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Abstract

This paper presents a system, where images acquired with a digital camera are coupled with 
image analysis and deep learning to identify and categorize film coating defects and to measure 
the film coating thickness of tablets. There were 5 different classes of defective tablets, and the 
YOLOv5 algorithm was utilized to recognize defects, the accuracy of the classification was 
98.2%. In order to characterize coating thickness, the diameter of the tablets in pixels was 
measured, which was used to measure the coating thickness of the tablets. The proposed system 
can be easily scaled up to match the production capability of continuous film coaters. With the 
developed technique, the complete screening of the produced tablets can be achieved in real-
time resulting in the improvement of quality control.
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1. Introduction

In the pharmaceutical industry, a paradigm shift is underway from traditional batch to 
continuous technologies, which can increase flexibility and efficiency, while lowering both 
capital and operating expenses (O’Connor and Lee, 2017; Rantanen and Khinast, 2015). 
Continuous manufacturing also requires an in depth understanding of the processes and 
improved non-destructive analytical sensors, capable of highly accurate, in-line real-time 
measurements (Mészáros et al., 2020; Pauli et al., 2019). By publishing their guidelines, the 
regulatory authorities also support this direction in innovation and development (Food and Drug 
Administration, 2004). Therefore, the pharmaceutical industry is increasingly focusing on 
Process Analytical Technology (PAT) and Quality by Design approaches to assure the quality 
of the materials and products at all stages during the manufacturing processes (Casian et al., 
2019; Pramod et al., 2016). 

PAT is a particularly fitting approach for complex pharmaceutical technological operations, 
such as the film coating of tablets, where small deviations of critical process parameters (CPP) 
can significantly alter the quality of the final product (Korasa and Vrečer, 2018; Simon et al., 
2015). Solid oral dosage forms are film coated to improve patient compliance by masking 
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unpleasant odours and taste, to protect the tablets from environmental factors, to improve their 
visual appearance with colours or to modify the kinetics of the drug release (Felton, 2013). The 
two widespread film coating technologies in the industry, fluid bed coating and pan coating are 
currently implemented mostly as batch processes (Seo et al., 2020). Continuous film coating is 
gaining popularity, thanks to its increased throughput and significantly reduced residence time 
at stressful conditions (Porter, 2021; Zaid, 2020). The most important quality attributes (QA) 
of film coated products are the thickness and the distribution of the coating (Dreu et al., 2012). 
They should be visually screened, as malfunctions during the coating operations can result in 
tablets with damaged or partially missing coating which can ruin both their functionality and 
appearance (Podrekar et al., 2018). Considering the PAT-initiative, several real-time methods 
emerged to replace the traditional, cumbersome off-line measurements (Ficzere et al., 2021) of 
weighing, optical and scanning electron microscopy.  The candidates for PAT sensors are near 
infrared or Raman spectroscopy (De Beer et al., 2011; Paudel et al., 2015), optical coherence 
tomography (OCT) (Lin et al., 2017) and terahertz pulsed imaging (TPI) (Ho et al., 2007; Lin 
et al., 2015; Zhong et al., 2011). OCT is based on the phenomenon that a portion of incident 
light is reflected when it encounters a surface where the refractive index (Lin et al., 2018). In 
the case of coated tablets, a fraction of the light is reflected when it reaches the surface of the 
tablet, while the remaining photons penetrate the coating and are reflected when they arrive at 
the interface between the coating and the core of the tablet. By measuring the reflected light, an 
image can be obtained where areas with different refractive index can be distinguished, this 
yields a great opportunity to measure the thickness of the film coating. TPI also exploits changes 
in the refractive index, however this time pulses of terahertz waveforms are applied (Alves-
Lima et al., 2020). These pulses can also be reflected when the refractive index changes, thus 
measuring the reflected waves can be used to infer the thickness of layers with different 
refractive indices.  Both OCT and TPI have been used for off-line and in-line analysis of coated 
tablets.  Due to the wavelength of the applied light, OCT is better for measuring thin coatings 
(10-60 µm), while TPI is recommended for coating thicknesses above 40 µm, basically in cases 
where a weight gain of 4-5% is achieved. Both of these techniques yield a plethora of 
information about the coating process, however they require expensive hardware, and the 
analysis of the acquired data can be challenging. Therefore, it is of interest to test other 
techniques, which can realize similar measurements with less sophisticated equipment and data 
processing. Image analysis is an excellent candidate for this, because the quality of the product 
can be characterized by an increase in size and changes in colour during or after the film coating 
process (Galata et al., 2021).  A handful off-line and in-line cases have been reported, where 
image analysis was used to track the process during either fluid bed coating (Kadunc et al., 
2014; Nikowitz et al., 2014) or pan coating (García-Muñoz and Carmody, 2010; Toschkoff et 
al., 2016) by investigating the tablets inside the coaters. 

It is just as important to monitor the tablets after they have been discharged from the coater. 
Nowadays it is part of the recommended quality assurance standard to inspect each tablet before 
packaging, which is usually done visually either by humans or machines (Derganc et al., 2003; 
Petersen et al., 2021). Many companies produce and market various automated visual tablet 
inspection systems, which are robust and flexible enough to be able to inspect a large variety 
of tablets and defects. This comes at the expense of low sensitivity, a lower detection rate of 
smaller errors and suboptimal performance for more complicated tablet designs, such as tablets 
with imprints or textures. Furthermore, they cannot be used to measure certain critical 
properties of the tablets, such as their diameter. Možina et al. (Možina et al., 2013) used a 



3

statistical appearance evaluation method based solely on rotation information to detect imprint 
errors on film coated tablets. They found that they could reduce the required computing 
complexity by half and the method was proven to be more effective in the evaluation of real 
images compared to their previous, principal component analysis (PCA) based model.

To analyse the data gathered from different PAT sensors, various data processing methods have 
been implemented, particularly PCA and partial least squares (PLS) (Borsos et al., 2017; Simon 
et al., 2010). These have already been used for the multivariate image analysis of the coating 
uniformity of tablets (García-Muñoz and Gierer, 2010). However, with the increasing 
complexity of the input data, these processes might not be powerful enough to find the 
underlying patterns. 

Convolutional neural network (CNN) methods can provide possibilities for handling complex 
datasets with different inputs (Hirschberg et al., 2020). Thanks to the major breakthroughs in 
the field of CNNs within the recent years, their increased inference speed and accuracy makes 
real-time object detection and recognition possible. There are several pre-trained CNNs that 
can be fine-tuned for a variety of tasks, showing good performance metrics and being 
computationally inexpensive (Almadhoun and Abu-Naser, 2021; Kasper-Eulaers et al., 2021).

YOLO (You Only Look Once) algorithms use the entire image as an input for the network, and 
directly predict the position and the category of the bounding box of objects based on the 
characteristics of the whole image (Yao et al., 2021; Zhao et al., 2021). YOLOv5, which is part 
of the YOLO family, was pre-trained on the extensive COCO (Common Objects in Context) 
dataset, which contains 80 different classes and over 200,000 labelled images. YOLOv5 has 
significantly improved training and processing times and showed that it can outperform other 
object recognition algorithms (Darma et al., 2021; Zhou et al., 2021).

There are several cases in the pharmaceutical industry, where deep learning methods have been 
applied to improve established data processing methods (Ekins, 2016). Deep learning methods 
have also been implemented for the inspection of the properties of tablets. Ma et al. (Ma et al., 
2020) developed an analysis program with an integrated CNN to fully automate the X-ray 
computed tomography image analysis of tablets. They achieved an average accuracy of 94% 
for internal crack detection and significantly reduced the measurement time compared to 
manual user analysis. CNNs have also been utilized in the analysis of OCT images by Wolfgang 
et al. (Wolfgang et al., 2020), it was shown that they are highly accurate in the segmentation of 
the coating layer. The application of recurrent neural networks has been demonstrated in the 
case waveform selection during TPI by Li et al. (Li et al., 2022).  Hirschberg et al. (Hirschberg 
et al., 2020) used images acquired from a conventional office scanner to classify more than 
2000 film coated tablets based on their level of coating. They found that the PLS method was 
faster than the CNN one, however its success of classification was 97.6% compared to the 99.6 
% achieved by the neural network. Up to this point, no cases have been published, where a 
system was set up to observe the diameter and coating integrity of tablets as a real-time PAT 
tool. 

The purpose of this study was the development of a system, which can be used as an in-line 
tool for accurate tablet diameter measurement and the identification of coating defects in the 
case of tablets moving on a conveyor. The recently developed YOLOv5 algorithm is utilized 
for the recognition of typical coating defects, while the diameter of the tablets is determined 
using classical image analysis techniques. The proposed measurement technique has great 
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potential in the in-line monitoring of continuous film coating, as it can be performed with a 
lower investment and operational cost compared to already existing solutions.

2. Materials and methods

2.1. Materials

Microcrystalline cellulose (MCC; Avicel© PH-302) was obtained from FMC Corp. 
(Philadelphia, Pennsylvania, USA) and magnesium stearate was purchased from Molar 
Chemicals (Budapest, Hungary). The low viscosity Opadry®QX, a kind gift of Colorcon Inc. 
(Dartford, UK), was used for coating process.

2.2. Methods

2.2.1. Preparation of tablets

The 200 mg (set weight) tablets consisted of 99.00 %, w/w Avicel PH 302, and 1.00 % w/w of 
Mg-stearate as a lubricant. The homogeneous blend was directly compressed on a single punch 
tablet press (Fette Exacta 1, Fette Compacting GmbH, Schwarzenbek, Germany) fitted with 
round, biconvex without break line punches. The diameters of punches and die were 8 mm. 
During the process, set compression force was adjusted so that the wear loss of the tablets was 
minimal and the hardness was adequate for the next step of coating.

2.2.2. Coating of tablets

Coating of tablets (batch size: 300 g) was performed in a lab-scale pan coater (ProCepT 
4M8Trix, Zelzate, Belgium) equipped with a standard (3 mm) perforated drum, which was 
mounted with wing-like baffles to help the adequate tablet bed mixing and even coating 
processes. The Schlick nozzle (diameter: 0.8 mm) with Anti Bearding Cap technology was 
integrated into the set-up, which generated an elliptical spray pattern. The tablet bed was 
prewarmed to 40 °C before spraying the 30% Opadry®QX coating dispersion, which was 
prepared by mixing 210 g water with 90 g Opadry®QX powder for 30 minutes. The parameters 
set during spraying are shown in Table 1. After spraying each 20 g of coating material, a sample 
of about 1.6-2.0 g (8-10 pieces) was taken. The process was discontinued at a total weight of 
140 g of coating liquid sprayed onto the surface of tablets, followed by drying for 5 minutes. 
To produce tablets for the purpose of testing the coating thickness measurement method, a 
second batch of tablets was film coated until 64 g of coating liquid was applied (tablets were 
sampled after each 16 g of coating material), while other process parameters were kept at the 
same settings.

Table 1. Process conditions for film coating.

Process Parameters Units Value

Inlet air flow m3/min 0.40
Inlet air temperature °C 60.0±5.0
Product temperature °C 35.0±5.0
Air out temperature °C 35.0±5.0
Drum speed rpm 30.0
Underpressure cabinet mbar 4.1±0.3
Liquid pump speed % 10.0
Airflow atomising nozzle L/min 19.4±0.1
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Atomising air pressure bar 1.0
Pattern airflow L/min 22.5±0.1
Pattern air pressure bar 1.3
Total dosed liquid weight g 140.0

2.2.3. Creation of defective tablets

Seven types of defective tablets were created for the investigation of film coated tablet defect 
recognition. Uncoated tablets were sampled from the batch of tablet cores. To produce tablets 
with edge defects, the edges of tablets were grated using a rasp. Dotted defects were created by 
marking the tablets with a felt pen. Surface defect tablets were created in three different ways. 
The first type was manufactured by scratching the surface with a metal spatula, the second type 
was produced by sticking two intact tablets together using a drop of water and pulling them 
apart by hand after 20 minutes. The third set of these tablets was created by dripping a 
concentrated suspension made of OpadryQX and water onto the tablets and letting them dry. 
Lastly, twin tablets were manufactured by sticking together the sides of tablets by a drop of 
water. Fig.1. presents the type of tablets used during the experiments.

Fig. 1. Types of created defective tablets. (a) Intact tablet, (b) Uncoated tablet, (c) Edge defect 
tablet, (d) Dotted defect tablet, (e1) Uneven surface tablet produced by dripping film coating 

solution, (e2) Uneven surface tablet created by sticking two intact tablets together, (e3) 
Uneven surface tablet created with a metal spatula, (f) Twin tablets.

2.2.4. Real-time imaging

During the classification experiments, the film coated tablets were distributed on a conveyor 
belt (Brabender Technologie, Duisburg, Germany), which was operated at a speed of 0.083 m/s. 
A Basler acA4112-30uc (Basler, Germany) area scan, 12-megapixel RGB camera equipped 
with a Basler MEGA TS1214-MP objective (Basler, Ahrensburg, Germany) was used for image 
acquisition. The communication between the camera and the computer was carried out via an 
USB 3.0 port. A 12W LED panel providing evenly distributed light (Mentavill, Székesfehérvár, 
Hungary) was stationed on an in-house built stand to illuminate the tablets from an angle of 
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75°. 4096 by 3000 pixels images were obtained with a rate of 15 frames per second, while the 
exposure time was set to 3 ms. The setup can be viewed on Fig. 2a.

Fig. 2. a) Real-time imaging setup for the classification of film coated tablets. b) Setup for the 
measurement of film coating thickness.

The setup applied for film coating thickness measurement was using the same camera. The 
camera was equipped with a Mitutoyo 375-036-2 objective (Mitutoyo Corporation, Japan) with 
a telescope. The tablets were placed on a translucent surface and were illuminated from below 
with the LED-panel. The size of the images was also 4096 by 3000 pixels, with an exposure 
time of 3 ms. The setup is presented on Fig. 2b.

2.2.5. Training the YOLOv5 algorithm for tablet classification
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The YOLOv5 model’s yolov5s version (Ultralytics, 2021) was trained using Google Colab, 
with the following 5 classes: uneven surface, edge defect, dotted defect, uncoated tablet, and 
twinning tablets, while the tablets where no defects were detected were considered as intact 
tablets. For the training of the algorithm, the tablets were photographed in multiple groups by 
classes. Each group consisted of approximately 20 tablets and was photographed once. A total 
of 44 images was split into training and validation datasets, and they were annotated manually 
using bounding boxes for the defects (Table 2). The model was trained for 200 epochs, with an 
input image size of 2500 by 2500 pixels and with a confidence of 0.25. The training adjusted 
the pre-trained publicly available YOLOv5 model, as a result the weight values of the new 
model were acquired. This was used for the real-time defect detection experiments. 

Table 2. Number of images used for training, validation and testing of the YOLOv5 algorithm.

Number of images
Training 32

Validation 12
Testing 176

2.2.6. Measuring the diameter of tablets with image analysis 

The acquired images were analysed with Matlab 9.8.0.1721703 (Mathworks, Natick, MA, 
USA). The analysis was performed using a custom-made Matlab algorithm (Fig. 3). For the 
first step, the background had to be separated from the pixels of the tablet. For this, the image 
was converted to the CIELAB colour space, where a threshold was set for the L* (perceptual 
lightness) values, if it was higher than 20, then the pixel was considered a part of the 
background. After this, the minimal and maximal Feret-diameter of the tablets were calculated, 
their mean resulted in the tablet’s average Feret-diameter. 

Fig. 3. The structure of the developed Matlab algorithm for coating thickness measurement.

In accordance with the current pharmaceutical practice, we intended to characterize the coating 
thickness of tablets by their weight gain, therefore their individual weight was recorded on an 
analytical scale. After this, a first order polynomial was fitted for the coating thickness 
measured by image analysis (it was calculated by subtracting the average diameter of the 
uncoated tablets from each measured tablet’s diameter) and the weight increase values of the 
140 tablets from the first batch. The 64 tablets from the second batch were used for validation. 
To evaluate the method’s ability to accurately predict the weight gain of tablets, the root mean 
squared error of prediction (RMSEP) was calculated using the following formula (Eq. (1)):

𝑅𝑀𝑆𝐸𝑃 =
∑𝑛

𝑖 = 1(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ― 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2

𝑛
#(1)
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where n is the number of samples, ypredicted is the weight increase value obtained using the first 
order polynomial and image analysis and ymeasured is the weight gain measured with the scale.

3. Results and discussion

3.1. Physical characterization of uncoated and coated tablets

For the studies, the tablets were randomly selected from the batch and the values given in the 
table give the mean and standard deviation. The individual mass (n=20; Sartorius LA 230S, 
Sartorius AG, Goettingen, Germany), tensile strength (n=10; TBH 200 TD, Erweka instrument 
GmbH, Germany) and friability (Erweka single drum friability tester; Offenbach/Main, 
Germany) of uncoated tablets and coated tablets from the first batch were measured. Table 3. 
summarizes the results of the physical examinations. Based on the examination of mass 
uniformity and friability, it can be concluded that the uncoated tablet properties are acceptable 
by Ph. Eur. criteria (European Pharmacopoeia Commission, 2019b). As expected, the tablets 
became harder as a result of the coating process, and their friability value (European 
Pharmacopoeia Commission, 2019a) was further improved.  

Table 3. Physical characteristics of uncoated and coated tablets from the first batch, where SD 
is the standard deviation and RSD is the relative standard deviation of mass.

Individual mass 
(mg)

(n=20; mean ± SD)
RSD (%)

Tensile strength 
(N)

(n=10; mean ± SD)
Friability (%)

Uncoated 
tablet 206.77 ± 1.023 0.49 131.0 ± 4.10 0.29

Coated tablet 220.70 ± 1.023 0.46 166.1 ± 5.43 0.08

It can be observed that the applied film coating is very evenly distributed on the tablets, given 
that the 0.49% RSD did not change significantly during the coating process. Therefore, weight 
measurement can be used as a reference method to track the coating level of tablets.

3.2. Tablet defect classification 

The trained YOLOv5 model was used for the categorization of defective tablets on images 
acquired real-time. For this, 284 tablets were mixed together and distributed randomly along 
the conveyor belt, with their defective sides up (if there was any). Approximately five tablets 
were placed in one row, with roughly half a tablet distance from each other in all directions. 
Then, the conveyor belt was started, and a serial image sequence was captured with the camera. 
The 176 taken images were evaluated with the trained YOLOv5 model. The program drew the 
predicted bounding boxes onto the images, two of them are presented on Fig. 4. Furthermore, 
a video was compiled from the captured images, which can be viewed in the supplementary 
(Svid).
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Fig. 4. Two images with classified tablets. Bounding box colouring: yellow: uncoated tablet; 
light orange: dotted defect; dark orange: twinning tablets; red: uneven surface; pink: edge 

defect.

To evaluate the accuracy of the YOLOv5 model’s prediction, we investigated every appearance 
of every tablet on the images. Each tablet was usually present on 15 continuous images. If a 
tablet was correctly categorized on more than one occasion, it was considered well-recognized. 
Out of the acquired data, a confusion chart was constructed, presented on Fig. 5.
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Fig. 5. The confusion chart of the classification.

As it can be observed, there were only a few mix-ups and in all but one of those cases an edge 
defect was not recognised and was considered as an intact tablet. Furthermore, as it can be 
observed on Fig. 4., some defects have multiple bounding boxes drawn around them. However, 
it does not cause interference, because the goal was to identify each defect at least once. 
Generally, defects with a size of at least 1 mm can be reliably recognized. The model could 
accurately predict the class of the tablets 98.24% of the time. The sensitivity of the method (the 
ratio of correctly found defective tablets and the total number of defective tablets) is 98.07% 
(204 defective tablets were found from a total of 208), while the sensitivity (the ratio of tablets 
correctly found to be intact and the total number of intact tablets) is 98.68% (75 out of 76 intact 
tablets were correctly found intact).

When compared to previously published defect recognition algorithms which are based on 
classical image analysis (Duong et al., 2014; Rani et al., 2015), one would assume that the 
computational cost favors the classical methods. Using the Tesla K80 GPU (this model was 
released in 2014) provided by the free version of Google Colab, on average 0.21 s was needed 
to process an image, this is processing speed a bit less than 5 fps. However, the performance of 
the utilized GPU is modest in comparison with the currently available top models, which can 
be up to 5 times faster. Consequently, a processing speed of at least 20 fps should be feasible 
with newer hardware, which should be enough for this kind of application. The accuracy 
reported by Rani et al. (Rani et al., 2015) is similar to our results, thus the performance of the 
methods is similarly good. A possible advantage of deep learning-based defect recognition is 
that it does not require arbitrarily defined features (which are sometimes very complex) for each 
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kind of defect, instead only a few annotated images are required. The CNN is then able to learn 
the features belonging to each class on its own, therefore it might find features which would 
never occur to a human. This can lead to more robust defect detection, where small changes in 
the environment or illumination does not severely impact the applicability of the method. 
Another advantage is that the training of the YOLO algorithm can be performed with tablets of 
different shapes and colours imaged. When the training dataset is diverse enough, the defect 
recognition method could be applicable in a large variety of scenarios. A well-trained YOLO 
algorithm can be used for detection in different types of environments without additional 
training or modifications. Liu el al. (Liu et al., 2021) used YOLOv5 to detect railway signals 
on a dataset consisting of images taken from subways above ground at day and night as well as 
in underground tunnels and compared its effectiveness to other methods. They found that the 
YOLOv5 model had an accuracy of 97.2% with a processing speed of 100 frames per second, 
surpassing the other methods in effectiveness at all types of backgrounds. Considering the 
capability of recent object detection techniques, it can be assumed that if our current dataset 
would be augmented with tablets of different color, shape and embossings, it would be possible 
to create a model that can recognize the defects on basically all tablet types. However, this 
assumption must be examined with further experiments, based on the current results it cannot 
be expected that without said augmentations our model would work accurately with different 
tablet types. In order to create a reliable measurement setup, lighting and the speed of the 
conveyor must be optimized. The lighting should be strong enough to enable a low exposure 
time and thus a fast conveyor speed without blurring. On the other hand, if it is too strong, then 
the whole surface of the tablets would become too bright, making it harder to distinguish 
between intact tablet surface and defects.

3.3. Measurement of film coating thickness

The current quality control process for the tracking of continuous film coating is sampling and 
weighing 100 tablets at given timepoints and examining whether they have the correct amount 
of weight gain. However, with this approach, only a small number of tablets are inspected. 
Furthermore, this method does not account for individual tablets, and even if 100 tablets have 
the correct average weight, there might be outliers with unacceptably low coating thickness. 
This is especially problematic in the case of a functional coating, where the release kinetics of 
the drug is impacted by the quality of the coating. These tablets with a thin coating might 
visually appear to be intact, therefore it is very unlikely that they are found during the traditional 
inspection procedure. To solve this issue, we found that the experimental setup used for tablet 
defect detection can be easily augmented in a way, that the diameter of the tablets becomes 
measurable. This augmentation requires an objective with a higher resolution and a conveyor 
with a translucent surface, below which an illumination device is placed. From the diameter, 
the thickness of the coating can be calculated, which should correlate with the weight of tablets. 
For the determination of coating thickness, we used the reference point of average diameter of 
the uncoated tablets measured with the camera. The weight increase of tablets was obtained 
using the average weight of the uncoated tablets as reference. Fig. 6. presents the images and 
properties of three tablets from different samples from the first batch. Fig. 7. shows the first 
order polynomial fitted to the coating thickness measured using image analysis and the weight 
gain of the tablets of the first batch. 
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Fig. 6. The images, the measured and predicted properties of three tablets from different 
samples. Dia: diameter measured with image analysis, m: weight of tablet, mp=weight predicted 
using Dia.

Fig. 7. The weight increase of the tablets as a function of their coating thickness measured with 
image analysis. 

The second batch was used for validation, resulting in an RMSEP of 0.62% weight gain. If the 
target weight gain is 5%, which is common in the case of functional coatings, this results in a 
relative error of 12.5%. This means that the technique can accurately determine the weight gain 
of each tablet. Furthermore, the proposed system is able to inspect all the manufactured film 
coated tablets, resulting in 100% screening. This could be used to monitor the continuous film 
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coating process, to set the process parameters to the optimal values and to discover individual 
tablets with thinner coating than desired.

3.4. Throughput of the analytic method

It is important to determine the throughput of the proposed defect recognition and classification 
system to compare it to the productivity of industrial scale continuous film coaters. 

The conveyor belt was operated at its maximum speed of 0.083 m/s = 83 mm/s. If the space left 
out between tablets is equal to the length of a half tablet (a tablet is 8 mm long), then a tablet 
and the space behind it takes up 12 mm. During the experiment, the tablets were organized into 
5 rows on the conveyor belt, therefore the following equation (Eq. (2)) could be used to 
calculate the tablet throughput per hour: 

𝑇 =
𝑣 ∗  𝑛

𝑙 =
83 

𝑚𝑚
𝑠  ∗  5 𝑛𝑟

12 𝑚𝑚 ∗ 3600
𝑠
ℎ = 124,500

𝑛𝑟

ℎ #(2)

where v is the speed of the conveyor belt [mm/s], nr is the number of rows [nr], l is the length 
of a tablet and the space behind it combined [mm], T is the throughput of the system 
[tablet/hour].

In the case of film coating thickness measurement, a similar setup was used, however there was 
only a single row of tablets, therefore it can be calculated that the system could inspect a total 
of 24,900 tablets per hour.

These amounts are already serviceable, however with utilizing state of the art equipment, they 
could be easily increased. The first opportunity is raising the speed of the conveyor belt. 
However, by increasing the speed while the exposure time is fixed, above a certain threshold 
the images will become blurry. We conducted in-house experiments and found that clear images 
can be captured of a tablet moving at the speed of 200 mm/s with an exposure time of 1 ms. 
This alone would increase the throughput by 241%, resulting in 300,000 tablets processed in an 
hour in the case of defect recognition. This is a shorter exposure time compared to the 3 ms that 
was applied during our experiments, but with a change in the lights and their setup, it can be 
achieved without image quality loss. With more advanced lighting the exposure time can be 
lowered further, making higher conveyor speeds and throughputs possible. 

The second opportunity is increasing the number of rows of tablets. This is a self-evident 
advantage of conveyor belts capable of higher speeds, as they tend to be wider as well. By 
implementing the changes presented in the previous paragraph and increasing the number of 
rows from 5 to 10 the system could analyse up to 600,000 tablets per hour, with still further 
room left for improvement. This amount matches the production rate of tablet presses and 
continuous film coaters.

This novel method of film coated tablet inspection is easy to install, has a low investment cost, 
requires a small amount of space and its capacity is easily expandable. The line could also be 
coupled with an ejection system, to discharge the identified defective tablets. Furthermore, this 
inexpensive method can determine the thickness of the film coated tablets fast and accurately, 
which is a great advantage compared to currently widespread appliances. 

4. Conclusions
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This work presented a novel PAT system, in which machine vision was combined with deep 
learning and image analysis to classify tablet coating defects and determine the coating 
thickness of film coated tablets. A YOLOv5 model was trained for defect recognition, and it 
showed that it is a capable tool for real-time defect detection and classification with great 
accuracy. We demonstrated that it is possible to precisely measure the weight gain of a film 
coated tablet by determining its diameter using image analysis. The theoretical scale-up showed 
that the proposed system could comfortably handle the throughput of a fully continuous 
manufacturing line. 

The developed method can possibly be used for the measurement of tablets with different 
shapes, colours and sizes. The deep learning model could be augmented with other types of 
tablet defects, resulting in a more complete analysis of the product. This would result in a more 
compact, flexible and low-cost alternative to the already existing industrial tablet inspection 
machines. By also measuring the coating thickness in real-time, it would be possible to monitor 
the trends of the process enabling the appropriate setting of parameters, resulting in the 
improvement of quality control during production. Furthermore, the acquired data can also be 
used for the feedback control of the continuous film coating process.
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