380, 397-418. [CrossRef]

Alshalif, S.A.; Ibrahim, N.; Herawan, T. (Eds.) Artificial Neural Network with Hyperbolic Tangent Activation Function to Improve
the Accuracy of COCOMO II Model. Recent Advances on Soft Computing and Data Mining; Springer International Publishing;:
Berlin/Heidelberg, Germany, 2016. [CrossRef]

Moller, M.E. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525-533. [CrossRef]
Kirkham, M.B. Chapter 3-Structure and Properties of Water. In Principles of Soil and Plant Water Relations, 2nd ed.; Kirkham, M.B.,
Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 27-40.

Fradera, X.; Sola, M. Second-order atomic Fukui indices from the electron-pair density in the framework of the atoms in molecules
theory. J. Comput. Chem. 2003, 25, 439—446. [CrossRef] [PubMed]

Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20,
722-725. [CrossRef]

Teleki, A.; Nylander, O.; Bergstrom, C.A. Intrinsic Dissolution Rate Profiling of Poorly Water-Soluble Compounds in Biorelevant
Dissolution Media. Pharmaceutics 2020, 12, 493. [CrossRef] [PubMed]

Geidl, S.; Bouchal, T,; Racek, T.; Vafekovd, R.S.; Hejret, V.; Kfenek, A.; Abagyan, R.; Ko¢a, J. High-quality and universal empirical
atomic charges for chemoinformatics applications. J. Chemin 2015, 7, 1-10. [CrossRef]

Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron
1980, 36, 3219-3228. [CrossRef]


http://doi.org/10.1016/j.addr.2007.10.012
http://doi.org/10.1016/j.xphs.2020.08.008
http://doi.org/10.3390/pharmaceutics12060564
http://doi.org/10.1016/j.jconrel.2012.02.027
http://www.ncbi.nlm.nih.gov/pubmed/22405903
http://doi.org/10.1208/s12248-015-9832-7
http://doi.org/10.1208/s12248-012-9433-7
http://www.ncbi.nlm.nih.gov/pubmed/23180162
http://doi.org/10.1016/j.ijpharm.2018.01.013
http://doi.org/10.1080/03639045.2020.1721526
http://www.ncbi.nlm.nih.gov/pubmed/31975613
http://doi.org/10.1016/j.xphs.2016.06.016
http://doi.org/10.1080/03639045.2020.1843475
http://www.ncbi.nlm.nih.gov/pubmed/33124918
http://doi.org/10.1016/j.addr.2019.01.009
http://doi.org/10.1002/jps.22197
http://doi.org/10.1016/j.ejpb.2016.04.017
http://doi.org/10.1016/j.xphs.2018.11.006
http://doi.org/10.1007/s00216-004-2768-x
http://doi.org/10.1007/978-3-319-51281-5_9
http://doi.org/10.1016/S0893-6080(05)80056-5
http://doi.org/10.1002/jcc.10396
http://www.ncbi.nlm.nih.gov/pubmed/14696078
http://doi.org/10.1063/1.1700523
http://doi.org/10.3390/pharmaceutics12060493
http://www.ncbi.nlm.nih.gov/pubmed/32481718
http://doi.org/10.1186/s13321-015-0107-1
http://doi.org/10.1016/0040-4020(80)80168-2

	Introduction 
	Materials and Methods 
	Chemicals and Materials 
	Formulations 
	Dataset Selection/Drug Physiochemical and Molecular Properties 
	Equilibrium Solubility Determination 
	Apparent Degree of Supersaturation (aDS) 
	Differential Scanning Calorimetry 
	Statistical Analysis 
	Partial Least Squares Regression (PLS) 
	Artificial Neural Networks (ANNs) 

	Results 
	Comparing the Solubility of MC- and LC-based LBFs and sLBFs 
	Apparent Degree of Supersaturation 
	Quantitatively Predicting aDS Using PLS and ANNs 

	Discussion 
	Conclusions 
	References

