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Abstract: With the ability to fabricate personalized dosage forms and considerably shorter 

manufacturing time, semisolid extrusion (SSE) 3D printing has rapidly grown in popularity in 

recent years as a novel, versatile manufacturing method that powers a wide range of applications 

in the pharmaceutical field. In this work, the feasibility of using SSE 3D printing to fabricate fast-

disintegrating tablets (FDTs) that are pre-filled in dosing syringes was evaluated. The novel design 

approach, ‘tablet-in-syringe’, was aimed to ease the oral drug administration and improve the 

dosing accuracy for dysphagic patients. The effect of varying polymer (hydroxypropyl 

methylcellulose E15) concentrations and printing parameters (e.g., extrusion rate) on dimensional 

accuracy, physicochemical properties, disintegration time, and content uniformity of 3D-printed 

FDTs was studied. An overall comparison of results demonstrated that the best FDT formulation 

among those developed was with a polymer:drug ratio (w/w) of 1:30, printed at extrusion rate of 3.5 

μL/s. The diameter of printed filaments of this formulation was observed to be similar to the nozzle 

diameter (22G), proving that good printing accuracy was achieved. This FDTs also had the fastest 

disintegration time (0.81 ± 0.14 min) and a drug (phenytoin sodium, as the model drug) content 

uniformity that met pharmacopeial specifications. Although the flow characteristics of the dissolved 

formulation still need improvement, our findings suggested that the novel ‘tablet-in-syringe’ could 

potentially be considered as a promising fast-disintegrating drug delivery system that can be 

personalized and manufactured at—or close to—the point of care for dysphagic patients using SSE. 

Keywords: 3D printing; extrusion-based 3D printing; semisolid extrusion 3D printing; dysphagia; 

fast-disintegrating tablets; phenytoin sodium 

 

1. Introduction 

Oropharyngeal dysphagia (OD), also known as swallowing difficulties, is a 

symptom of swallowing dysfunction that provokes difficulty or inability to safely propel 

a food bolus from the mouth, through the pharynx, to the esophagus [1]. OD is a growing 

global healthcare concern associated with a wide range of diseases and health conditions, 

including neurological or neurodegenerative diseases (e.g., Parkinson’s disease, 

Alzheimer’s disease, stroke, dementia, multiple sclerosis (MS), traumatic brain injury) 

and head and/or neck diseases (e.g., head and neck cancer, osteophytes) [2–4]. It is an 

increasingly common symptom that can occur at any age with an estimated prevalence of 
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8% of the general population [5], but is most commonly diagnosed in the elderly, aged 65 

and older, with occurrence rates of up to 30–40% in the population aged ≥ 65 years old [6]. 

The prevalence of OD in the elderly is also expected to substantially increase in the coming 

years as the elderly population continues to expand. Hence, it becomes the challenge of 

researchers and healthcare professionals to find the most effective and safest way possible 

to manage this difficulty in order to avoid the risk of negative health status changes caused 

by dysphagia, such as the risk of malnutrition and pneumonia, and to improve the 

patients’ quality of life, because accurate swallowing is a necessary physiological function 

for safe breathing and alimentation [7]. 

The traditional approach to facilitating swallowing is to modify the consistency of 

the liquid dosed to patient and match the texture to the patients’ swallowing abilities [8]. 

In order to effectively deliver oral medications to dysphagic patients, one of the common 

practices is to mix the crushed tablets or opened capsule fillings with thick liquid 

(unlicensed administration) to adjust the viscosity and flow characteristics of the drug 

solutions to ensure that the formulation would be suitable for the dysphagic patient to 

swallow [9,10]. According to the International Dysphagia Diet Standardization Initiative 

(IDDSI) framework [11], with regard to liquids, the IDDSI committee classified drink 

thickness into 5 levels (from 0 to 4) based on fluidity and scientific and survey evidence, 

with level 0 being a thin liquid with a water-like flow. Level 1 is a slightly thick liquid that 

is frequently used as a thickened drink in the pediatric population or the adult population 

when swallowing safety must be controlled. Level 2 is a mildly thick liquid that is 

appropriate for patients who have lost tongue control and strength. Level 3 is a 

liquidized/moderately thick liquid that is better suited for patients who have difficulty 

swallowing or have pain on swallowing. IDDSI levels 2–4 are considered appropriate for 

adult oropharyngeal dysphagia management. However, for IDDSI level 4, which 

describes extremely thick liquids that cannot be passed through a 10 mL syringe in 10 s, 

the additional measurements should be evaluated using IDDSI food testing methods (fork 

test and spoon tilt test). 

Using such unlicensed administration approaches often increases the risks of altering 

the bioavailability of the original solid dosage form due to the potential interaction with 

food, and could potentially put the patient in danger of dose dumping, if the solid dosage 

form is intended to be a controlled-release product. This study proposes a new oral dosing 

device for patients with dysphagia to improve the dosing accuracy without the need of 

tempering. ‘Tablet-in-syringe’ is a dosing device where a fast-disintegrating tablet (FDT) 

is 3D printed and pre-filled in a dosing syringe, as illustrated in Figure 1. A fixed amount 

of water can be drawn into the syringe to disintegrate the tablet rapidly. The syringe can 

then be used to directly dose the patient orally. However, the disintegrated FDT 

formulation needs to provide sufficient thickness that is suitable for administrating to 

dysphagia patients, according to IDDSI guidance. 
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Figure 1. Graphical illustration of the ‘tablet-in-syringe’ device (a) and images of 3D-printed fast-

disintegrating tablet (FDT) pre-filled in a dosing syringe (b), and after disintegration (c). 

Fast-disintegrating tablets (FDT) are one of the promising dosage forms that can 

rapidly disintegrate in the mouth or rapidly disintegrate in water before being 

administered orally via syringe. The disintegrated mass of the FDT could then be 

gradually moved down and passed through the esophagus, allowing pediatric, geriatric, 

psychiatric, bedridden, and dysphagic patients to take their medications with ease [12,13]. 

Furthermore, FDT offers several advantages, such as high drug loading, good chemical 

stability, rapid onset of action, improved bioavailability, and no need to measure drug 

dosing (single-unit dosage forms) [14]. For the development and manufacture of FDT, the 

porosity, density, and hardness are some of the FDT properties that must be considered 

during the development process. In general, the FDT should have the highly porous 

network, low density, and low hardness to promote fast disintegration [15]. To date, 

various manufacturing techniques have been adopted to fabricate FDTs, such as 

granulation methods [16], freeze drying [17], sublimation [18], direct compression [19], 

and three-dimensional (3D) printing technology [20,21]. Among these techniques, 3D 

printing technology is noteworthy regarding its flexible and digitally controllable design 

and manufacturing process, which enables the design and development of the desired 

porous and loose structure of FDT, thereby accelerating disintegration time and reducing 

swallowing difficulties [22]. 

Extrusion-based 3D printing is the most common 3D printing method used for 

pharmaceutical purposes and its potential for fabricating solid oral dosage forms has been 

extensively researched in recent years [23,24]. Semisolid extrusion (SSE) 3D printing is a 

subcategory of extrusion-based 3D printing. During an SSE 3D-printing process, the 

formulated paste or gel (often referred as ‘ink’) is extruded from the printing nozzle and 

deposited in a layer-by-layer manner to form a 3D object [25]. It is regarded as a very 

promising approach for the fabrication of various personalized pharmaceutical products, 

such as polypills, controlled-release tablets, chewable printlets, immediate-release tablets, 

and fast-disintegrating drug delivery systems (fast-disintegrating films or tablets), that 

can be tailored to each patient’s clinical need [26]. Although the throughput of 3D printing 

in comparison with other, traditional, large-scale manufacturing methods is much 

lower—which limits its production in large-scale manufacturing—3D printing 

nonetheless remains superior in its ability to produce on-demand, individualized dosage 

forms on a small scale at, or close to, the point of care [27,28]. However, studies on the 

feasibility of 3D printing in pharmaceutical applications are still limited and 

understudied. Only a few studies have attempted to fabricate FDTs through semisolid 
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extrusion 3D printers [29–31]. Both the choice of excipients and infill density of the design 

of the tablets can affect the disintegration time of the FDTs [32]. 

The aim of this study was to evaluate the feasibility of using SSE 3D printing to 

produce FDTs with high drug loading of water-soluble drugs. Phenytoin sodium, as one 

of the most commonly used antiepileptic drugs, was chosen to be the model drug in this 

study. It is used to treat and control the generalized tonic–clonic (grand mal) and complex 

partial (psychomotor, temporal lobe) seizures and has a narrow therapeutic index. 

Therefore, precise therapeutic dosages and dosage adjustments based on the patient’s 

individual characteristics and plasma concentration [33] are vital for this drug, but are 

currently not achieved by the commercial drug products. In our previous work [34], we 

designed, and 3D printed the phenytoin-loaded, orodispersible films (ODFs) using a 

customized syringe extrusion 3D printer. Our developed ODFs showed promising results 

in terms of film appearance and mechanical strength as well as a rapid disintegration time 

of less than 5 s. In this study, we examined the suitability of using SSE 3D printing to print 

FDTs in order to increase the drug loading, and proposed the new design of the dosing 

solution for dysphagic patients. The printing inks were formulated as pastes using 

hydroxypropyl methylcellulose (HPMC E15), a low-viscosity grade, water-soluble 

polymer, with moderate hydroxypropyl substitution (8.6%) and high methoxy content 

(28.4%). The effect of printing ink rheology and extrusion rate on printability dimensional 

accuracy, physical and morphological properties, in vitro disintegration time, phenytoin 

content, and the International Dysphagia Diet Standardization Initiative (IDDSI) flow 

characteristics of developed formulations were evaluated.  

2. Materials and Methods 

2.1. Materials 

The model drug, 5,5-diphenylhydantoin sodium salt or phenytoin sodium salt (PT), 

with purity of ≥99% was purchased from Sigma-Aldrich (Saint Louis, MO, USA). 

Hydroxypropyl methylcellulose E15 (HPMC E15, AnyCoat®-C AN15, substitution type 

2910, viscosity 15 mPa·s) was purchased from Lotte Fine Chemical Co., Ltd. (Seoul, Korea). 

Sodium starch glycolate (Glycolys®) was purchased from Roquette (Lestrem, France). 

Ethanol (VWR Chemicals BDH®, Radnor, PA, USA) and distilled water were used as the 

solvent for preparing the printing ink formulations. All of the other reagents and solvents 

used in this study were analytical grade. 

2.2. Preparation of Printing Inks 

The drug-loaded printing inks were prepared by dispersing phenytoin sodium at a 

concentration of 1.05 g/mL in ethanol–water mixtures (9:1 v/v). The drug dispersion was 

magnetically stirred for 2 h at 400 rpm and 60 °C, followed by the addition of sodium 

starch glycolate (SSG) as a superdisintegrant at a concentration of 4% w/v of total 

formulation, and then stirred for another 30 min. Subsequently, hydroxypropyl 

methylcellulose E15 (HPMC E15) at the polymer:drug weight ratios (w/w) of 1:25, 1:30, 

and 1:35 was added and mixed at room temperature with a spatula until the homogeneous 

semisolid system of printing inks was formed. Afterwards, the printing inks were kept in 

tightly sealed and light-protected beakers at room temperature for a day before 3D 

printing. 

2.3. Rheological Characterisation of Printing Inks 

The rheological characteristics of all printing inks were characterized by the 

Brookfield Rheometer (R/S-CPS, P25 DIN plate, Brookfield engineering laboratories, 

Middleboro, MA, USA) equipped with 25 mm in diameter of parallel plates, set at a gap 

width of 1 mm, and operated in controlled shear rate (CSR) mode. For all tests, 

approximately 0.6 mL of each printing ink sample was gently loaded onto the lower plate 

geometry and the excess printing ink sample was carefully removed to suit the 25 mm 
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plate diameter. The shear viscosity tests were carried out in flow ramp mode, with the 

shear rate gradually increasing from 0 to 100 s−1 in 1 min, and the temperature was 

controlled at 25 °C. All the tests were carried out in triplicate. The rheology of all printing 

inks was analyzed and the flow behavior or power-law index ( � ) and consistency 

coefficient (�) were calculated using the power-law model equation, as follows: 

� = ��̇��� 

where �  is the viscosity of the printing ink measured in Pa·s, �  is the consistency 

coefficient (Pa·sn), �̇ is the shear rate measured in s−1, and � is the power-law index. 

2.4. Design and SSE 3D Printing of FDTs 

The model of 3D-printed FDTs in cylindrical shape was predesigned and created 

using the computer-aided design (CAD) software and then exported in the 

stereolithography (STL) file format. As shown in Figure 2, the diameter and thickness of 

the 3D model were designed to be 19.0 mm and 1.0 mm, respectively. In addition, based 

on preliminary optimization results (data not shown), the 3D-printed FDTs were designed 

to have a porous grid structure with a 25% infill density and a layer height of 0.41 mm, 

which is equivalent to the inner diameter of a 22G nozzle. Subsequently, the printing inks 

were transferred into a 3 mL syringe (Terumo, Tokyo, Japan) and printed with an SSE 3D 

printer (BIOX 3D printer, Cellink, Boston, MA, USA). The stepper motors drive the motion 

in the Z direction via twin lead screws with an overall resolution of 0.001 mm/step with a 

1.8° step angle. During the printing process, the nozzle speed was kept at 10 mm/s. The 

extrusion rate was varied to 3.0, 3.5, and 4.0 μL/s, which corresponded to an estimated 

printing time of 0.8–1.2 min per tablet, to investigate its effect on the dimensional and pore 

geometry accuracy of the 3D-printed FDTs. After printing, the 3D-printed FDTs were 

dried at room temperature for 24 h to remove solvents. 

 

Figure 2. Computer-aided design (CAD) model of the 3D-printed FDT. 

2.5. Dimensional Accuracy and Filament Fusion Analysis 

To evaluate the printing accuracy and shape stability of the 3D-printed FDTs, the 

diameter of printing ink filaments extruded through an extrusion nozzle (22G, 0.41 mm 

in internal diameter) and 2 different factors—shape fidelity (SFF) and rate of material 

spreading (Dfr)—were evaluated using Equations (1) and (2), respectively. The diameter 

and pore area used for calculation were measured in ImageJ (Bethesda, MD, USA) using 

top view images from a digital camera and scanning electron microscopy (SEM). 

SFF = Printed area/CAD model area, (1)

Dfr = [(At − Aa)/At] × 100%, (2)

where At is theoretical pore area and Aa is actual pore area. 

2.6. Weight and Thickness Variation of SSE 3D-Printed FDTs 
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To assess the uniformity of 3D-printed FDTs, ten tablets of each formulation were 

randomly selected and weighed individually with an analytical weighing balance (LAB 

214i, Adam Equipment Co., Ltd., Jing An, Shanghai, China) and measured for their thickness 

at three different points on a single 3D-printed FDTs using an electronic digital thickness 

gauge (Deqing Syntek Electronic Technology Co., Ltd., Zhejiang, China). The average 

weight and average thickness were calculated, along with standard deviation (SD). 

2.7. Morphological Assessment of SSE 3D-Printed FDTs 

Scanning electron microscopy (SEM) images of 3D-printed FDTs were acquired 

using JEOL JCM-7000 NeoScope™ Benchtop SEM (JEOL, Tokyo, Japan). Prior to imaging, 

uncoated 3D-printed FDTs were mounted on aluminum stubs using double-sided carbon 

tape (NEM tape, Nisshin Co., Ltd., Tokyo, Japan), followed by gold-coating for 2 min, then 

positioned on the stage in the imaging compartment of the device. Then, SEM images of 

all the 3D-printed FDTs were collected using a SE (secondary electron) detector at an 

acceleration voltage of 5 kV under low vacuum mode. Subsequently, 2D assessment of 

3D-printed FDTs morphology, pore interconnectivity, and pore geometry was conducted 

at magnifications of ×30. 

2.8. In Vitro Disintegration Time Tests of SSE 3D-Printed FDTs 

The disintegration time of the 3D-printed FDTs for oral administration via syringe 

was determined by placing the tablet into the barrel of a 20 mL syringe (Terumo, Tokyo, 

Japan) and adding 5 mL of air. Ten milliliters of 37 °C water was then drawn into the 

syringe and gently shaken manually by simple downward–upward inversion of the 

syringe. The time required for the 3D-printed FDTs to break into small pieces was visually 

recorded and noted as in vitro disintegration time. 

2.9. Determination of Phenytoin Sodium Content Uniformity 

To determine the phenytoin sodium content in the 3D-printed FDTs, 3 tablets of each 

formulation were taken in separate 25 mL vial, 10 mL of distilled water was added and 

continuously magnetically stirred at a speed of 500 rpm at room temperature for 2 h. Then, 

the sample solution was suitably diluted 3.75 times with methanol and further diluted 8 

times with distilled water prior to filtering through a 0.45 μm nylon membrane filter 

(Alwsci® Technologies, Shaoxing, China) and analyzed by high-performance liquid 

chromatography (HPLC). The quantitative analysis of phenytoin sodium was performed 

using an HPLC system (HP 1100 Series HPLC, Agilent Technologies, Inc., Santa Clara, 

CA, USA) equipped with a C18 column (Capcell Pak AQ 250 mm × 4.6 mm, particle size 

of 5 μm, Shiseido, Tokyo, Japan) and the analysis method was adopted from the United 

States Pharmacopeia (USP: extended phenytoin sodium capsules) [35]. The HPLC analysis 

was carried out at 25 °C using an isocratic mobile phase of methanol–water (70:30, v/v). 

The filtered mobile phase was pumped at a flow rate of 1.0 mL/min with run time of 8.0 

min. The injection volume was 10 μL and UV detection was carried out at 229 nm with a 

retention time of approximately 4.5 min. The phenytoin sodium contents were calculated 

using a standard calibration curve for phenytoin sodium in water, which was constructed 

in the range of 0.10–0.60 mg/mL and demonstrated linearity with a high correlation 

coefficient (r2 = 0.9992). The linear regression equation was obtained as y = 9463.3x − 482.16, 

where y and x correspond to peak area and phenytoin sodium concentration (mg/mL), 

respectively. The limits of detection (LOD) and limits of quantification (LOQ) were 

determined as 0.20 and 0.61 μg/mL, respectively. All the measurements were performed 

in triplicate and the average percentages of phenytoin sodium content were calculated 

with the standard deviation. The optimum formulation in terms of the dimensional 

accuracy, disintegration time, and phenytoin sodium content uniformity were selected for 

further study on its mechanical property, in vitro release profile, release kinetics, and 

IDDSI flow characteristics. 
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2.10. Mechanical Strength Testing of SSE 3D-Printed FDTs 

The mechanical strength testing of the 3D-printed FDT was adapted from the study 

of Zhao et al. [36]. The test was performed by using a texture analyzer (TX.TA plus, Stable 

Micro Systems, Surrey, UK) equipped with a 5 kg load cell, a 2 mm stainless steel 

cylindrical probe (P/2 probe) at temperature of 25 °C. Prior to the test, the diameter and 

thickness of each 3D-printed FDT were measured by using an electronic digital thickness 

gauge. The test was conducted in compression mode with a pre-test speed of 1 mm/s, a 

test speed of 0.1 mm/s up to a distance of 2 mm, a post-test speed of 1 mm/s, and a trigger 

force of 5 g. The maximum force reading was noted as hardness of the 3D-printed FDTs 

[37], whereas the tensile strength of the 3D-printed FDTs was characterized by the 

maximum breaking force, and the diameter and thickness of the 3D printed FDTs were 

calculated from the following equation [36]: 

� =  
2�

���
 

where � is the tensile strength (TS; N/mm2), � is maximum breaking force (N), � is the 

probe diameter (mm), and � is the thickness of 3D-printed FDT. 

All measurements were carried out in five replicates and the hardness and tensile 

strength of the selected 3D-printed FDT were reported as mean ± standard deviation (SD). 

2.11. In Vitro Phenytoin Sodium Release Study and Drug Release Kinetics 

The in vitro release behaviors of the most optimal 3D-printed FDT formulation were 

investigated using a USP Apparatus 2 (paddle method) modified from a USP monograph 

on phenytoin oral suspension performance tests [35]. To determine phenytoin sodium 

release in suspension dosage form, 10 mL of 3D-printed FDT sample suspension (after 

disintegration) was vigorously shaken about 100 times and its density was determined 

using a 10 mL pycnometer (Witeg Labortechnik GmbH, Wertheim, Germany). Then, a 

total of 10 mL of sample suspension was collected using a 10 mL syringe, and the total 

weight of syringe and sample was recorded. Thereafter, with the paddles lowered, the 

sample suspension in each syringe was gently emptied into the bottom of each dissolution 

vessel containing 900 mL of tris(hydroxymethyl)aminomethane with 1% w/v sodium 

lauryl sulfate (SLS) buffer solution (pH 7.5). Each syringe was then reweighed and the 

weight of sample suspension which delivered into each vessel was calculated. The release 

study was performed in 6 replicates at a paddle speed of 35 rpm and 37 ± 0.5 °C. At 

predetermined time intervals (1, 3, 5, 10, 15, 30, and 60 min), 3 mL of the sample was 

withdrawn and replaced with an equal volume of fresh dissolution medium in order to 

maintain sink conditions throughout the experiment. The withdrawn dissolution samples 

were filtered with a 0.45 μm nylon membrane filter prior to HPLC analysis. For HPLC 

analysis, the chromatographic separation was performed at 25 °C on a C18 column with 

an isocratic mobile phase of 23% v/v acetonitrile, 27% v/v methanol and 50% v/v of pH 3.0 

phosphate-buffered solution at a flow rate of 1.0 mL/min. The injection volume was 10 μL 

and the UV detection wavelength was set as 240 nm. The retention time was 

approximately 7.8 min. The LOD and LOQ were found to be 0.14 and 0.41 μg/mL, 

respectively. The cumulative percentage of drug release was calculated using the standard 

equation from the standard calibration curve of phenytoin sodium in Tris buffer pH 7.5 

with 1% w/v SLS: y = 5.2578x + 3.419 (r2 = 0.9998), where x and y correspond to phenytoin 

sodium concentration (μg/mL) and peak area, respectively. 

In order to determine the kinetics and mechanism of drug release, various kinetics 

models (i.e., zero-order model, first-order model, Higuchi matrix model, and Korsmeyer–

Peppas empirical power-law model) were applied to the data obtained from in vitro 

release study. The in vitro release data were fitted into the following equations: 

(a) zero-order model: �� =  �� + ��  × � 
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where �� is the amount of drug dissolved in time (�), �� is the initial amount of drug in 

the solution, and �� is the zero-order release constant. 

(b) first-order model: log �� −  log �� =  
��× �

�.���
 

where �� is the initial concentration of the drug, �� is the amount of drug dissolved in 

time (t), and �� is the first-order release constant. 

(c) Higuchi matrix model: �� =  ��  × ��/� 

where �� is the amount of drug dissolved in time (�) and �� is the Higuchi diffusion 

constant. 

(d) Korsmeyer–Peppas empirical power-law model:   
��

��
=  � × �� 

where 
��

��
 is the fraction of drug released at time (�), � is the structural and geometrical 

constant, and � is the release exponent. 

2.12. International Dysphagia Diet Standardisation Initiative Flow Test 

In order to determine the swallowing safety of 3D-printed FDTs when administered 

orally via syringe after disintegration in warm water and/or other liquids, the flow 

characteristics were measured using the drink testing method described in the 

International Dysphagia Diet Standardization Initiative (IDDSI) framework and 

guidelines [38]. In the IDDSI flow test, in accordance with the ISO standard (ISO 7886-1) 

and IDDSI syringe specifications, a single-use 10 mL central Luer slip tip syringe (REF 

302143, BD, Tuas, Singapore) with a 61.5 mm length of 10 mL scale was used in this study. 

Briefly, 10 mL of each liquid sample was slowly poured into the syringe until it reached 

the 10 mL mark. Then, the syringe nozzle was released, and the liquid sample was allowed 

to flow freely for 10 s The remaining volume of the liquid sample in the syringe was 

determined using video analysis, and an image of the liquid sample was captured after 10 

s. The IDDSI level was determined based on the remaining volume of the sample after 10 

s of flow as level 3 (more than 8 mL remaining), level 2 (4–8 mL remaining), level 1 (1–4 

mL remaining), or level 0 (less than 1 mL remaining). 

2.13. Statistical Analysis 

All data were presented as mean ± standard deviations (SD) and then were analyzed 

through the one-way analysis of variance (ANOVA) using SPSS® statistics software 

version 17.0 (IBM Corporation, Armonk, NY, USA) at p level less than 0.05 to determine 

the statistical significance of the difference in the results.  

3. Results and Discussion 

3.1. Rheological Behaviors of Printing Inks 

In this study, the rheological characterization of all developed printing inks was 

carried out in order to assess the flowability and suitability of printing inks for semisolid 

extrusion 3D printing. To be suitable for SSE 3D printing, the viscosity of the inks should 

become less viscous and could be extruded smoothly through the nozzle when the high 

shear rate was applied. The flow curves (Figure 3) showed that the apparent viscosity of 

all printing inks was found to decrease significantly as shear rate increased, 

demonstrating the shear-thinning non-Newtonian fluid properties that make the inks 

suitable for SSE 3D printing.  
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Figure 3. Log–log plot fitting with power-law model of viscosity as a function of shear rate of the 

printing inks at polymer:drug ratios (w/w) of 1:25, 1:30, and 1:35. 

In addition, the power-law model was fitted to experimentally obtained results 

(viscosity–shear rate flow curves) of all the printing inks to determine both flow behavior 

or power-law index (�) and consistency coefficient (�), as shown in Table 1. The results 

showed that the power-law model fits the experimental flow curve well and is appropriate 

for expressing the rheological behavior of all printing inks, as the correlation coefficient 

(R2) values in all printing inks were greater than 0.99. The � values of all printing inks 

were found less than 1 and fall in the range of 0.00–0.20, indicating a strong shear-thinning 

behavior [39]. In addition, the viscosity, � values, and � values of all printing inks were 

found to be highly dependent on polymer concentration. An increase in the proportion of 

HPMC E15 resulted in an increase in the �  values, indicating that the printing inks 

became more viscous and more pseudoplasticity at higher HPMC E15 contents [40]. While 

the � values of all printing inks were found to decrease from 0.19 to 0.00 when the HPMC 

E15 content was increased and polymer:drug ratio was changed from 1:35 to 1:25, 

suggesting that the printing ink formulation with a polymer:drug ratio of 1:25 exhibits 

more intense shear-thinning behavior. This finding is consistent with previous research 

which reported that the addition of polymer content could significantly affect the flow 

behaviors of the printing ink by increasing the viscosity and shear-thinning behaviors. 

The enhanced shear-thinning behaviors of printing inks may also influence their extrusion 

capability and the structural stability of 3D-printed FDTs after 3D drying [41]. The 

printable ink should ideally have shear-thinning behavior and a viscosity low enough to 

allow easy extrusion from a small-diameter nozzle while also being high enough to allow 

the printing to hold its shape after printing and stackable with previous layers [42]. 

Table 1. Viscosity at initial shear rate, flow behavior index (�), consistency coefficient (�), and 

correlation coefficient (R2) of the printing inks at polymer:drug ratio (w/w) of 1:25, 1:30, and 1:35. 

Printing Ink 

Formulation 

Viscosity 

(Pa·s ± SD) 

Flow Behavior 

Index (�) 

Consistency 

Coefficient (�) 

Correlation 

Coefficient (R2) 

1:25 961.47 ± 81.25 0.00 3316.37 0.9972 

1:30 493.10 ± 7.17 0.06 1621.95 0.9968 

1:35 270.25 ± 13.58 0.19 744.02 0.9931 
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At the highest HPMC E15 content, printing inks with a polymer:drug ratio of 1:25, 

which has the highest viscosity at initial shear rate (961.47 ± 81.25 Pa·s), failed to be 

extruded through continuously the extrusion nozzle (22G, 0.41 mm in diameter). The 

nozzle blockage of this formulation was observed shortly after the printing began. This 

could be due to the denser formation of a network structure between the drug and the 

polymer, as well as excessive viscosity and rapid solvent evaporation. On the other hand, 

the printing inks with polymer:drug ratios of 1:30 and 1:35 were printable through nozzle 

diameters of 0.41 mm at extrusion rates of 3.5 and 4.0 μL/s, respectively. According to our 

findings, a printing ink should have a viscosity in the range of 270–500 Pa·s at an initial 

shear rate of 3.44 s−1 in order to be effectively extruded and 3D printed. Thus, the 1:30 and 

1:35 printing ink formulations were subsequently selected for further evaluation for their 

printing performance and physicochemical properties of the 3D-printed FDTs. 

3.2. Effect of Viscosity and Extrusion Rate on Printability, Morphological, and Physicochemical 

Characteristics of the 3D-Printed FDTs 

Dimensional accuracy and shape fidelity are important factors to consider when 

developing 3D printed products to ensure that the 3D-printed FDTs can be reproducibly 

printed with acceptable appearance and contain the targeted amount of phenytoin 

sodium. According to our preliminary results on filament fusion analysis, 3D-printed 

FDTs with a 25% infill density have acceptable tablet appearance, the least merging, and 

the highest drug-loading content when compared with others printed with a lower or 

higher infill density. In this study, the results exhibited that HPMC E15 content and 

printing ink viscosity had a significant influence on the printing quality, dimensional 

accuracy, and shape fidelity of the 3D-printed FDTs. As shown in Table 2, the diameter of 

printing ink filament and rate of material spreading (Dfr) were found to be significantly 

decreased (p < 0.05) as the polymer content of the printing ink increased and the ink 

became more viscous. Our results are in accordance with the previous studies in showing 

that the printing ink with a high flow behavior index (�) could spread out on the building 

plate after printing due to its low viscosity, leading to a larger diameter of printing ink 

filament than the actual nozzle size; whereas, the increase HPMC content and printing ink 

viscosity resulted in smaller diameter of printing ink filament, which subsequently 

improved the geometries’ resolution and printing quality [41,43]. Moreover, the results 

demonstrated that not only the HPMC E15 content (and therefore the viscosity) but also 

the printing parameters, such as the extrusion rate through the nozzle (22G), played an 

important role in the 3D-printing process and had an effect on diameter of the extruded 

ink filament and Dfr. During the printing parameter optimization process, it was found 

that changing in extrusion rate in ranges of 3.0, 3.5, and 4.0 μL/s caused the observable 

changes in diameter of the extruded ink filament and pore size of the printed structures 

(Figure 4). The extruded filament diameter of printing ink formulation 1:30 decreased 

significantly (p < 0.05); whereas the extruded filament diameter of printing ink 

formulation 1:35 decreased slightly (p > 0.05) with a 0.5 μL/s decrease in extrusion rate. 

The diameters of the extruded ink with a polymer:drug ratio of 1:30 and an extrusion rate 

of 3.5 μL/s were found to be mostly close to the actual printing nozzle diameter (0.42 ± 

0.02 mm), indicating that it is the optimum formulation that can maintain the geometric 

characteristics during printing. At an extrusion rate less than 3.5 μL/s, neither formulation 

was capable of printing FDTs with acceptable shape fidelity. When all other parameters 

were kept constant, too low extrusion rate (3.0 μL/s) caused flow instabilities and 

discontinuous printed filaments, as well as facilitating the solvent evaporation around the 

nozzle tip, thus leading to nozzle blockage issues. 

Table 2. Printing quality, dimensional accuracy, and shape fidelity analysis of 3D-printed FDTs. 

Printing Ink 

Formulation 

Extrusion Rate 

(μL/s) 

Diameter of Printing 

Ink Filament 

Rate of Material 

Spreading or Dfr 

Shape Fidelity 

Factor or SFF 
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(mm ± SD) (% ± SD) 

1:30 3.0 NA NA NA 

 3.5 0.42 ± 0.02 a 15.65 ± 5.58 a 0.92 ± 0.01 a 

 4.0 0.48 ± 0.03 b 25.69 ± 9.39 a 0.92 ± 0.03 a 

1:35 3.0 NA NA NA 

 3.5 0.78 ± 0.04 c 40.07 ± 9.89 b 0.92 ± 0.02 a 

 4.0 0.82 ± 0.01 c 47.05 ± 7.79 b 0.94 ± 0.01 a 

Note: NA (not applicable) means the printing formulations could not extrude through the nozzle or 

be continuously printed. For each test, means with the same letter are not significantly different. 

Thus, means with the different letter, e.g., ‘a’ or ‘b’ or ‘c’ are statistically different (p < 0.05). 

 

Figure 4. SEM images and photographs of the dried 3D-printed FDTs containing polymer:drug ratio 

(w/w) of 1:30 with extrusion rates of 3.5 μL/s (a) and 4.0 μL/s (b), and 1:35 with extrusion rates of 3.5 

μL/s (c) 4.0 μL/s (d) and 25% of infill density. 

As shown in Figure 4, all 3D-printed FDTs after drying were rounded in shape, white 

in color and had a porous grid structure. The SEM images of the FDTs demonstrated the 
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printed filaments are uniform in diameter with smooth surfaces. The dimensional 

accuracy of the 3D-printed FDTs with a polymer:drug ratio (w/w) of 1:30 and an extrusion 

rate of 3.5 μL/s showed better pore size and geometry than other printing formulations. 

As indicated in Table 2, the printing ink of this formulation was found to spread out 

during the drying process in the rate of 15.65 ± 5.58 % and the rate was increased to 25.69 

± 9.39% for a same formulation printed at an extrusion rate of 4.0 μL/s. The pore sizes of 

3D-printed FDTs were found to decrease slightly during the drying process, resulting in 

a reduction in printing quality of the 3D-printed FDTs after drying. In addition, it was 

observed that the rate of material spreading (diffusion rate) was significantly increased to 

40.07 ± 9.89 and 47.05 ± 7.79% for 3D-printed FDTs with a polymer:drug ratio of 1:35 and 

an extrusion rate of 3.5 and 4.0 μL/s, respectively. When the HPMC E15 content and 

viscosity were decreased, the actual pore shape of the 3D-printed FDTs of these two 

formulations was observed to be more rounded than the regular square shape which was 

predesigned in the CAD model. As a result, the findings of this study indicated that the 

actual pore shape and size of the 3D-printed FDTs were mainly influenced by the viscosity 

of the printing inks. The printing ink should have a high enough viscosity that allows the 

printing structures to stack up into three layers and keep their shape after printing and 

drying. Our findings are also in an agreement with the literature which suggested that the 

shape retention ability of the printed structure was improved by increasing the HPMC 

concentration [44] and the actual pore area of the printed structure became smaller than 

the designed pore area, resulting in a reduction in shape fidelity and printing resolution 

[45]. Nonetheless, these results revealed that changes in printing ink viscosity and 

extrusion rate had no significant effect on the peripheral dimensions or shape fidelity 

(SFF) of 3D-printed FDTs. The SFF of the 3D-printed FDTs is 0.92 (the printed construct 

dimensions comparing to original CAD design) which is a result of the merging and 

shrinkage of the FDTs after drying. 

Furthermore, the effect of varying the viscosity and extrusion rate on the weight and 

thickness of 3D-printed FDTs was investigated in this study in order to optimize printing 

parameters and ensure the consistency and accuracy of the printing process. The weight 

and thickness of all 3D-printed FDTs were illustrated in Table 3. The average weight of 

3D-printed FDTs with varying viscosities and extrusion rates was ranged from 0.128 to 

0.164 g. As expected, the extrusion rate was found to be a very effective factor in 

controlling the weight of 3D-printed FDTs. As the extrusion rate increased, the weight of 

3D-printed FDTs increased significantly (p < 0.05) and thereby may lead to inaccurate dose 

of phenytoin sodium. However, the narrow standard deviation (SD) of the 3D-printed 

FDTs weights was obtained in all formulations, implying that the fabrication of the 3D 

constructs using semisolid extrusion in our study is highly reproducible. This finding is 

consistent with previous studies that reported that 3D printing technology could offer an 

advantage in terms of printing precision over the traditional methods, as well as low 

weight variation of 3D-printed drug delivery systems that meet pharmacopeial 

specifications [46]. On the other hand, for the thickness uniformity of the 3D-printed FDTs, 

it was observed that changes in viscosity and extrusion rate had no effect on the thickness. 

The average thickness of all 3D-printed FDTs was similar (p > 0.05) across all 4 tested 3D-

printed FDTs but significantly decreased (p < 0.05) when compared with the thickness of 

the CAD model (1 mm). These decreases are a result of water loss due to evaporation. The 

evaporation of solvent from 3D constructs could increase the rigidity of printing inks and 

induce shape shrinkage of printing filaments and 3D constructs during the conversion 

from semisolid to solid state after complete drying [47,48]. In addition, due to the high ink 

fluidity, the 3D constructs may have collapsed under their own weight during the drying 

process [49].  

Table 3. Weight and thickness of the 3D-printed FDTs. 

Formulation Extrusion Rate Weight Thickness 
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(μL/s) (g ± SD) (mm ± SD) 

1:30 3.5 0.128 ± 0.008 a 0.900 ± 0.065 a 

 4.0 0.140 ± 0.009 b 0.903 ± 0.079 a 

1:35 3.5 0.150 ± 0.009 c 0.913 ± 0.079 a 

 4.0 0.164 ± 0.006 d 0.934 ± 0.090 a 

For each test, means with the same letter are not significantly different. Thus, means with the 

different letter, e.g., ‘a’ or ‘b’ or ‘c’ or ‘d’ are statistically different (p < 0.05). 

3.3. In Vitro Disintegration Performance of 3D-Printed FDTs 

As shown in Figure S1 and Table 4, for the in vitro disintegration test, 3D-printed 

FDTs with a polymer:drug ratio of 1:30 and extrusion rates of 3.5 and 4.0 μL/s had a 

shorter disintegration time (0.81 ± 0.14 and 1.01 ± 0.01 min, respectively) than 3D-printed 

FDTs with a polymer:drug ratio of 1:35 and extrusion rates of 3.5 and 4.0 μL/s (1.11 ± 0.05 

and 1.23 ± 0.11 min, respectively). The faster disintegration of formulation 1:30 may be 

attributed to their larger pore sizes and lower material spreading rate of 3D-printed FDTs, 

as well as their lower weight. These results are in good agreement with the data presented 

in Section 3.2, in which 3D-printed FDTs with a polymer:drug ratio of 1:30 and extrusion 

rates of 3.5 μL/s demonstrated superior geometry and larger pore size when compared 

with others, which was advantageous to the disintegration of the 3D-printed FDTs. The 

larger pore diameter may allow for the faster water uptake, thus facilitating the rapid and 

strong swelling characteristics of SSG and resulting in faster 3D structure disintegration. 

Conversely, the reduced porosity (rounded pore shape with smaller diameter) in 

formulation 1:35 resulted in a longer water penetrating time into the 3D-printed FDTs 

[50,51]. However, this study showed the promising results that all 3D-printed FDTs had 

an average disintegration time of less than 180 s (3 min), achieving the European 

Pharmacopeia (Ph.Eur.) specifications for orodispersible tablet disintegration tests [52]. 

Table 4. In vitro disintegration time and phenytoin sodium content of the 3D-printed FDTs. 

Formulation 
Extrusion Rate 

(μL/s) 

Disintegration Time 

(min ± SD) 

Drug Content 

(% ± SD) 

1:30 3.5 0.81 ± 0.14 a 102.0 ± 3.6 a 

 4.0 1.01 ± 0.01 b 123.8 ± 8.4 b 

1:35 3.5 1.11 ± 0.05 b 146.5 ± 8.2 c 

 4.0 1.23 ± 0.11 b 167.2 ± 9.5 c 

For each test, means with the same letter are not significantly different. Thus, means with the 

different letter, e.g., ‘a’ or ‘b’ or ‘c’ are statistically different (p < 0.05). 

3.4. Phenytoin Sodium Content Uniformity in 3D-Printed FDTs 

In this study, the targeted content of phenytoin sodium in all 3D-printed FDTs was 

75 mg. As shown in Table 4, the loading contents of phenytoin sodium in all developed 

3D-printed FDTs were found to be 102.0 ± 3.6, 123.8 ± 8.4, 146.5 ± 8.2, and 167.2 ± 9.5%, 

respectively. The findings of this study showed that 3D-printed FDTs with a 

polymer:drug ratio of 1:30 and extrusion rates of 3.5 μL/s had drug content within an 

acceptable range of 95.0–105.0%, as endorsed by the USP [35], and range of 98.0–102.0%, 

as endorsed by the Ph.Eur [52]; meanwhile, the drug content of the other three 3D-printed 

FDTs was found to be outside the pharmacopeia range. This could be due to the fact that 

when the extrusion rate increased or the printing ink viscosity decreased, the printing ink 

could be extruded more than its actual volume, thus leading to higher drug content in 

these three formulations. These results are consistent with the printability results 

presented in Section 3.2, which showed that the width of the printed filament with a 

polymer:drug ratio of 1:30 and an extrusion rate of 3.5 μL/s was similar to the nozzle 

diameter, allowing for the printing of an accurate dose of 3D-printed FDTs. Furthermore, 

this study confirmed that the optimal parameters for printing 3D-FDTs matching the 
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designed geometry and offering the fastest disintegration time and accurate drug dosing 

were 0.41 mm nozzle diameter, 3.5 μL/s extrusion rate, and 10 mm/s nozzle speed. As a 

result, 3D-printed FDTs with a polymer:drug ratio of 1:30 and extrusion rates of 3.5 μL/s 

were chosen for further evaluation for their mechanical properties, in vitro release 

profiles, IDDSI flow characteristics and suitability for use in patients experiencing 

swallowing difficulties. 

3.5. Mechanical Properties of 3D-Printed FDTs 

The mechanical properties (hardness and tensile strength) of the selected 3D-printed 

FDT formulation (3D-printed FDTs with a polymer:drug ratio of 1:30 and extrusion rates 

of 3.5 μL/s) were investigated in order to assess the post-manufacturing handling 

capability and packaging requirements. However, there is no official guidance for 

determining the mechanical properties and limit hardness specification of the 3D-printed 

FDT reported in the pharmacopeia. In this study, the 3D-printed FDT with a polymer:drug 

ratio of 1:30 and extrusion rates of 3.5 μL/s had a low hardness value of 1.87 ± 0.24 N and 

low tensile strength of 0.69 ± 0.11 N/mm2. The low hardness and tensile strength of the 

3D-printed FDT may be advantageous for the fast-disintegrating formulation, particularly 

in terms of promoting its fast disintegration [13,53]. However, special packaging is 

required to protect the tablets from damage prior to practical use and to improve handling 

safety for healthcare professionals or patients to handle them with ease in hospital 

settings, pharmacy settings, or at home. 

3.6. In Vitro Release of Phenytoin Sodium 

The in vitro release profile (Figure 5) of the selected formulation (3D-printed FDTs 

with a polymer:drug ratio of 1:30 and extrusion rates of 3.5 μL/s) in Tris with 1% w/v SLS 

buffer solution (pH 7.5), which is simulated small intestinal fluid, is presented as a 

relationship plot between the cumulative percentage of phenytoin sodium release and 

time. The selected formulation exhibited rapid release behavior with an initial burst 

release of up to 75% of the drugs in the first 1 min of the experiment, followed by a slow 

constant release rate to complete drug release (100%) in 60 min. The initial burst release 

of phenytoin sodium in the first 1 min might be attributed to the presence of drug 

dissolved in water after disintegration in syringe and weak bonding of drug molecules 

and polymer molecules. 

 

Figure 5. In vitro phenytoin sodium release in Tris with 1% w/v SLS buffer solution (pH 7.5). 

Furthermore, in the present study, the in vitro drug release data from the sample 

suspension were subjected to evaluate kinetically using various kinetic models, such as 
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zero-order, first-order, Higuchi matrix, and Korsmeyer–Peppas models. As shown in 

Table 5, the Korsmeyer–Peppas model was found to be the best-fit model, with the highest 

correlation coefficient (r2) of 0.997 and an � value of 0.09. An � value less than 0.45 of 

this formulation indicated that the drug release mechanism is similar to Fickian diffusion-

controlled release [54]. 

Table 5. Release kinetic data of the sample suspension containing phenytoin sodium. 

Release Kinetic Model Parameters 

zero-order 
�� 

�� (�����)  

0.737 

1.24 

first-order 
�� 

�� (�����) 

0.704 

0.01 

Higuchi matrix 
�� 

��(����/�) 

0.898 

31.96 

Korsmeyer–Peppas 
�� 

� (�����) 
� 

0.997 

76.54 

0.09 

3.7. IDDSI Flow Test Results 

The results of the IDDSI flow test evaluation are displayed in Table 6 and Figure 6. 

After disintegrating in 10 mL of water, the liquid samples of selected 3D-printed FDTs 

formulation (polymer:drug ratio of 1:30 and extrusion rates of 3.5 μL/s) were evaluated 

for their IDDSI flow characteristics through a syringe. The results showed that there was 

no liquid left in the syringe after 10 s, corresponding to the IDDSI flow test level 0 (thin). 

It implied that the liquid sample of selected 3D-printed FDTs formulation behaves and 

flows like water. Despite the fact that this type of liquid sample is suitable for drinking 

through any type of teat/nipple, cup, or straw, as appropriate for age and skills, there are 

still concerns about the increased risk of aspiration and pneumonia when consumed by 

dysphagic patients [11,55]. 

 

Figure 6. Representative images during IDDSI flow test of 3D-printed FDTs disintegrated in (a) 

water, (b) water mixed with thickening agents at 0.5% w/v, (c) water mixed with thickening agents 

at 1.0% w/v, and (d) water mixed with thickening agents at 2.0% w/v. 

Table 6. IDDSI flow test of the 3D-printed FDTs. 

Solvent 

Thickening Agent 

Concentration 

(% w/v) 

Volume Remaining in 

the Syringe after 10 s 

(mL ± SD) 

IDDSI Level 

water - 0.0 0 
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water mixed with 

thickening agent 

0.5 1.0 ± 0.2 1 

1.0 4.1 ± 0.1 2 

2.0 9.4 ± 0.2 3 

For an additional recommendation to improve swallowing safety, we would suggest 

the option of disintegrating and dissolving the 3D-printed FDTs in water mixed with 

thickening agents. In this study, we also performed the IDDSI flow tests by using the 

water mixed with commercial thickening agent (Resource® ThickenUp™ Clear, Nestlé 

Health Science (Deutschland) GmbH, Osthofen, Germany), which consisted of 66% of 

maltodextrin, 33% of xanthan gum (INS 415), and 0.6% of potassium chloride (INS 508), 

at 0.5%, 1.0%, and 2.0% w/v. The results showed that 3 liquid samples of 3D-printed FDTs 

disintegrated in water mixed with commercial thickening agent at 0.5, 1.0, and 2.0% w/v 

were classified as IDDSI levels 1 (slightly thick), 2 (mildly thick), and 3 (moderately thick) 

as the average volume of liquid remaining into the syringe after 10 s was 1.0 ± 0.2, 4.1 ± 

0.1, and 9.4 ± 0.2 mL, respectively. The addition of thickening agents may make them more 

suitable for dysphagic patients and patients with poor tongue control. 

Additionally, in order to ensure the safety and efficacy of the 3D-printed products, 

the robust real-time monitoring and quality process control of the fabrication of on-

demand dosage forms by using semisolid 3D printing on a small scale at—or close to—

the point of care, such as the use of non-destructive characterization methods and process 

analytical technologies (PAT), need to be taken into account in the further study. 

Moreover, the quality control tests, such as drug content uniformity, drug performance, 

and printing accuracy, must be strictly controlled in small-scale settings. 

4. Conclusions 

In this study, semisolid extrusion 3D printing was used to manufacture fast-

disintegrating tablets that were filled in syringes. We note that by exploiting this 

technique, we may be able to achieve more accurate and precise drug dosing of narrow 

therapeutic index formulations in a shorter manufacturing time. This research could pave 

the way for point-of-care fabrication and decentralized on-site manufacturing of 

personalized medicines in community pharmacies and hospital settings in the near future. 

Notably, the effect of printing ink viscosity and extrusion rate on the printability and 

physicochemical properties of 3D-printed FDTs was also observed. The phenytoin-

sodium-loaded, 3D-printed FDT with a polymer:drug ratio of 1:30, printed with an 

extrusion rate of 3.5 μL/s and a nozzle speed of 10 mm/s, was determined to be the optimal 

option of all of the developed 3D-printed FDT formulations, as it exhibited the least 

structural deformation, fastest disintegration time of less than 1 min, and most accurate 

drug dosing of 75 mg. To best of our knowledge, our study was the first to introduce the 

concept of ‘tablet-in-syringe’, in which the fast-disintegrating drug delivery system can 

be directly mixed with water and with the potential of a new way to accurately dose 

patients with dysphagia via the oral route. However, the findings of IDDSI flow test 

reported here suggest that the liquid sample of 3D-printed FDTs after disintegration is too 

thin, which may increase the choking risk when given to patients with swallowing 

difficulties. Thus, further development may be required to minimize this risk and to 

ensure that dysphagic patients can use this 3D-printed drug delivery system with ease.  

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/pharmaceutics14020443/s1, Figure S1: Disintegrating behavior of 

3D-printed FDT with polymer:drug ratio (w/w) of 1:30 and extrusion rates of 3.5 μL/s in syringe at 

different time interval 15 s (a), 30 s (b), 45 s (c), 60 s (d). 
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