The GMP Drug Delivery offer of PMC Isochem

CDMO for PolyAmino Acids

Why PolyAmino Acids - PAA

- Functional Excipients
- Biodegradable Polymers
- Drug Delivery & Drug Conjugate
- Alternative to PEG (i.e. polysarcosine)
- Less Immunogenic Choice
- Half-life increase of proteins

A unique Integrated Solution

- Talented & Multidisciplinary R&D team
 Broad network for access cutting-edge
- technologiesIntegrated NCA supply (Phosgene expert)
- Ring Opening Polymerisation (ROP) technology
- Custom PAA synthesis & tailor-made
- From R&D to commercial supply

AMINO ACID

NCA (60+ monomers) PAA

N°1 Producer of NCAs, 25+ years expertise

PMC Isochem services

- 45 years in large scale Manufacturing under GMP
- RSM, Intermediates, APIs and Excipients
- Analytical Development & QC
- Process development and scale up
- 3 FDA & EU qualified facilities (France)

Preclinical, clinical and commercial batches

- Lean approach to provide faster, better and cost effective solutions
- GMP batches for clinical trials
- Stability studies, process & analytical methods validations, reports...
- Full regulatory support (CMC-DMF Documentation)

pmc isochem

The GMP Drug Delivery offer of PMC Isochem

Why a PAA based delivery technology?

Non-exhaustive examples of PAA

linear, branched or grafted architectures

PAA HOMOPOLYMERS	PAA COPOLYMERS	FUNCTIONALIZED PAA
Poly-L-amino acids	Methoxy-poly(ethylene glycol)- <i>block</i> -poly(L-amino acids)	Functionalized monoblock and diblock
	Poly(L-amino acids)-block-poly(L-amino acids)	
Poly-sarcosine	Poly(sarcosine)-block-poly(L-amino acids)	polyaminoacids
R1 H R1 R1 R1 R3 R3		
L or D amino acids configuration R, R' : amino acid side chains R1 : alkyl group or functionalized alky R2 : H or methyl group	l group	

A global offer from amino acid to therapeutic solution

pmc isochem

Your partner for Smart Delivery Technologies

GENERAL REQUESTS	contact@pmcisochem.fr
	Tel.: +33 1 64 99 0300
KARINE SALIM	k.salim@pmcisochem.fr Tel.: +33 6 30 12 8461

Growing interest for advanced & new polypeptides backbone

- PolyAmino Acids (PAAs) based materials have gained more interest in:
- > Drug delivery
- > Drug conjugates
- PAAs demonstrate remarkable biocompatibility and biodegradability due to the nature of the amino acid monomers building blocks
- Less Immunogenic material and beneficial replacement of PEG
- Use of activated amino acids monomers by ROP chemistry:
 Name distinction of moler
- Narrow dirtibution of molar masses
- > Minimal side product formation
- > High reproducibility
- > Versatile architectures
- Precise functionalisation of polypeptide backbone

O. Zagorodko et al, Macromol. Biosci. 2017

R3 : H or capping group