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Abstract 21 

Titanium dioxide is a ubiquitous white material found in a diverse range of products from foods to 22 

sunscreens, as a pigment and thickener, amongst other uses. Titanium dioxide has been considered 23 

no longer safe for use in foods (nano and microparticles of E171) by the European Food Safety 24 

Authority (EFSA) due to concerns over genotoxicity. There are however, conflicting opinions regarding 25 

the safety of Titanium dioxide. In an attempt to clarify the situation, a comprehensive weight of 26 

evidence (WoE) assessment of the genotoxicity of titanium dioxide based on the available data was 27 

performed. A total of 192 datasets for endpoints and test systems considered the most relevant for 28 

identifying mutagenic and carcinogenic potential were reviewed and discussed for both reliability and 29 

relevance (by weight of evidence) and in the context of whether the physico-chemical properties of 30 

the particles had been characterised. The view of an independent panel of experts was that, of the 31 

192 datasets identified, only 34 met the reliability and quality criteria for being most relevant in the 32 

evaluation of genotoxicity. Of these, 10 were positive (i.e. reported evidence that titanium dioxide 33 
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was genotoxic), all of which were from studies of DNA strand breakage (comet assay) or chromosome 34 

damage (micronucleus or chromosome aberration assays). All the positive findings were associated 35 

with high cytotoxicity, oxidative stress, inflammation, apoptosis, necrosis, or combinations of these. 36 

Considering that DNA and chromosome breakage can be secondary to physiological stress, it is highly 37 

likely that the observed genotoxic effects of titanium dioxide, including those with nanoparticles, are 38 

secondary to physiological stress. Consistent with this finding, there were no positive results from the 39 

in vitro and in vivo gene mutation studies evaluated, although it should be noted that to definitively 40 

conclude a lack of mutagenicity, more robust in vitro and in vivo gene mutation studies would be 41 

useful.  42 

Existing evidence does not therefore support a direct DNA damaging mechanism for titanium dioxide 43 

(nano and other forms). 44 

Abbreviations: 45 

8-OHdG = 8-hydroxy-deoxyguanosine; ADI = Acceptable Daily Intake; ATCC = American Type Culture 46 

Collection; BSA = bovine serum albumin; CA = chromosomal aberrations; DLS = dynamic light 47 

scattering; DMSO = dimethyl sulfoxide; DSB = double strand DNA break; ECHA = European Chemicals 48 

Agency; EFSA = European Food Safety Authority; FBS = foetal bovine serum; FDA = US Food and Drug 49 

Administration; Fpg = formamidopyrimidine-DNA glycosylase; GLP = good laboratory practice; GSH = 50 

reduced glutathione; hOGG1 = human 8-oxoguanine glycosylase; HPRT = hypoxanthine-guanine 51 

phosphoribosyl transferase; IP = intraperitoneal; IV = intravenous; JRC = Joint Research Centre; MDA 52 

= malondialdehyde; MN = micronucleus/micronuclei; MTD = maximum tolerated dose; NCI = 53 

National Cancer Institute; nm = nanometres; NP = nanoparticle; NTP = National Toxicology Program; 54 

OECD = Organisation for Economic Co-operation and Development; PBS = phosphate buffered saline; 55 

PC = physico-chemical; PCE = polychromatic erythrocyte; PDI = polydispersity index; RET = 56 

reticulocyte; ROS = reactive oxygen species; RTG = relative total growth; SAR = structure activity 57 

relationship; SCE = sister-chromatid exchange; SSB = single strand DNA break; TDMA = Titanium 58 

Dioxide Manufacturers Association; TEM = transmission electron microscopy; TG = test guideline; 59 

TGR = transgenic rodent mutation assay; TK = thymidine kinase; WoE = weight of evidence 60 

1. Introduction 61 

Titanium dioxide (TiO2) is widely used across many industries, as a pigment in paints and cosmetics 62 

(Pigment White 6 or CI 77891), and as a food colorant (E171). TiO2 is also found in sunscreens (Smijs 63 

and Pavel 2011), printer inks, medicines, plastics, and even cancer treatments as a sensitising agent in 64 

photodynamic therapy (Cesmeli and Avci 2019).  65 
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In 2021, TiO2 pigment production in the US was estimated to be worth $3.2 billion (Mineral 66 

Commodity Summaries 2022, US Geological Survey). From the same report, the estimated end-use 67 

distribution of TiO2 pigment consumption was predominantly via paints with 60% total usage. 68 

 69 

As a food colourant, the use of TiO2 (E171) has dramatically increased since the end of the second 70 

world war (Oil and Colour Chemists’ Association, Australia, 1983) with cheaper mass production 71 

techniques and an increased availability of processed foods. It can be found as a whitener in dairy 72 

products such as milk and cream, coffee whitener, sweets, chewing gum, sauces and many tablet 73 

supplements as well as medicines (Boutillier et al 2021, Weir et al 2012).  74 

 75 

In 2016, the European Food Safety Authority (EFSA) re-evaluated the safety of E171 as a food additive 76 

(in concordance with EU No 257/2010, as part of the re-evaluation programme for food additives 77 

authorised in the EU before 20 January 2009.), and identified several data gaps in the safety profile, 78 

notably for reproductive toxicity endpoints. As such, an acceptable daily intake (ADI) could not be 79 

calculated (EFSA, 2016) and the no-observed adverse effect level (NOAEL) from a carcinogenicity study 80 

was used to establish safe levels of exposure. In 2019 EFSA published a statement based on a review 81 

by the French agency for Food, Environmental and Occupational Health and Safety (ANSES), which 82 

made similar conclusions around data gaps for reproductive toxicity endpoints and recommended 83 

further investigation of in vivo genotoxicity endpoints (EFSA, 2019). According to the ANSES opinion, 84 

although there were no studies showing direct interaction of TiO2 (E171) with DNA and/or the mitotic 85 

apparatus, a direct effect on genetic material or other molecules interacting with the genetic material 86 

could not be excluded.  87 

 88 

In 2020 the European Commission requested a review of the safety profile of E171 which EFSA 89 

concluded in mid-2021. Since the 2016 and 2019 EFSA opinions, many more studies were conducted, 90 

including those published in peer reviewed journals as well as data generated at Contract research 91 

labs on behalf of industry or regulatory bodies, leading to a more comprehensive review of the 92 

available data by EFSA including studies focussed on new or novel endpoints. In the 2021 EFSA opinion, 93 

genotoxicity was raised as a safety issue, concluding that a genotoxic concern could not be ruled out 94 

for TiO2, and that TiO2 particles have the potential to induce DNA strand breaks and chromosomal 95 

damage, but not gene mutations. No clear correlation was observed between the physico-chemical 96 

properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern 97 

for genotoxicity of TiO2 particles that may be present in E171 could therefore not be ruled out. Several 98 

modes of action for the genotoxicity may operate in parallel and the relative contributions of different 99 
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molecular mechanisms elicited by TiO2 particles are not known, and therefore a non-thresholded 100 

mode of action (MOA) cannot be ruled out. In addition, a cut-off value for TiO2 particle size with 101 

respect to genotoxicity could not be identified. EFSA concluded that it was not possible to set an 102 

acceptable daily intake (ADI), and the use of E171 was no longer considered safe as a food additive 103 

(EFSA, 2021).  104 

 105 

Not all countries have agreed with the 2021 EFSA opinion. In the UK the independent Government 106 

expert committee, the Committee on Mutagenicity (COM), stated that “Members considered that the 107 

lack of quality in the evidence (e.g. mixed particle sizes (micro and nano particles (NP’s)) and a wide 108 

variety of testing approaches) did not allow definitive conclusions to be drawn and therefore did not 109 

agree with the EFSA overall conclusions on the genotoxicity of E171. A review of more reliable and 110 

robust datasets may be required before conclusions could be drawn on the mutagenicity of TiO2 111 

particles.” (Committee On Mutagenicity, 2021). 112 

 113 

Health Canada have also recently re-evaluated TiO2 as a food additive (June, 2022) and concluded that 114 

“the adverse effects associated with oral exposure to TiO2 are largely derived from non-standard 115 

studies that administered stable, homogenized suspensions of ultrasonically dispersed particles”. 116 

Health Canada argued that such preparations do not represent TiO2 as a constituent of food. Whilst 117 

they did note that there were uncertainties and gaps in the published data that would benefit from 118 

further research, on weight of evidence they concluded that these data gaps were “not significant 119 

enough to warrant a more cautionary approach to TiO2 use in foods at the current time” (Health 120 

Canada, 2022). Health Canada alongside many other regulatory bodies globally will continue to 121 

monitor the emerging science concerning the safety of TiO2. 122 

 123 

Several reviews on the genotoxicity of TiO2 have been published, most recently by Wani and Shadab 124 

(2020) and Shi et al. (2022). Both publications included extensive data sets, focussing on more recent 125 

evidence (predominantly comet and micronucleus studies). However, neither make any qualitative 126 

assessment of the data, they both conclude that there are positive and negative genotoxicity studies 127 

and recommend that more testing is required to make a clear decision. To date, no published analysis 128 

has yet looked at the existing data to determine the robustness of the studies themselves, and 129 

relevance of the endpoints studied, before trying to interpret the overall weight of evidence for a 130 

genotoxic effect resulting from TiO2 exposure. 131 

 132 
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To provide a comprehensive review of the available data, an expert panel was assembled at the 133 

request of TDMA to develop a WoE assessment of the genotoxicity of TiO2 based on the available data 134 

identified in the EFSA evaluation, but also including additional studies available since the initial EFSA 135 

review including data generated in industrial and contract research laboratories on behalf of TiO2 136 

producers. None of the panel members are currently employed by companies that manufacture and 137 

sell TiO2. However, it is acknowledged that due to the widespread use of TiO2, several experts were 138 

employed by companies that included TiO2 in their formulated products. Whilst some experts were 139 

funded by TDMA to perform this review, none of the experts were influenced in any way and prepared 140 

an entirely independent opinion.  141 

 142 

The panel (namely the authors of this paper) included experts in genetic toxicology, general toxicology, 143 

bioavailability, carcinogenicity, nanoparticle (NP) characterisation and nanotoxicology. 144 

 145 

2. Methods 146 

2.1 Summary of the process 147 

To identify those datasets that were most relevant in terms of predicting genotoxic potential, the 148 

following parameters were assessed: 149 

• Relevance of the endpoint and test system investigated in terms of their association with 150 

genetic or carcinogenic hazard 151 

• Reliability of the methods, including characterisation of the test substance (in particular for 152 

NPs) 153 

• Quality and interpretation of the reported data by weight of evidence using expert 154 

judgement. 155 

The processes used in these assessments are described in detail below. 156 

2.2 Data sources 157 

The publications reporting genotoxicity tests on TiO2 reviewed by EFSA (2021; search criteria described 158 

in Appendix A of that publication, EFSA 2021) have been supplemented by additional publications 159 

identified by the Engineering Biology Research Consortium (EBRC) using the search criteria detailed in 160 

Supplementary data (table S1). In addition, our review included unpublished reports conducted by 161 

industry or at contract laboratories (sponsored by industry). The reviews of the various genotoxicity 162 

datasets in the publications and reports were tabulated separately (in Data Review Tables) according 163 
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to endpoint and test system, in vitro or in vivo, as detailed in supplementary tables S2-S8 with notes 164 

as to whether pigmentary (non nano) or nano-sized TiO2 was tested (or if it was not clearly stated). 165 

The relevant datasets in the publications and study reports were reviewed by the panellists for 166 

reliability using the ToxR Tool (Schneider et al. 2009) which applies modified Klimisch scores (Klimisch, 167 

1997), and is a widely used method for weighting toxicology data based on quality. Each Study dataset 168 

was assigned a Klimisch reliability score of 1 (reliable without restrictions), 2 (reliable with restrictions) 169 

or 3 (unreliable) using the principles of the ToxR Tool (Schneider et al., 2009), together with expert 170 

judgement. The standard ToxR Tool template was modified to include NP characterisation as detailed 171 

in Card and Magnuson (2010), and a copy of the modified tool is included in the supplementary 172 

documentation. 173 

 174 

In brief, the ToxR Tool assigns a “0” or “1” to a range of parameters to reflect a “no” or “yes” answer 175 

(e.g., “0” would be entered if no details regarding mammalian cell characteristics or culture conditions, 176 

or animal husbandry, were included within a paper or by reference, or if a concurrent negative control 177 

was not included). The scores for the individual parameters are then totalled and the “Tool” calculates 178 

a Klimisch score (1, 2 or 3, as described above), which the reviewer could either confirm or revise (with 179 

justification). ToxR Tool parameters and modifications that are relevant to a high reliability score of 180 

the TiO2 genotoxicity review are as follows: 181 

 182 

1. Test substance identification (see below for special considerations related to tests on 183 

nanomaterial). 184 

2. Test system/organism characterisation: the test system/organism used should be 185 

recommended by the relevant OECD guideline. If not, and the test system can be justified, the 186 

data may still be reliable.  187 

3. Study design description:  188 

a. If a nanoform has been administered, it should have been characterised in the biologically 189 

relevant experimental medium.  190 

b. Treatment times of mammalian cells with microparticles and NPs should have been 191 

sufficient to allow cellular uptake, or there should have been a clear demonstration of 192 

cellular uptake.    193 

c. Concurrent positive controls should have been included.  For those studies/endpoints 194 

where this is not required, use of an appropriate positive control measure, e.g., use of 195 

“banked or archived” slides (from previous positive control treatments) for bone marrow 196 

micronucleus (MN) assessment, or positive control DNA for transgenic rodent mutation 197 
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(TGR) assays, was appropriate. If positive controls were not included, justification was 198 

needed for still considering the data as reliable (e.g., a clear positive result with the test 199 

material, or a concurrent reference or test material was reported). 200 

d. Endpoint scoring should have been adequately coded to protect from analyst bias, unless 201 

coding for a particular method was considered unnecessary (e.g., flow cytometric scoring 202 

of MN).  203 

e. Assay variation should have been adequately controlled (e.g., timing of animal dosing and 204 

tissue sampling, use of a block design for comet slide processing or TGR assay DNA 205 

packaging). 206 

4. Study results documentation 207 

a. Acceptability and evaluation criteria should have been defined and compared with OECD 208 

TG recommendations. For example, negative control values for gene mutations, MN, CA, 209 

and % tail DNA should have been consistent with acceptable normal ranges. Justification 210 

was needed if the study did not completely meet OECD TG recommendations but was 211 

considered reliable. Where historical ranges were not included in the original report or 212 

publication, acceptable values for commonly used cell lines/types were used based on the 213 

collective experience of the experts.  214 

b. Laboratory historical control data should have been reported and considered in the 215 

evaluation. If not, justification was needed to be provided as in point 5. 216 

5. Plausibility of design and data: Concurrent and historical positive and negative control data 217 

should have been consistent with other published data. If not, there was reason to doubt 218 

laboratory competence. 219 

 220 

Based on the above, the reviewer could decide on a Klimisch score different from that automatically 221 

calculated by the ToxR Tool, in which case this was justified by additional text. The evaluator’s Klimisch 222 

score was then entered into the Data Review Tables. 223 

 224 

2.3 Reliability using the Modified ToxR Tool 225 

Not all studies that were reviewed had the same level of characterisation of the PC properties of NPs. 226 

Furthermore, over time, expectations of reviewers/journals have increased and so in more recent 227 

studies a more comprehensive characterisation of NPs was typically performed.  228 

 229 

There are several parameters that have been identified as being important when performing 230 

characterisation of NPs (e.g., Warheit et al., 2008; Oberdörster et al., 2005; Luyts et al., 2013; 231 
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Mourdikoudis et al., 2018; Bouwmeester et al., 2011; Gubala et al., 2018). The most common  232 

techniques used for each PC parameter of interest are outlined in Table 1. One method can however, 233 

provide information on more than one PC parameter. For example, Transmission Electron Microscopy 234 

(TEM) can be used to visualise particle morphology, quantify particle size and size distribution and 235 

assess agglomeration/aggregation status. It should be noted that solubility (dissolution) is also an 236 

important parameter but is not included in the modified ToxR Tool form. 237 

 238 

The quality of studies in which nano-grade TiO2 was tested were therefore determined by addressing 239 

whether some of the important PC parameters had been characterised as proposed by Card & 240 

Magnuson (2010), including agglomeration and/or aggregation, chemical composition, crystal 241 

structure, purity, shape, surface area, surface charge, surface chemistry (including composition and 242 

reactivity) and whether any characterisation was conducted in relevant culture or formulation media.  243 

 244 

A modified version of the ToxR Tool containing an extra tab in which the above 10 parameters could 245 

be assessed was prepared for use in this project (a template is provided as Supplementary material). 246 

The “nano score” was also then entered into the Data Review Tables. 247 

 248 

In order that different panel members addressed these 10 parameters in a consistent way, some 249 

specific clarification was required. If a publication or study report stated that TiO2 NPs were purchased 250 

from a recognised supplier who provided information on particular PC characteristics (e.g., a particular 251 

size range, surface area, purity, surface chemistry, charge etc.), but the authors did not verify this in 252 

their publication, and no further characterisation was reported, this was scored as a “0” against the 253 

relevant questions in the nano tab of the ToxR Tool. However, a comment was added that those 254 

characteristics were provided by the supplier and not confirmed by the authors. If the authors stated 255 

that those characteristics were confirmed in a previous paper, that the paper was quite recent (e.g., 256 

within 3 years) and details could be checked, then the relevant characteristics could be scored as “1”, 257 

but comments that the information was provided in a previous publication were given. If, as discussed 258 

above, the NPs were provided as standard reference materials by Ispra (JRC standard NP’s) or from 259 

NIST in the USA, or BAM in Germany or comparable institutes (KRISS in Korea etc.), these are all well 260 

characterized materials with specific documentation containing all important parameters. In that case 261 

we did not expect that the authors needed to do the same analysis again. If the supplier was not 262 

recognised, or the NPs were synthesised by the authors, and there were no data to confirm the PC 263 

characteristics, those categories were scored as “0”. Whatever information was provided on 264 

characterisation of the NPs as a starting material, characterisation in the vehicle for an in vivo study, 265 
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or solvent and culture medium for an in vitro study, needed to be assessed separately. Some guidance 266 

on how these questions were critically assessed is given in Table 2: 267 

 268 

2.4 Characterisation of nanomaterials 269 

 270 

Many genotoxicity studies were performed using nano-grade TiO2. In addition to assessing the studies 271 

from a hazard identification viewpoint, it was considered critical to identify whether the PC properties 272 

of NPs had been characterised as this is important for several reasons (Oberdörster et al., 2005; 273 

Warheit et al., 2008; Rasmussen et al., 2018). For example:  274 

1. To identify what PC properties of NPs confer toxicity  275 

2. To determine whether information provided by a supplier on the PC properties of the material 276 

was correct 277 

3. To assess whether the PC properties of NPs changed when they were dispersed in the vehicle 278 

or media relevant to the test system and study  279 

4. To feed into risk assessments for NPs.  280 

 281 

Existing studies have evaluated the genotoxicity of samples of TiO2 NPs that have been obtained from 282 

various sources and which vary with respect to their PC properties (e.g., size, surface area, 283 

morphology, agglomeration status, charge, surface chemistry). TiO2 NPs have frequently been 284 

obtained from the JRC Nanomaterial Repository (Totaro et al., 2016) when investigating their 285 

genotoxicity. In addition, P25 (Degussa/Evonik) has commonly been used to assess TiO2 genotoxicity 286 

(note that sample NM-105 from the JRC repository is P25). The genotoxicity of food grade TiO2 (E171) 287 

has also been tested with samples obtained from various suppliers. However, such samples have a 288 

wide particle size distribution and only contain a small proportion of NPs. Some researchers 289 

synthesised their own TiO2 NPs, but this was less common. 290 

 291 

There is evidence that information provided by suppliers on the PC properties of NPs may not always 292 

be accurate (Luyts et al., 2013). Therefore, in the studies reviewed in this project, it was expected that 293 

some independent characterisation of the PC properties of the NPs was also performed. However, the 294 

PC properties of materials from several sources (e.g., JRC, Degussa and Evonik) have been extensively 295 

characterised and detailed information on their PC characteristics is available in the published 296 

literature (e.g., Rasmussen et al., 2014; OECD, 2016). Thus, for studies using materials from these 297 

sources, it was common that no independent characterisation of the properties of these materials in 298 

the ‘as supplied’ (pristine) form was performed. However, it was still expected that studies using these 299 
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materials would have summarised what information exists on the PC properties of these NPs, and that 300 

relevant literature was cited. By contrast, for NPs received from other suppliers, independent 301 

characterisation of their PC properties was considered essential, and it was not sufficient to rely solely 302 

upon information provided by the supplier.  303 

 304 

It is well known that the PC properties of NPs can change when they are dispersed in biological media 305 

(e.g., Warheit et al., 2008) as well as during the dispersion process (Schulze et al., 2008). Therefore, it 306 

was expected that researchers characterised the PC properties of the NPs in media relevant to the 307 

study and test conditions. Most commonly dynamic light scattering (DLS) measurements are 308 

performed on the NP suspensions used in toxicity (including genotoxicity) studies to investigate 309 

hydrodynamic diameter (size), zeta potential (indicator of charge) and occasionally polydispersity 310 

index (PDI; which provides a measurement of how well the NPs are dispersed). TEM has also been 311 

used to characterise NPs suspended in biological media (e.g., to visualise particle morphology and to 312 

measure particle size). We therefore recorded whether characterisation in biological media (dosing 313 

suspension or culture media for in vitro studies, dosing formulation for in vivo studies) was performed 314 

as part of the nano assessment (nano tab of the ToxR Tool). Interestingly, the concentrations of NPs 315 

used for characterisation studies were not always comparable to the concentrations used in the 316 

genotoxicity component of the study, or that NP properties were only characterised at one NP 317 

concentration. The choice of particle concentration is important as it can influence the PC properties 318 

of NPs (e.g., agglomeration status) and therefore their hazard potential (e.g., Gudkov et al., 2020).  319 

 320 

There was a lack of harmonisation regarding the methodology employed to prepare NP 321 

suspensions (Schultze et al., 2008) as there is a lack of standard methodologies for measuring the PC 322 

properties of NPs. It is common to use different strategies to improve the dispersion of NP suspensions 323 

and to limit NP agglomeration, but the relevance of this to real-life exposures has been debated. The 324 

approach used to disperse NPs is varied and can include the use of sonication (probe and bath), 325 

dispersants, solvents, and shaking/stirring/vortexing (Bouwmeester et al., 2011). Importantly, the 326 

dispersion protocol can influence the PC properties and toxicity of NPs (e.g., Pradhan et al., 2016). Of 327 

relevance is that the German NanoCare project (Schulze et al., 2008) and the EU Nanogenotox project 328 

developed protocols for preparation of NP suspensions (Jensen et al., 2011) but this has not been 329 

adopted across all nanotoxicology studies. We therefore noted what methodology was used to 330 

prepare NP suspensions for hazard studies. 331 

 332 

2.5 The weight of evidence (WoE) process 333 
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The panel’s evidence weighting assumptions for the various genotoxicity endpoints reviewed were 334 

based on Brusick et al. (2016). The basic weight descriptors are: 335 

• Negligible Weight - The endpoint is not linked to any adverse effect relevant to genetic 336 

hazard/ risk (e.g., SCE). 337 

• Low Weight - The end point is indicative of primary DNA damage, not directly linked to 338 

mechanisms associated with tumorigenicity (e.g., DNA breakage or computer-based SAR 339 

results), or the endpoints are evaluated in non-mammalian test systems (other than the 340 

Ames test). 341 

• Moderate Weight - The endpoint may be: (a) only potentially relevant to tumour initiation, 342 

(b) subject to secondary effects (cytotoxicity), (c) subject to threshold dependent 343 

mechanisms of induction (aneugens) or (d) the test system exhibits a high rate of false 344 

responses with respect to carcinogenicity predictivity (e.g., mammalian cell in vitro 345 

clastogenicity and gene mutation tests, particularly in p53-deficient cells). 346 

• High weight – The endpoint is one that has been demonstrated to play a critical role in the 347 

process of tumorigenicity (gene mutation in bacteria (Ames test) or in vivo, chromosome 348 

aberrations or micronuclei in vivo). 349 

 350 
By applying the above weight descriptors, the default weights (i.e., for a robust study) for different 351 

endpoints studied in vitro or in vivo as shown in Table 3 are achieved (Brusick et al., 2016). The highest 352 

weighting is given to in vivo chromosome damage endpoints and in vivo gene mutation assays. It 353 

should be noted that whilst gene mutations in bacteria (Ames test) is given high weight, the Ames test 354 

is not recommended for testing insoluble particles (including nano particles) because they do not 355 

readily pass through the bacterial cell wall and prokaryotes do not perform endocytosis (Doak et al., 356 

2012; Elespuru et al., 2018). Therefore, even though the default weight for an Ames test on a soluble 357 

chemical would be high, Ames tests on TiO2 particles (whether micro or nano, irrespective of the 358 

bacterial strains tested and the outcome of the study – positive, inconclusive or negative) were given 359 

Low-Moderate or Low weighting. Although all the Ames tests reviewed gave negative results, they 360 

therefore did not contribute to the overall assessment of genotoxic hazard. 361 

Although we identified 337 datasets within publications or study reports on the genotoxicity of TiO2 362 

(all listed in the supplementary bibliography), only those endpoints with a default weighting of 363 

“moderate” or “high” (according to table 3 were reviewed in detail. This amounted to 192 datasets 364 

within the various publications and study reports. The remaining 145 datasets (with default “low” or 365 

“negligible” weightings) have not been reviewed, since a “low” or “negligible” default weighted study 366 

would not contribute meaningfully to the assessment of genotoxic or carcinogenic hazard. It should 367 
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be noted that some publications contained datasets for “moderate” or “high” weighting endpoints 368 

that were reviewed in detail, but, within the same publication, also contained datasets for “low” or 369 

“negligible” weight endpoints that were not reviewed. 370 

For the WoE process, each dataset was given an initial weighting according to the criteria in Table 3, 371 

but then the “weights” (for both positive and negative studies) were adjusted (if necessary) according 372 

to the reliability of the study and the quality of the data. Examples of the questions to be considered 373 

include, but are not limited to, source of TiO2 being tested, experimental design and “closeness” to 374 

OECD guidance, coding of slides, cytotoxicity measurement, statistical evaluation of data, use of 375 

historical control ranges, evidence of tissue exposure, inclusion of positive controls and other 376 

pertinent details that could help determine the “robustness” of a study.  377 

There were several specific considerations that were taken into account based on the 378 

recommendations from the OECD working party on nanomaterials, including misleading results that 379 

can occur if there is simultaneous co-treatment of cells with particles and cytochalasin B (Doak et al 380 

2012).  This type of co-treatment is not recommended, therefore studies using the cytokinesis block 381 

MN approach could only achieve default "moderate” weight if cells were treated with particles for a 382 

sufficient period of time prior to the addition of cytochalasin B. The latest draft recommendations 383 

from OECD (OECD, 2021) indicate treatment in the absence of cytochalasin B should be for at least 1 384 

cell cycle, followed by 1.5 cell cycles in the presence of cytochalasin B. Shorter treatment times in the 385 

absence of cytochalasin B can be acceptable if there is a clear demonstration that the particles entered 386 

the cells. Since uptake into the cells is equally important for in vitro CA and gene mutation studies, 387 

these same requirements were also applied to these assays in our review process. However, if clear 388 

positive results were obtained with TiO2 following a treatment period of less than 1 cell cycle, it was 389 

assumed that intracellular exposure had occurred. Therefore, some in vitro MN, CA and gene mutation 390 

studies that gave positive or equivocal results with short treatments were considered reliable and 391 

retained a "moderate” weight and were considered relevant to the assessment of genotoxic potential. 392 

In contrast, studies that gave negative results with short treatments and with no clear demonstration 393 

of cellular uptake were considered unreliable and given ”low-moderate” or "low” weights and not 394 

considered relevant. 395 

The inclusion of concurrent positive controls in in vitro studies, or the inclusion of archived positive 396 

control samples in in vivo MN and TGR studies, was considered important to demonstrate reliable 397 

functioning of the test system and competence of the technicians, particularly when negative results 398 

were obtained with the test material. Thus, absence of an acceptable positive control in a study giving 399 

negative results with TiO2 could be considered unreliable and the weighting downgraded. In contrast, 400 
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the absence of an acceptable positive control may not have been considered a critical defect in a study 401 

giving positive results with TiO2. Therefore, some in vitro MN, CA and gene mutation studies that did 402 

not include acceptable positive controls but gave positive results with TiO2 or other study materials 403 

were considered reliable and retained a "moderate” weight and were considered relevant to the 404 

assessment of genotoxic potential. In contrast, studies that gave negative results with no acceptable 405 

positive control were considered unreliable and given ”low-moderate” or "low” weights and not 406 

considered relevant. This inevitably will have led to a “bias” towards positive results in the studies that 407 

were considered relevant for further assessment, but it was considered important in a rigorous, 408 

structured process. 409 

Thus, an initial “moderate” weighting may have been down-graded to “low-moderate”, or a “high” 410 

weighting may have been down-graded to “moderate-high” (or even lower) if the quality of the study 411 

design and/or results were questionable. This approach is the same as used for the review of 412 

acetaminophen (Kirkland et al., 2021).  413 

Since multiple experts were working across several different endpoints, consistency was addressed by 414 

having 2 or more experts assess the reliability and WoE. Any assessments that appeared “out of line” 415 

with the majority of review comments for a given endpoint and test system were discussed either 416 

directly with the assigned individual reviewer or more widely by the panel. In some cases, reliability 417 

scores and WoE assessments were changed. Thus, by internal peer review and discussion it was 418 

possible to achieve a high level of consistency.  419 

 420 

3. Results  421 

Details of the 192 datasets with default “moderate” or “high” weights from publications and study 422 

reports that were reviewed in detail are given in Supplementary Tables S2-8 (for Ames tests, in vitro 423 

mammalian cell gene mutation tests, in vitro MN & CA tests, in vivo gene mutation tests, in vivo MN 424 

& CA tests, in vivo comet assays and in vivo 8-OHdG assays). The remaining 145 datasets (with default 425 

“low” or “negligible” weightings) that were not reviewed are listed in Supplementary Table 9. 426 

The ToxR Tool was used to assess the reliability of the methods reported for the datasets reviewed in 427 

all publications and study reports. Whilst the details required for a robust reliability assessment were 428 

lacking in many publications, leading to Klimisch scores of 3, this was not used as a primary criterion 429 

to exclude a study from further evaluation; conclusions based on overall WoE assessment were used 430 

as the primary selection criteria for studies that should be considered most relevant for evaluation of 431 

genotoxic potential. More recent publications and reports of studies conducted by industry or at 432 
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contract research laboratories tended to contain more detail on methodology as well as including raw, 433 

unprocessed data, and included the necessary design components to lead to Klimisch scores of 1 or 2. 434 

Nonetheless, it was clear that the quality of available genotoxicity studies with TiO2 is variable, and 435 

therefore the structured reliability and WoE assessment approach carried out in this project was 436 

considered important.  437 

Tables 4 and 5 show summary data from those in vitro and in vivo studies (respectively) which, after 438 

review, achieved “moderate”, “moderate-high” or “high” weighting, and were therefore considered 439 

most relevant from which to draw conclusions on genotoxicity.  440 

3.1 Characterisation of physico-chemical properties 441 

Supplementary Tables S2-8 document the nano score taken from the modified ToxR Tool, and reflect 442 

the level of information provided on the characterisation of PC properties of TiO2 NPs in published 443 

studies. More specifically, we have considered what information was provided by a supplier, whether 444 

independent characterisation was performed, and whether characterisation was performed in the 445 

vehicle and/or media relevant to the genotoxicity studies. Where detailed characterisation data was 446 

available then high nano scores were obtained, but in several cases very limited characterisation was 447 

performed and the nano scores were low, sometimes even zero. In addition, details of the approaches 448 

used to suspend NPs is provided (e.g., media used, sonication approach and time) as this was varied 449 

across existing studies and can influence the PC properties and toxicity of particles.  Comments on 450 

characterisation of NPs in the most relevant studies are given in summary Tables 4 and 5. 451 

In some cases, we observed that the (geno)toxicity of the same material had been reported across 452 

several publications e.g., assessing different endpoints, using different biological models etc. 453 

Accordingly, the characteristics of the NPs were commonly reported in the first publication, and 454 

subsequent publications then cited the first publication for characterisation information. However, 455 

there is evidence that different batches of NPs may vary with respect to their PC properties (e.g., 456 

Mϋlhopt et al., 2018) and the approach used to prepare NPs may vary between studies and influence 457 

their PC properties. Thus, it was considered important that authors clarified the relevance of existing 458 

characterisation information. 459 

 460 

Whilst some studies did report characterisation of NPs in biological media, many did not. We observed 461 

that published studies do not always provide a sufficient level of detail on the methodology that was 462 

employed to perform the characterisation of the NPs. For example, studies often neglected to include 463 

details of the concentrations of NPs used, and the approach used to disperse NPs (e.g., vehicle or 464 

media used to suspend NPs, and whether sonication was used and the time of sonication, when used). 465 
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This made it challenging to identify whether characterisation relevant to the hazard studies had been 466 

performed. 467 

 468 

The NTP genotoxicity studies (for example see Tennant et al., 1987; Ivett et al., 1989; Myhr & Caspary, 469 

1991; Shelby & Witt, 1995; Shelby et al., 1993; in Supplementary Tables S2-8) apparently used the 470 

same grade of TiO2 (Unitane 220) as was used in the NCI carcinogenicity study (see Tennant et al., 471 

1987). Following an FDA request, an analytical comparison was made between 2 samples of Unitane 472 

220 that had been retained by TDMA members (it is no longer manufactured) and food grade TiO2 473 

(E171). It was concluded that Unitane 220 is very similar in all PC characteristics to the current E171 474 

grades and lies within the draft E171 specification. Therefore, it can be concluded that the NTP 475 

genotoxicity studies effectively tested samples of TiO2 that were comparable to food grade E171. 476 

3.2 Genotoxicity findings 477 

Of the 192 datasets reviewed, only 34 achieved a final weighting of “moderate” or higher and were 478 

therefore considered relevant for the assessment of genotoxic hazard. The numbers of datasets in the 479 

different categories are given in Table 6. 480 

More details on the 34 datasets that achieved "moderate”, "moderate-high” or ”high” weighting after 481 

review are summarised in Table 4 (for in vitro studies) and Table 5 (for in vivo studies) and most of 482 

these achieved a Klimisch score of 1 or 2 within the Tox” Tool reliability assessment. As discussed, the 483 

Ames test is not recommended for testing insoluble particles, so no Ames tests are included in Table 484 

4.  485 

As can be seen from Tables 4 and 5, many of the tests were performed on NPs of TiO2. Some comments 486 

on the characterisation of the NPs are provided in Tables 4 and 5, and also in Supplementary Tables 487 

S2-8. Whilst some studies included quite extensive characterisation (nano scores of 8-10), others did 488 

not (nano scores of 1-3), and this variability in characterisation was seen for datasets giving both 489 

negative and positive results.  490 

3.3 In vitro studies 491 

Table 4 shows a summary of the expert evaluated scores for in vitro studies with “moderate”, 492 

“moderate-high” or “high” weight. A total of 14 data sets comprising 9 MN, 3 CA, a single HPRT and a 493 

single TK gene mutation data set with 10 out of the 14 data sets being with nano TiO2.  494 

There was no evidence of induction of gene mutations in vitro, although only 2 mammalian cell gene 495 

mutation studies achieved a final weight of “moderate”. Most in vitro tests for MN and CA were 496 

negative. Only 2 in vitro MN studies in Table 4 were positive or weakly positive, and the concentrations 497 
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at which these effects were seen induced oxidative damage, apoptosis and necrosis. However, these 498 

changes were also seen in negative studies. Therefore, it is highly likely that the increases in MN were 499 

secondary to oxidative stress and cytotoxicity.  500 

The pattern of in vitro results from “moderate” or higher weighted studies is illustrated in Fig 1. 501 

It should be noted that there was much variability across the different datasets in terms of the particle 502 

concentrations tested in mammalian cells in vitro. This may be due to different forms of TiO2 being 503 

tested, cell type, method of formulation, etc., but it makes comparison of any effects between studies 504 

very challenging.  505 

As described previously, failure to expose mammalian cells for at least 1 cell cycle, or, for shorter 506 

exposures, failure to clearly demonstrate that the particles entered the cells, was not considered 507 

acceptable when negative results were obtained. Therefore, some in vitro MN, CA and gene mutation 508 

studies that gave positive or equivocal results with short treatments suggested there must have been 509 

intracellular exposure, so were considered reliable and retained a ”moderate” weight (so were 510 

considered relevant to the assessment of genotoxic potential and included in Table 4). On the other 511 

hand, studies that gave negative results with short treatments, and with no clear demonstration of 512 

cellular uptake, were considered unreliable and given "low-moderate” or "low” weights and not 513 

considered relevant (and were excluded from Table 4). There could therefore be a “bias” towards 514 

positive results in the datasets that are included in Table 4, that were considered relevant for overall 515 

evaluation of genotoxic potential. Nonetheless, 10 in vitro MN/CA and 2 in vitro mammalian cell gene 516 

mutation studies that were negative did include sufficiently long exposures (prior to cytochalasin B 517 

treatment in the MN studies) to provide robust negative results. 518 

3.4 In vivo studies 519 

Table 5 shows a summary of the expert evaluated scores for in vivo studies with “moderate”, 520 

“moderate-high” or “high” weight. A total of 20 data sets comprising 11 MN (bone marrow and 521 

peripheral blood), 2 CA, 2 transgenic rodent mutation studies (gpt and Spi mutants), 3 comet assays 522 

(2 in liver and lung and a single study in liver) and two 8-OHdG adduct studies in the lung. Sixteen out 523 

of the 20 data sets were nano TiO2. 524 

There was no evidence of induction of gene mutations in vivo from the 2 TGR studies in Table 5, 525 

although neither study fully complied with OECD guideline recommendations. Similarly, none of the 526 

in vivo Pig-a mutation studies reviewed in Supplementary Table 5 (S5) met recent best practices 527 

recommendations (Dertinger et al., 2021) or the just approved OECD TG (OECD, 2022) and were 528 

therefore not sufficiently robust to achieve “moderate” or higher weight.  529 
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Of the 13 in vivo MN/CA studies in Table 5, 7 were considered positive. However: 530 

• 1 was probably an indirect consequence of high bone marrow toxicity since increased CA 531 

frequencies only increased at >40% mitotic inhibition (Manivannan et al, 2020) 532 

• 3 showed only weak (approximately 2-fold) increases in MN and therefore of questionable 533 

biological relevance (Shelby & Witt, 1995, Shakula et al. 2014, Relier et al., 2017). 534 

• 1 was positive for MN in rat bone marrow which was stained with Giemsa, but negative in 535 

bone marrow reticulocytes (stained with acridine orange) in the same animals (Dobezynska et 536 

al., 2014).  Giemsa is not a recommended stain for rat bone marrow since mast cell granules 537 

can stain and look like MN (Pascoe & Gatehouse, 1986), so the bone marrow response with 538 

the Giemsa stain could be an artefact and the negative result with acridine orange could be 539 

more reliable 540 

• All positive responses other than those listed above were associated with inflammation, 541 

oxidative stress and/or apoptosis. 542 

In addition to the above, 2 of these 7 datasets scored a Klimisch 3 in the ToxR Tool and as such are 543 

considered unreliable. Therefore, there are reasons to question whether any of these positive in vivo 544 

MN/CA responses are biologically relevant and indicative of a direct DNA-damaging effect of TiO2. 545 

It is notable that different dosing routes, dose levels and dosing periods were used in these 7 positive 546 

studies. Dose levels and dosing period were variable even by the same route of administration: 547 

• 4 oral gavage studies 548 

o 1 study on nano TiO2 (rutile, 25 nm) using doses up to 0.8 mg/kg/day for 28 days,  549 

o another study on nano TiO2 (anatase, 5-10 nm) using doses up to 200 mg/kg/day for 550 

60 days,  551 

o a 3rd study on nano TiO2 (58 nm) using doses up to 500 mg/kg/day for 90 days, 552 

o a 4th study on micro TiO2 using doses up to 1000 mg/kg/day for 7 days. 553 

• 1 drinking water study on nano TiO2 P25 using doses calculated up to 500 mg/kg over 5 days 554 

• 1 IP study on pigmentary TiO2 using doses up to 1500 mg/kg/day for 3 days 555 

• 1 IV study on nano TiO2 NM-105 using a single dose of 5 mg/kg. 556 

This variability in the form of TiO2 tested, dose levels, dosing routes and dosing periods makes it 557 

extremely challenging to draw any conclusions on what form(s) of TiO2 and/or exposure routes might 558 

be associated with a genotoxic hazard.  559 

Five of the seven positive MN/CA studies used oral gavage or drinking water administration, and yet 560 

absorption via the oral route has been shown to be very low. In an oral bioavailability study in rats, 561 
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only 0.0006% of a single 1000 mg/kg oral dose of E171-E was found in the total blood compartment, 562 

thus covering any dissolved titanium as well as any TiO2 NPs that may have crossed the intestinal 563 

barrier (Provivo Biosciences & Fraunhofer Institute, 2022). Other grades of TiO2 (G6-3, G2-5) 564 

administered at the same dose, were below the limit of detection in blood, so the percentages 565 

absorbed were even lower. With such low oral bioavailability, bone marrow exposure would be 566 

negligible, and therefore the plausibility of these positive MN/CA results is questionable. By contrast, 567 

3 of the 4 studies that used IV dosing, where exposure of the bone marrow would be assured, were 568 

negative.  569 

There are 3 in vivo comet studies in rats in Table 5. Two of these were negative (one in lung after 570 

intratracheal instillation, the other in liver and lung after oral dosing). The third study was positive in 571 

lung and liver after endotracheal instillation, but the responses were associated with inflammation 572 

and oxidative stress. Again, this route is different from those leading to increased MN or CA, and so 573 

comparing effects across different in vivo studies is challenging. Thus, again, there are reasons to 574 

question whether this positive in vivo comet response is a biologically relevant indicator of a direct 575 

DNA-damaging effect. 576 

There are two in vivo 8-OHdG studies in Table 5. Both used a single intratracheal instillation of doses 577 

up to 1.0 and 1.2 mg, and one study also used long-term whole-body inhalation. The outcomes of both 578 

studies were negative. 579 

The pattern of in vivo results from moderate or higher weighted studies is illustrated in Fig 2. 580 

 581 

4. Discussion 582 

We have used a structured approach to assess reliability and weight of evidence (WoE) in reviewing 583 

192 datasets from publications and study reports on the genotoxicity of TiO₂ focusing on endpoints 584 

considered relevant to genetic or carcinogenic risk. Using this approach, only 34 datasets met the 585 

criteria for reliability and quality of data and were considered relevant (i.e., “moderate” or higher 586 

weight based on WoE evaluations) for assessment of genotoxic risk. A further 145 datasets covering 587 

endpoints that could, at best, have contributed only “low” or “negligible” weight to the overall 588 

assessment of genetic or carcinogenic risk, were not reviewed. Therefore, considering the full 337 589 

datasets with available genotoxicity data on TiO2, only 10.1% finally provided relevant data, and 590 

although this may seem low, it is higher than the 3.88% of published mutagenicity studies that were 591 

considered suitable for inclusion in the GUIDEnano hazard assessment approach of Fernandez-Cruz et 592 

al. (2018). There are many studies in which, according to our assessments, the endpoint evaluated has 593 

lower weight, the study designs and/or the data are not reliable, or the results are questionable for 594 
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various reasons, and are too poor to support a robust assessment. Thus, if all datasets had been 595 

considered to contribute relevant results to an assessment of genotoxicity, as was the case in the EFSA 596 

(2021) opinion, different conclusions would likely be reached than if a structured reliability and WoE 597 

approach, as reported here, had been used.  598 

Indeed, comparisons between the EFSA and Expert Panel approaches highlight differences in terms of 599 

the types of studies and endpoints that were included or excluded in the respective assessments, how 600 

reliability was scored, and how different aspects of test design were assessed. Table 7 highlights some 601 

of these differences, particularly in terms of the relevance (or weight) of certain genotoxicity 602 

endpoints in vitro and in vivo. The main differences in approach can be summarised as follows: 603 

• The reliability of genotoxicity studies was assessed by EFSA using criteria published by Klimisch 604 

et al. (1997) whereas the Expert Panel used Klimisch scores derived from the modified ToxR 605 

Tool (Schneider et al., 2009). 606 

• EFSA assessed relevance based on reliability (standard Klimisch score), some general aspects 607 

(e.g., genetic endpoint, route of administration and status of validation), and nano score 608 

(NSC), whereas the Expert Panel used the structured WoE approach described above. 609 

• EFSA attributed relevance into 3 categories but only studies achieving ”High” or “Limited” 610 

relevance were considered in the overall assessment, whereas the Expert Panel initially 611 

attributed relevance into 4 main categories, and only studies achieving "moderate”, 612 

"moderate-high” or "high” weight after WoE reviews were considered in the final assessment. 613 

• EFSA did not independently review the genotoxicity data in the relevant datasets, and the 614 

conclusions of the authors were accepted as published, whereas the Expert Panel re-615 

evaluated the data in each of the 192 datasets with default ”moderate” or "high” weights 616 

using current standards (including OECD recommendations on testing NPs) and, on some 617 

occasions, did not confirm the authors’ conclusions. 618 

As can be seen in Table 8, these differences in approach resulted in EFSA considering many more 619 

studies to be “relevant” than the Expert Panel. Many of the additional studies included by EFSA (>50% 620 

of those achieving ”high” or “limited” relevance) were in vitro comet assays, of which 71.8% were 621 

positive. These in vitro comet assays were excluded by the Expert Panel on the basis of being only 622 

indicator tests (OECD, 2015a) of DNA damage and not necessarily indicative of an ability to induce 623 

stable genetic changes (as also described in the OECD guidance document, OECD, 2015a). EFSA also 624 

included in vitro DNA binding, 8-OHdG adducts and γH2AX foci studies which were excluded by the 625 

Expert Panel on similar grounds.  626 
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The Expert Panel included more in vivo studies than EFSA, mainly due to inclusion of routes of 627 

administration not considered relevant for TiO2 in food (i.e., i.v, i.p., or instillation, which could 628 

potentially have led to higher exposures than via the oral route considered by EFSA), but concluded 629 

many fewer studies were positive (in particular in vivo comet assays). 630 

We noted that the more recent studies tended to contain more detail on methodology, test item 631 

characterisation and inclusion of unprocessed data, and were more robust than older studies. It was 632 

therefore considered useful to compare the EFSA and Expert Panel assessments of the more recent 633 

studies. In Tables 9 and 10 a comparison is made of only the “new” studies reviewed by EFSA 634 

(Appendices J and K, EFSA., 2021), and it can be seen that EFSA assessed some studies as ”high” 635 

relevance whereas the Expert Panel assessed them as contributing only "low” or "low-moderate” 636 

weight. There were very few datasets where the reverse was the case, i.e., where EFSA gave a lower 637 

relevance evaluation than the Expert Panel.  As a result, EFSA included more study types and datasets 638 

as being relevant than the Expert Panel. Again, even with the more recent datasets, EFSA included 639 

multiple in vitro comet assays as ”high” relevance, many of which were positive, and DNA binding 640 

studies, which were also positive, whereas the Expert Panel WoE approach considered these to be 641 

“low” weight indicator tests (as also described in the OECD guidance document, OECD, 2015a). It is 642 

therefore not surprising that in the EFSA (2021) opinion, different conclusions were reached than in 643 

the structured reliability and WoE approach, as reported here.  644 

Within the 34 datasets that were included in the WoE assessment, there was little evidence of 645 

reproducible effects for the same endpoint. This made comparison of effects very challenging due to 646 

different non-standardised protocols e.g., forms of TiO2 tested, varied characterisation of the 647 

preparations tested, different concentrations or doses, different dispersion protocols, different 648 

exposure routes, different cell types showing differences in endocytosis, and the fact that study 649 

designs in many cases differed markedly from, and often fell short of, the recommended approaches 650 

in OECD test guidelines.  651 

Of the 34 relevant datasets, only 10 (29.4%) were positive for genotoxicity. All were from studies of 652 

DNA strand breakage (in vivo comet assay) or chromosome damage (in vitro and in vivo MN or CA 653 

assays), and it is accepted within many regulatory guidelines that DNA and chromosome breakage can 654 

be secondary to physiological stress (for example see Kirkland et al., 2007 and note 9 ICHS2R1 (ICH 655 

2013). Since all of the positive findings were associated with high cytotoxicity, oxidative stress, 656 

inflammation, apoptosis, necrosis, or combinations of these, it is highly likely that the observed 657 

genotoxic effects of TiO2, including those with NPs, are secondary to physiological stress, as has been 658 

described recently in a comparable review (Krug, 2022). There were no positive results from the in 659 
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vitro and in vivo gene mutation studies evaluated, which is consistent with DNA/chromosomal damage 660 

being secondary to physiological stress, although it should be noted that to definitively conclude a lack 661 

of mutagenicity more robust in vivo gene mutation studies would be useful. As shown in Table 11, the 662 

profile of genotoxicity results from the most robust studies with TiO2 does not fit the pattern expected 663 

for a genotoxic carcinogen.  664 

As the data analysed contained a number of different sizes of TiO2 from macro to nanoscale particles, 665 

there was the opportunity to determine whether particle size was related to genotoxicity outcome. 666 

However, we found no pattern of genotoxicity responses consistent with different sizes of TiO2. Nano 667 

forms of TiO2 under 100 nm, particles between 100 and 1000 nm and those above 1 µm did not 668 

correlate with any specific genotoxicity response.  669 

The lack of correlation with particle size is consistent with the data from the German NanoInVivo 670 

project (The Federal Institute for Occupational Safety and Health, the German Environment Agency 671 

(UBA) and the Federal Institute for Risk Assessment (BfR)) that is looking at the long-term effects of 672 

nanomaterials on the lungs and other organs. Using inhaled Cerium Oxide in rat models (from 0.1 – 3 673 

mg/m3) they found that at a low load, the lungs showed a dose-related inflammatory response 674 

alongside tissue changes, and the higher the CeO2 particle concentration in the lung, the stronger the 675 

inflammatory response was. Despite inflammation in the lungs, no tumour development was observed 676 

(Reihlen and Zimmermann 2018). TiO2 showed analogous responses to those reported here, namely 677 

negative genotoxicity outcomes unless under conditions associated with generation of reactive 678 

oxygen or tissue overload, i.e., not directly DNA damaging.  679 

 680 

5. Conclusions 681 

The 34 robust datasets reviewed here, do not support a direct DNA-damaging mechanism for TiO2 in 682 

either the nano or micro form.  683 

Carefully designed studies of apical endpoints (gene mutation, MN and/or CA), following OECD 684 

recommended methods, performed with well characterised preparations of TiO2, would allow firmer 685 

conclusions on mutagenicity to be reached. 686 

  687 
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Table 1: Approaches used to characterise the PC properties of NPs. The most commonly employed approaches to characterise different NP PC properties 

are identified. 

 

Property Approach 

Size and size distribution  Transmission electron microscopy (TEM) 

Scanning electron microscopy (SEM) 

Dynamic Light Scattering (DLS) 

X Ray Diffraction (XRD) 

Nanoparticle tracking analysis (NTA) 

Agglomeration/Aggregation TEM 

SEM  

DLS 

NTA 

Shape (Morphology) TEM 

SEM 

Surface Area Brunauer, Emmett and Teller (BET)  

*only applicable to powders 

Surface Chemistry (composition 

and reactivity) 

X-ray photoelectron spectroscopy (XPS) 

Nuclear magnetic resonance (NMR) spectroscopy 

Charge DLS (zeta potential) 
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Crystal Structure  XRD 

Composition & Purity Inductively coupled plasma mass spectrometry (ICP-MS) (ICP-

MS) 

Fourier Transform Infrared Spectroscopy (FTIR) 
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Table 2: guidance for individual experts filling in the nano section of the modified ToxR tool 

Category Comments / Explanation / Justification 

Agglomeration and/or aggregation May be measured or not, not so important for in vitro tox 

Chemical composition A must to know if it is pure or coated or a mixture 

Crystal structure/crystallinity For TiO2 this is important and should be analysed by authors 

Particle size/particle distribution A must and should be measured by authors 

Purity Important, thus a "1" only if analysed by authors 

Shape Important, should be measured by authors using TEM 

Surface area Important, but may be calculated from size distribution. But if a value has been mentioned it 

should be measured by the authors 

Surface charge Should be measured by the authors 

Surface chemistry (including composition & 

reactivity) 

Coating etc. should be stated and analysed by authors 

Whether any characterization was conducted 

in the relevant experimental media 

It would be helpful if agglomeration, size distribution and surface characteristics could be 

provided in the culture media, dose formulation, to judge the effects in a more relevant way 

Total score   
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Table 3 – Default weighting of genotoxicity studies by endpoint  

Endpoint* Negligible Weight Low Weight Moderate Weight  High Weight 

DNA binding (adduct formation) in vitro     

DNA binding (adduct formation) in vivo     

SSB/DSB in vitro (including comet)     

SSB/DSB in vivo (including comet)     

Sister Chromatid Exchanges (SCE) in vitro     

Sister Chromatid Exchanges (SCE) in vivo     

Oxidative DNA Damage in vitro     

Oxidative DNA Damage in vivo (detection of 8-OHdG adducts)     

DNA repair effects in vitro     

DNA repair effects in vivo     

Micronuclei (MN) in vitro     

Micronuclei (MN) in vivo     

Chromosomal aberrations (CA) in vitro     

Chromosomal aberrations (CA) in vivo     

Jo
urn

al 
Pre-

pro
of



Gene mutation in bacteria (Ames Test)     

Gene mutation in mammalian cells in vitro     

Gene mutation in vivo     

* SSB, single strand breaks; DSB, double strand breaks; SCE, sister chromatid exchange 

Principles of WoE are consistent with endpoint specific guidance document of the European Chemicals Agency (ECHA, 2015), and the “Guidance Document 

on Revisions to OECD Genetic Toxicology Test Guidelines” (OECD, 2015a). 
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Table 4 – Summary of moderate, moderate-high or high weight in vitro studies. 

Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

Kazimirova et 
al. (2020) 
 

Nano, P25 anatase/rutile (NM-
105), average size 21 nm. When 
dispersed in PBS and sonicated, 
mean size distribution increased 
to 112 nm (with FBS) and 296 nm 
(without FBS). 
 
*NanoTEST dispersion protocol 
used for hazard studies. NPs 
suspended in 10% FBS (in PBS) 
at a concentration of 5 mg/ml 
probe sonicated for 15 min. and 
diluted in cell culture medium.  

Nano score 10. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-105) 
which have been 
extensively characterised 
and this information is 
summarised. Additional 
characterisation 
performed in relevant 
biological medium. 

HPRT 
mutations 

V79-4 cells 3-75 µg/cm2 for 24 
hours. 

Negative  
 
 

Top concentration 
equivalent to 585 µg/mL.  
Only slight cytotoxicity. 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 2. 

Du et al. 
(2019) 
 

Nano (40 nm). 
 
*Lack of detail provided about NP 
preparation for genotoxicity 
studies. Stock concentration of 
NPs suspended in deionised 
water.  

Nano score 1. 
 
* No information on NP 
characteristics obtained 
from the supplier 
provided. Limited 
independent 
characterisation 
performed. No 
characterisation 
performed in relevant 
biological medium. 

TK 
mutations 

L5178Y cells;  4 hours treatment – 
and + S9, 24 hours 
treatment -S9; 312-
2000 µg/mL in each 
case. 

Negative Top concentration 
induced ~50-60% 
reduction in RTG.  
Followed OECD 
guideline 490 (2016). 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 1. 

Donner 
(2006); 
unpublished 
study report 
published in 
Warheit et al. 
(2007)  
 

Ultrafine (called uf-C in Warheit et 
al., 2007; 140 nm median size). 

Not done – not relevant CA CHO-K1 4+16 hours - S9 at 
750, 1250 & 2500 
µg/mL; 4 + 16 hours 
+S9 at 62.5, 125 & 250 
µg/mL; 20+0 hours -
S9 at 25, 50 & 100 
µg/mL. 

Negative GLP study, complied with 
OECD guideline 473 
(1998). >60% mitotic 
inhibition at top 
concentration in all parts 
of study. 
ROS/oxidative stress not 
investigated. 
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Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

ToxR Klimisch score 1. 
 

Riley (1999) 
 

Nano/bulk not specified but for T 
805. 
 
*Stock concentration of NPs 
prepared in ethanol for 
genotoxicity studies. 

Nano score 3. 
 
*Limited independent 
characterisation 
performed – reliant on 
information provided by 
the supplier. No 
characterisation 
performed in relevant 
biological medium. 

CA CHO cells 88.72; 209.7 and 800 
µg/mL (-S9 20 hour 
treatment); 167.8; 640; 
800 ug/mL (+S9 3 hour 
treatment). 

Negative -S9 3 hour treatment 
performed in separate 
study. 800 µg/mL is 
approximately10 mM. 
GLP study, complied with 
OECD guideline 473 
(1998). 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 2. 
 

Glover (2011) 
 

Assumed to be pigmentary since 
nano is not mentioned. 

Not done – not relevant CA CHO-K1 cells 4+16 hours -S9 (25, 
50, 100 µg/mL), 4+16 
hours +S9 (25, 50, 75, 
100, 150 µg/mL), or 
20+0 hours -S9 (25, 
50, 75 µg/mL). 

Negative Little or no mitotic 
inhibition but >50% 
growth inhibition at top 
concentrations scored. 
GLP study complied with 
OECD guideline 473 
(1998). 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 1. 

Zijno et al. 
(2015) 
 

Nano; anatase <25 nm (Sigma 
Aldrich). 
 
*NPs suspended in serum free 
culture medium (0.1 mg/ml) and 
probe sonicated for 20 minutes on 
ice for genotoxicity studies. 

Nano score 7. 
 
* Information on NP 
characteristics obtained 
from the supplier 
provided. Some 
independent 
characterisation 
performed. Some 
characterisation 

MN Caco-2 cells 
(from ATCC) 

1, 2, 3.5, 5, 10 and 20 
µg/cm2 (corresponding 
to 6.4–128.0 µg/ml) in 
culture medium 
(without FCS.); 6 and 
24 hours then adding 
cytochalasin B for 24 
hours. 

Negative 6 hours treatment without 
cytochalasin B may not 
be long enough for 
nanos, but 24+24 hours 
is robust. ROS/oxidative 
stress not investigated in 
this study but previously 
shown ROS induced at 
these concentrations. 
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Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

performed in relevant 
biological medium. 

ToxR Klimisch score 2. 

Landsiedel et 
al. (2010) 
 

T-LiteTM SF (TiO2 for 
Sunscreens), 10 x 50 nm, 
Rutile, coated with aluminium 
hydroxide and 
dimethicone/methicone 
copolymer. 
 
*For the MN assay NPs were 
suspended in cell culture medium 
for genotoxicity studies. 
 

Nano score 8. 
 
* Some information on NP 
characteristics obtained 
from the supplier 
provided. Independent 
characterisation also 
performed. 
Characterisation 
performed in relevant 
biological medium. 

MN V79 cells 75 to 300 µg/ml for 
4 hours; 18.8 to 
75 µg/ml for 24 hours. 

Negative The authors clearly 
identified that NP can be 
seen on the slides at 
2.5 µg/ml and above. 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 1. 

Armand 
(2016) 
 

Nano; AEROXIDE P25, (NM105 
manufactured by Evonik for JRC 
Ispra); 24 nm, 86% anatase/14% 
rutile. 
 
*NPs were suspended in ultrapure 
sterile water (10 mg/ml) and 
probe sonicated (in pulsed mode) 
for 30 min. Suspensions were 
vortexed and diluted in cell culture 
medium for genotoxicity studies. 

Nano score 8. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-105) 
which have been 
extensively characterised 
and this information is 
summarised. Additional 
characterisation 
performed in relevant 
biological medium. 

MN A549 cells 1 – 50 µg/ml over 2 
months with 2 medium 
changes (containing 
nano particles) per 
week. MN measured at 
24 hours, 1 week, 2 
weeks, 1 month and 2 
months. 

Negative No cytotoxic effect even 
after 2 months of 
treatment with 50 µg/ml. 
 
ROS increased and 
oxidative DNA damage 
(measured with Fpg 
modified comet) has 
been shown. 
 
ToxR Klimisch score 1. 

Vales et al. 
(2015) 
) 

Nano; NM-102 (JRC, Ispra) 
21 nm. 
 
*Nanogenotox dispersion protocol 
used: NPs were pre-wetted in 
0.5% ethanol and then suspended 
in 0.05% BSA in MilliQ water 
(2.56 mg/ml) and probe sonicated 
for 16 min. on ice. Stock 
suspension diluted in cell culture 
medium for genotoxicity studies. 

Nano score 9. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-102) 
which have been 
extensively characterised 
and this information is 
summarised. Additional 
characterisation 
performed in relevant 
biological medium. 

MN BEAS 2B cells 1, 10 and 20 µg/ml for 
acute (24 hours) and 
chronic treatment (1 to 
3 weeks); sequential 
treatment with NPs 
and cytochalasin B. 

Negative Cytotoxicity not 
assessed. 
 
Oxidative stress 
investigated but no 
positive effect for TiO2. 
 
ToxR Klimisch score 1. 
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Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

Di 
Bucchianico et 
al. (2017) 
 

Nano; NM-100 (anatase, 50–150 
nm, non-coated), NM-101 
(anatase, 5–8 nm, coated) and 
NM-103 (rutile, 20–28 nm, 
coated). 
 
*NANOoREG dispersion protocol 
used for hazard studies: NPs 
were suspended in 0.05% BSA in 
MilliQ water (2.56 mg/ml) and 
probe sonicated for 15 min. on 
ice. Stock suspensions were then 
diluted in 0.05% BSA to a 
concentration of 0.1 mg/ml and 
then diluted in cell culture 
medium. 

Nano score 10. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-101 and 
NM-103) which have 
been extensively 
characterised and this 
information is 
summarised. Additional 
characterisation 
performed in relevant 
biological medium. 

MN BEAS-2B cells 1–30 μg/mL, 3, 24 or 
48 hours treatments 
under serum free 
conditions. MN scored 
with flow cytometry 
and manually by the 
CBMN cytochalasin B 
assay (added after 20 
hours). 

Weak positive 
(<2-fold and 
inverse dose-
response) for NM-
103 

Authors noted induction 
of oxidative DNA damage 
for all three materials & 
increased necrotic cells 
particularly for NM-103. 
 
ToxR Klimisch score 1. 

Stoccoro et al. 
(2016) 
 

Commercial TiO2 (84% anatase, 
16% brookite crystal phase 
composition, 8), NP as 
nanopowder and as colloidal 
nanosuspension (nanosol).  
Pristine (uncoated), citrate-coated 
and silica-coated TiO2 were 
tested with Aeroxide® P25 as 
benchmark material. 
 
*No information on NP 
preparation for genotoxicity 
studies provided. 

Nano score 6. 
 
* Information on NP 
characteristics obtained 
from the supplier 
provided. Some 
independent 
characterisation also 
performed. Some 
characterisation 
performed in relevant 
biological medium. 

MN BALB/3T3 cells 10, 20 and 40 μg/cm2, 
(corresponding to 32, 
64, and 128 ug/mL); 
48 hour treatment. 
 

Positive for 
citrate-coated 
TiO2 and P25 
(only at lowest 
concentration), 
others weakly 
positive. 

Oxidised purines & 
pyrimidines induced by 
all particles tested. 
Significant apoptotic & 
necrotic cells induced by 
citrate-coated & P25. 
 
ToxR Klimisch score 1. 
 

Andreoli et al. 
(2018) 
 

Nano: anatase 20-60 nm; 
Rutile 30 x 100 nm rods; 
Mixture anatase and rutile 
45 – 262 nm; 
Anatase 50 – 270 nm; 
Rutile 50 – 3000 nm 
(Sigma-Aldrich, USA). 
 

Nano score 4. 
 
* Reliant on information 
provided by the supplier. 
Limited independent 
characterisation 
performed. Some 
characterisation 

MN Human 
peripheral 
blood 
lymphocytes 
from 2 healthy 
male donors 
(<40 years old) 
 

50, 100 and 200 
µg/ml, 20 hours. 
 

Negative for all 
particle types 

Authors used 2 protocols: 
(1) sequential treatment 
(20 hours NP and then 
cytochalasin B was 
added for the next 
28 hours); (2) co-
treatment (30 min NP 
alone and then together 
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Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

*NPs were suspended in cell 
culture medium without serum 
and bath sonicated for 45 min. 

performed in relevant 
biological medium. 

with cytochalasin B for 
28 hours). The results did 
not differ. 
 
Treatments carried out in 
the dark. 
 
Oxidative DNA damage 
suggested, 8-OHdG 
induced at highest concs. 
100 and 200 µg/ml. 
 
ToxR Klimisch score 1. 

Brandao et al. 
(2020) 
 

AEROXIDE_ P25 (Degussa-
Evonik); 25 nm, 80% 
anatase/20% rutile. 
 
*NPs were suspended in cell 
culture medium and probe 
sonicated for 5 min. on ice (1.5 
min. on and 1 min. off twice, and 
2 min. on) for genotoxicity studies. 

Nano score 3 
 
*Reliant on information 
provided by the supplier. 
Limited characterisation 
performed in relevant 
media. 
 
*Whilst limited information 
on NP characteristics was 
provided in the 
manuscript P25 has been 
extensively characterised 
in the published literature. 

MN A549, A172, 
HepG2 & SH-
SY5Y cells 

10, 50, 100 and 
200 µg/ml, 3 and 24 
hours treatments. 

Negative Uptake of TiO2 was 
clearly shown for all cell 
lines. 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 1. 
 

Pittol et al. 
(2018) 
 

Commercial rutile (TiPure R-103).  
 
*NPs were suspended in cell 
culture medium for genotoxicity 
studies. 

Nano score 6. 
 
*No information on NP 
characteristics obtained 
from the supplier 
provided. Some 
independent 
characterisation 
performed. No 
characterisation in 

MN L-929 mouse 
fibroblasts 

15, 30 and 60 ppm, 
6- and 24-hour 
exposures without S9, 
cytochalasin B then 
added until harvest at 
72 hours. Data given 
for 24-hour exposures 
only. 

Negative Agglomeration of nanos 
in culture medium. 
 
ROS/oxidative stress not 
investigated. 
 
ToxR Klimisch score 1. 
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Reference Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Cell type Concentrations 
tested 

WoE conclusion Comments 

relevant biological 
medium. 
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Table 5 - Summary of moderate, moderate high or high weight in vivo studies 

Reference 
 

Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

Suzuki et al. 
(2016) 
 

Nano (P25). 
DLS showed particle sizes of 
145-147 nm in dosing vehicle 
(disodium phosphate). 
 
*NPs sterilised by heating 
(180oC for 1 hour), suspended 
in 2 mg/ml disodium 
phosphate (DSP) at a 
concentration of 10mg/ml and 
bath sonicated for 30 min. 
Suspensions then diluted in 
DSP for genotoxicity studies. 

Nano score 3. 
 
* Information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
Some characterisation in 
relevant biological medium. 
 
*NB Whilst there was a 
reliance placed on 
presenting information 
obtained from the suppliers 
on the characteristics of the 
NPs, P25 has been 
extensively characterised in 
the published literature. 

Gpt and Spi 
mutations 

Gpt delta 
mice 

Intravenous; 2, 10 & 50 
mg/kg, once per week for 
4 weeks; liver sampled 9 
days after last 
administration. 

Negative with 
restrictions. 
Unusual dosing 
schedule may not 
support negative 
outcome, although 
TiO2 shown to be 
localised in liver by 
TEM. 

ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 1. 

Suzuki et al. 
(2020) 
 
 

Nano (P25). 
DLS showed particle sizes of 
145-147 nm in dosing vehicle 
(disodium phosphate). 
 
*NPs sterilised by heating 
(180oC for 1 hour), suspended 
in 2 mg/ml disodium 
phosphate (DSP) at a 
concentration of 10 mg/ml and 
bath sonicated for 30 min. 
Suspensions then diluted in 
DSP for genotoxicity studies. 

Nano score 3. 
 
* Information on NP 
characteristics provided by 
supplier. Limited 
independent characterisation 
performed. Some 
characterisation in relevant 
biological medium. 
 
*NB Whilst there was a 
reliance placed on 
presenting information 
obtained from the suppliers 
on the characteristics of the 

Gpt and Spi 
mutations  
 
NB. Methods 
described in 
Suzuki et al. 
(2016) 

Gpt delta 
mice 

Intravenous; 2, 10 & 50 
mg/kg, once per week for 
4 weeks; liver sampled 
90 days after last 
administration. 

Negative with 
restrictions. 
Unusual dosing 
schedule may not 
support negative 
outcome, although 
TiO2 shown to be 
localised in liver by 
TEM. 

ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 1. 
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Reference 
 

Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

NPs, P25 has been 
extensively characterised in 
the published literature. 

Shelby & Witt 
(1995) 
 

Unitane 220 (comparable to 
food grade E-171) pigmentary 
with a nano tail. 

Not relevant. Pigmentary 
grade tested. 

Bone marrow 
CA 

Mice Single IP dose of 625, 
1250 & 2500 mg/kg; 
bone marrow sampled 17 
& 36 hours later. 

Negative with some 
limitations. 

Only 50 cells/animal 
scored for CA. Not clear 
whether slides coded. 
No direct measure of 
bone marrow toxicity, 
but %PCE reduced in 
MN study in same 
paper. IP route not 
considered 
physiologically relevant. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 2. 

Manivannan 
et al. (2020) 
 

Nano – rutile form 
(25 nm, forming agglomerates 
of >300 nm after dispersion in 
water). 
 
*NPs suspended in distilled 
water and bath sonicated for 
30 min for genotoxicity 
studies. 

Nano score 8. 
 
* Some information on NP 
characteristics obtained by 
supplier provided. 
Independent characterisation 
of NPs also performed. 
Some characterisation in 
relevant biological medium. 

Bone marrow 
CA 

Mice Oral gavage dosing of 
0.2, 0.4 & 0.8 mg/kg/day 
for 28 days. 

Positive, but 
chromatid and 
chromosome 
breaks may be 
indirect 
consequence of 
high bone marrow 
toxicity. 

>40% reduction in 
mitotic index at top 2 
doses where increased 
CA frequencies seen. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 3, 
unreliable. 

Shelby & 
Witt, (1995) 
& Shelby et 
al. (1993) 
 

Unitane 220 (comparable to 
food grade E-171) pigmentary 
with a nano tail. 

Not relevant. Pigmentary 
grade tested. 

Bone marrow 
and peripheral 
blood MN 

Mice 3 IP studies. 3 daily 
doses,  
#1: 250, 500 & 1000 
mg/kg/day, bone marrow 
24 hours;  
#2: "DRF" 500, 1000 
&1500 mg/kg/day, 

Positive, with 
reproducible, weak 
increase at 1000 
mg/kg/day in bone 
marrow, but at 
lowest dose in 
blood so no 
significant trend. 

IP route not considered 
physiologically relevant.  
Only 2000 PCE/animal 
scored for MN. 
Peripheral blood 52% 
toxicity seen; minimal 
bone marrow toxicity. 
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Reference 
 

Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

Peripheral blood 48 
hours;  
#3: 500, 1000, 1500 
mg/kg, bone marrow 24 
hours 

ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 1. 

Trouiller et 
al. (2009) 
 
 

Nano (Aeroxide P25). 
 
* NP suspended in drinking 
water and bath sonicated for 
15 minutes. 
 

Nano score 6. 
 
* Information on NP 
characteristics obtained from 
supplier provided and this 
information is summarised. 
Limited independent 
characterisation performed 
but P25 has been 
extensively characterised 
and citations are provided to 
relevant literature. Some 
characterisation in relevant 
biological medium. 
 

Peripheral 
blood MN 

Mice Drinking water, 50, 100, 
250 500 mg/kg total from 
5 days dosing. Water 
consumption ranged 3-7 
mL/mouse/day.  Average 
of 5 mL/day for 30g avg. 
weight mouse was used 
to calculate total dose. 

Positive, 2.1x 
increase at top 
dose, but error bars 
for control and 
treated 
measurements 
overlap, so may not 
be biologically 
relevant. 

Not clear whether NCE 
or PCE were scored.  
Difficult to verify 
exposure doses from 
the descriptions, and 
whether settling out of 
particles in drinking 
water was controlled. 
Oxidative stress 
indicated since 8-OHdG 
increased, and 
evidence of pro-
inflammatory response. 
 
ToxR Klimisch score 1. 

Sadiq et al. 
(2012) 
 
 

Nano, 10 nm anatase. 
 
*NPs suspended in PBS (5 
mg/ml) and vigorously mixed 
and sonicated for genotoxicity 
studies. 

Nano score 7. 
 
* NPs synthesised by the 
researchers. 
Characterisation of NPs 
performed. Some 
characterisation performed in 
relevant biological medium. 

Peripheral 
blood 
reticulocytes 
MN 

Mice IV dosing at 0.5, 5.0, and 
50 mg/kg/day for 3 days. 
Blood sampled on day 4. 

Negative Target tissue exposure 
assessed by measuring 
titanium in bone 
marrow. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 1. 

Dobrzynska 
et al. (2014) 
 

Nano, NM-105 (20 nm). 
 
*NPs suspended in deionised 
water containing DMSO and 
probe sonicated for 5 min. on 
ice and diluted in PBS 

Nano score 7. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-105) which 
have been extensively 
characterised and some of 

Bone marrow 
PCE and 
reticulocytes 
MN 

Rats Single IV dose of 5 
mg/kg. 
Bone marrow sampled 
24 hours, 1 and 4 weeks 
after dosing. 

Positive in bone 
marrow PCE (with 
limitations) at 24 
hours but negative 
at 1 and 4 weeks 
and negative in 
reticulocytes. 

Method incompletely 
described. 
PCE stained with 
Giemsa which can 
produce artefacts (mast 
cell granules) but 
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Reference 
 

Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

(containing BSA) for 
genotoxicity studies. 

this information is 
summarised. Additional 
characterisation performed in 
relevant biological medium. 

reticulocytes stained 
with acridine orange.  
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 2. 

Louro et al. 
(2014) & 
Fessard 
(2013) 
 

Nano, anatase average 
diameter 22 nm (NM-102). 
 
*Nanogenotox dispersion 
protocol used: NPs were pre-
wetted in 0.5% ethanol and 
then suspended in 0.05% BSA 
in MilliQ water (2.56 mg/ml) 
and probe sonicated for 16 
min. on ice and diluted in 
PBS. 
 

Nano score 10. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-102) which 
have been extensively 
characterised and some of 
this information is 
summarised. Additional 
characterisation performed in 
relevant biological medium. 

Peripheral 
blood MN 

C57Bl/c 
mice with 
lacZ 
reporter 
gene.  

IV doses of 10 and 15 
mg/kg on 2 consecutive 
days. Blood sampled 42 
hours after last dose. 

Negative 15 mg/kg maximum 
feasible dose based on 
stability of stock 
dispersion. 
Tissue exposure at this 
dose level described in 
a different study. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 2. 

Suzuki et al. 
(2016) 
 
 

Nano (P25). 
DLS showed particle sizes of 
145-147 nm in dosing vehicle 
(disodium phosphate) 
 
*NPs sterilised by heating 
(180oC for 1 hour), suspended 
in 2 mg/ml disodium 
phosphate (DSP) at a 
concentration of 10 mg/ml and 
bath sonicated for 30 min. 
Suspensions then diluted in 
DSP for genotoxicity studies. 

Nano score 3. 
 
* Information on NP 
characteristics obtained from 
supplier provided. Limited 
independent characterisation 
performed. Some 
characterisation in relevant 
biological medium. 
 
*NB Whilst there was a 
reliance placed on 
presenting information 
obtained from the suppliers 
on the characteristics of the 
NPs, P25 has been 

Peripheral 
blood MN 

Gpt delta 
mice 

Intravenous; 2, 10 & 50 
mg/kg, once per week for 
4 weeks; blood sampled 
2 & 9 days after last 
administration. 

Negative MN measured by flow 
cytometry using 
Microflow PLUS kit. No 
reduction in % RETs. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 1. 
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Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

extensively characterised in 
the published literature. 
 

Grissa et al. 
(2015) 
 

Nano, anatase 5-10 nm, 
suspension in water 
sonicated. 
 
*NPs suspended in distilled 
water and bath sonicated for 
30 min., then mechanically 
vibrated for 5 min. for 
genotoxicity studies. 

Nano score 4. 
 
* No information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
No characterisation in 
relevant biological medium. 
 
 

Bone marrow 
MN 

Rats Oral dosing at 50, 100, 
200 mg/kg daily for 60 
days; unclear when bone 
marrow was sampled 
 

Positive at 100 & 
200 mg/kg/day 

Not clear whether MN 
frequencies were %, 
per 1000 or per 2000 – 
Methods says %, in 
which case control 
levels are high. Slight 
bone marrow toxicity at 
top dose. 
 
Haematological 
changes and 
inflammation in many 
tissues. 
 
ROS/oxidative stress 
not investigated. 
 
ToxR Klimisch score 2. 

Shukla et al. 
(2014) 
 

Nano, anatase, particle size 
20-50 nm, purity 99,7 %. 
 
*NPs suspended in MilliQ 
water (8 mg/ml) and probe 
sonicated for 20 min. for 
genotoxicity studies. 

Nano score 5. 
 
* Some information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
Some characterisation in 
relevant biological medium. 
 

Bone marrow 
MN 

Mice Oral dosing at 10, 50 and 
100 mg/kg/day for 14 
days. Bone marrow 
sampled 24 hours after 
last dose. 

Borderline positive 
(<3-fold increase) 

Oxidative stress 
(increased MDA & ROS 
at 50 & 100 mg/kg, 
decreased GSH at 100 
mg/kg). 
 
ToxR Klimisch score 2. 
 
 

Relier et al. 
(2017) 
) 

Nano, P25. 
 
*NPs suspended in ultrapure 
water (15 mg/ml) and probe 
sonicated for 3 min. (1 min. 

Nano score 7. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-105) which 

Peripheral 
blood MN 

Rats Endotracheal instillation 
to lung 3 times 4 days 
apart; 0.5, 2.5 & 10 
mg/kg total doses; blood 

Equivocal 
(significant 
response after 35 
days but not 2 
hours after 3rd dose 

MN frequencies in 
treated groups almost 
identical at 2 hours & 
35 days, but ≤2-fold 
increase at 35 days 
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Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

on/1 min. off) and then diluted 
in PBS for genotoxicity 
studies. 

have been extensively 
characterised and this 
information is summarised. 
Some independent 
characterisation also 
performed. Some 
characterisation performed in 
relevant biological medium. 

sampled 2 hours & 35 
days later. 

(on day 8) seems 
not plausible). 

only statistically 
significant because 
vehicle control MN 
frequency was lower. 
 
A decrease in 
glutathione was 
observed immediately 
after exposure at the 
highest dose in lung 
cells and 35 days after 
exposure at the mid 
dose in liver cells but 
was not statistically 
significant due to a 
large variability. 
 
ToxR Klimisch score 2. 
 

Chakrabarti 
et al. (2019) 
 

Nano, avg. diameter 58 nm. 
 
*Method used for NP 
dispersion not clear. 

Nano score 3.  
 
*No information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
Some characterisation in 
relevant biological medium. 
 

Bone marrow 
MN 

Mice Oral dosing at 200 & 500 
mg/kg/day for 90 days. 
Not clear when bone 
marrow was sampled. 

Positive – 
significant ~4-fold 
increase at top 
dose. 

Very long dosing period 
for assessment of MN 
in bone marrow. Dose-
related increases in 
oxidative stress & 
apoptosis. 
 
Although oxidative 
stress was not 
measured directly, the 
dose-related 
accumulation of cells in 
G2/M suggested this 
was due to oxidative 
stress which led to DNA 
damage. 
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Type of TiO2 tested Nanoparticle 
characterisation 

Endpoint 
tested 

Species Doses tested & 
dosing/sampling 

regimen 

WoE conclusion Comments 

ToxR Klimisch score 2. 
 
 

Sycheva et 
al. (2011) 
 
 

Micro (TDM) and nano 
simethicone (TDN). 
 
*NPs suspended in distilled 
water forgenotoxicity studies. 

Nano score 2. 
 
*No information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
No characterisation in 
relevant biological medium. 
 

Bone marrow, 
forestomach, 
colon & testis 
MN 

Mice Oral dosing at 40, 200 & 
1000 mg/kg/day for 7 
days. Bone marrow and 
testis sampled 24 hours 
after last dose. 
 

TDM induced 2X 
increase in MN in 
bone marrow; TDN 
simethicone was 
negative. TDM and 
TDN negative in 
forestomach, colon 
& testis. 
 

TDM and TDN induced 
apoptosis in testis and 
cytotoxicity in 
forestomach & colon. 
Authors conclude 
genotoxic effects are 
secondary to 
inflammation and/or 
oxidative stress. 
 
ToxR Klimisch score 3, 
unreliable.  

Naya et al. 
(2012) 
 

Nano, anatase (ST-01), 5 nm. 
 
*NPs suspended in 2 mg/ml 
disodium phosphate followed 
by agitation in a bead mill with 
15 µm zirconium oxide beads 
for 2 hours, centrifuged and 
the supernatant used for 
genotoxicity studies. 

Nano score 5. 
 
*Limited information on NP 
characteristics obtained from 
the supplier provided. 
Limited independent 
characterisation performed. 
Some characterisation in 
relevant biological medium. 
 

Comet in lung Rats Intratracheal instillation; 
1 & 5 mg/kg single dose, 
0.2 & 1 mg/kg once per 
week for 5 weeks. 

Negative Slides not coded. 
Inflammatory response 
at 1 & 5 mg/kg. 
 
Inflammation induced, 
oxidative stress 
discussed, but no DNA 
damage. 
 
ToxR Klimisch score 2. 

Relier et al. 
(2017) 
 

Nano, P25 
 
*NPs suspended in ultrapure 
water (15 mg/ml) and probe 
sonicated for 3 min. (1 min. 
on/1 min. off) and then diluted 
in PBS for genotoxicity 
studies. 

Nano score 8. 
 
*TiO2 NPs obtained from 
JRC Nanomaterial 
Repository (NM-105) which 
have been extensively 
characterised and this 
information is summarised. 
Some independent 
characterisation also 
performed. Some 

Comet in lung 
& liver 

Rats Endotracheal instillation 
to lung 3 times 4 days 
apart; 0.5, 2.5 & 10 
mg/kg total doses; 
tissues sampled 2 hours 
& 35 days later. 

Positive in lung (35 
days) and liver 
(both sampling 
times). 

Inflammation and 
oxidative stress. 
 
ToxR Klimisch score 2. 
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WoE conclusion Comments 

characterisation performed in 
relevant biological medium. 

Jensen et al. 
(2019) 
 

E171 purchased from 
Bolsjehuset (DK). 99.8% 
anatase, 0.2% rutile. 
 
*NPs suspended in 2% FBS in 
water for genotoxicity studies. 

Nano score 3. 
 
*No information on NP 
characteristics obtained from 
the supplier provided. Some 
independent characterisation 
performed in previous 
studies which are cited and 
data summarised. 
Characterisation performed 
in biological medium not 
relevant to this study. 

Comet in lung 
& liver 

Rats Oral dosing of 50 & 500 
mg/kg/week, once per 
week for 10 weeks. 
Tissues sampled 24 
hours after last dose.  

Negative Positive control only via 
in vitro slides. Study 
done with and without 
Fpg and hOGG1. 
 
No changes to 
oxidatively damaged 
DNA in liver and lung. 
 
ToxR Klimisch score 1. 

Rehn et al. 
(2003) 
 

P-25 and T805 
(trimethoxyoctylsilane-coated). 
 
*NPs suspended in saline with 
0.25% lecithin and sonicated 
for 5 min. for genotoxicity 
studies. 

Nano score 7. 
 
*Some information on NP 
characteristics obtained from 
the supplier provided. Some 
independent characterisation 
also performed. 
Characterisation performed 
in relevant biological 
medium. 
 
*NB The characteristics of 
the NPs (P25) have been 
extensively characterised in 
the published literature. 

8-OHdG 
adducts in 
lung cells 

Rats Single intratracheal 
instillation of 0.15, 0.3, 
0.6 & 1.2 mg. Tissues 
sampled 90 days later. 

Negative Although 30 rats/group 
were treated, unclear 
how many were 
sampled. 
 
No oxidative damage 
found. 
 
ToxR Klimisch score 1. 

Li et al. 
(2018) 
 

Nano (rutile, MT-150AW, from 
Teyka Co. Ltd., Osaka, 
Japan); 44.9 nm 
  
*NPs suspended in distilled 
water for genotoxicity studies. 

Nano score 5 
 
*No information on NP 
characteristics obtained from 
the supplier provided. Some 
independent characterisation 
performed in previous 

8-OHdG 
adducts in 
lung cells 

Rats Single intratracheal 
instillation of 0.2 and 1.0 
mg, and whole-body 
inhalation of 0.50 ± 0.26 
mg/m3 and 1.84 ± 0.74 
mg/m3 for 6 hours/day 

Negative For intratracheal 
instillation, tissues 
frozen at −80°C, 
obtained in previous 
studies were analysed. 
Was top dose for 
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WoE conclusion Comments 

studies which are cited and 
data summarised. 
Characterisation performed 
in relevant biological 
medium. 
 

and 5 days/week for 4 
weeks. 

inhalation study high 
enough?  
 
No oxidative damage 
found. 
 
ToxR Klimisch score 2. 
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Table 6: Datasets reviewed by study type/endpoint and those achieving moderate or higher weight. 

Study type Nº. of datasets 
reviewed 

Nº. achieving moderate or higher 
weight after WoE assessment 

In vitro 

Bacterial reverse mutation (Ames test) 15 0 

Mammalian cell gene mutation 16 2 

MN or CA 62 12 

In vivo 

Gene mutation 9 2 

MN or CA 35 13 

Comet 51 3 

8-OHdG adducts 4 2 

Totals 192 34 
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Table 7: Comparison of EFSA and Expert Panel approaches to evaluation of the genotoxicity of TiO2 (shaded rows show discrepancies) 

Parameter EFSA approach Expert Panel approach 

Non-biological studies Excluded (at TiAb stage) Excluded (only studies with a conventional genotoxic 
endpoint were reviewed) 

Studies on non-mammal 
species (e.g., fish, 

Drosophila, bees) and 
plants 

Excluded (at TiAb stage) Excluded 

In vivo studies with a non-
relevant route of 

administration (e.g., 
dermal, dental, bone 

implants) 

Excluded (at TiAb stage) None found 

Studies performed only 
with coated TiO2 

Excluded (at TiAb stage) Included (if endpoint and test system had default 
“moderate” or “high” weight) 

Studies performed only 
with TiO2 nanofibres, 
nanocomposites or 

nanotubes  

Excluded (at TiAb stage) Included (if endpoint and test system had default 
“moderate” or “high” weight) 

Reviews, editorials, letters 
to the editor etc. 

Excluded (at TiAb stage) Excluded (but if original data included in a review paper 
was found, this was included and both references cited) 

Abstract only Excluded (at TiAb stage), unless there was sufficient 
information provided 

Included (if endpoint and test system had default 
“moderate” or “high” weight) 

In vitro and in vivo studies Included Included 

Gut microbiota studies Included Excluded 

Toxicokinetic studies Included Included (if genotoxicity data in the same publication) 

Genotoxicity studies Included Included 

Local effects (e.g., 
inflammation, 
proliferation) 

Included  Included (if genotoxicity data in the same publication) 

Apical effects, general 
toxicity 

Included Included (if genotoxicity data in the same publication) 

Jo
urn

al 
Pre-

pro
of



Mechanisms of action (e.g., 
oxidative stress) 

Included Included (if genotoxicity data in the same publication) 

Test/measured endpoints Included Only those endpoints and test systems with default 
“moderate” or “high” weight were included 

Information on study 
design (e.g., type of 

cells/animal species, doses 
tested, duration of studies 

etc.) 

Included Included 

Scoring for reliability Klimisch (1997) giving 5 categories ToxR Tool (Schneider et al., 2009) giving 3 Klimisch 
categories 

Relevance categories for 
endpoints 

2 4 

Gene mutations in vivo and 
the Ames test 

High relevance High default weight   

Gene mutations in 
mammalian cells in vitro 

High relevance  Moderate default weight 

Structural and numerical 
chromosomal aberrations 

in vivo 

High relevance High default weight 

Structural and numerical 
chromosomal aberrations 

in vitro 

High relevance Moderate default weight 

In vivo comet assay High relevance Moderate default weight 

Other genetic endpoints 
(presumably SCE, UDS etc., 
but not clear whether this 

includes in vitro comet 
assay) 

Lower relevance (but included) Low or negligible default weight (and therefore 
excluded) 

Exposure of cells in vitro More weight was given to study designs including observations 
confirming that cells were exposed to the nanoparticles. 

Negative results from studies where the cell uptake was not 

Negative results in mammalian cells were accepted, even 
if cellular exposure was not demonstrated, as long as 

treatment was for at least 1 cell cycle. Relevance 
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demonstrated were considered as inconclusive (to which only 
low relevance was assigned) 

(weight) of the study was then determined by other 
design and quality factors. 

Concentrations tested in 
vitro 

A low weight was given to studies performed using only 
excessively high concentrations i.e. higher than 100 µg/ml 

(because of aggregation/agglomeration and precipitation of the 
tested nanoparticles at high concentration). 

The relevance (weight) of the study was not changed just 
because high concentrations were tested, but 

agglomeration/aggregation was noted if it was measured 
and reported. Several studies with testing to 

concentrations >100 µg/mL retained moderate weight. 

Cytotoxicity evaluation in 
vitro  

A low weight was given to studies in which no parallel toxicity 
evaluation was performed or an inappropriate toxicity test had 

been used. 

Both negative and positive studies in which there was no 
concurrent measure of cytotoxicity, or an inappropriate 

measure of cytotoxicity was used, were considered 
unreliable and weight was downgraded.   

Ames test Bacterial reverse mutation (Ames) assay is not considered 
suitable for investigation of gene mutations (due to limitations 

in the penetration of particles through the bacterial cell wall 
and the lack of internalisation in bacteria), and therefore 

assigned low relevance. Hence a higher weight was given to 
mammalian cell models. 

All Ames studies reviewed were given only Low or Low-
moderate weight for the reasons given, whereas 

mammalian cell studies could retain moderate weight if 
otherwise well-conducted.  

In vitro micronucleus test Higher weight was given to studies with an extended 
treatment, covering at least one cell cycle. A low weight was 

given to studies in which cytochalasin B and nanoparticles were 
simultaneously added (cytochalasin B needs to be added after 

the nanoparticles, since cytochalasin B might inhibit the cellular 
uptake of nanoparticles). 

Studies with an extended treatment, covering at least 
one cell cycle (either without cytochalasin B or before 
cytochalasin B was added) were more likely to retain 

Moderate weight. 

In vitro micronucleus test A higher weight was given to studies in which the uptake 
capability of the selected cell lines was demonstrated.  

The uptake capability of the cells was not considered 
since there are few comparative data to make such 

judgements. The final weight was assessed on multiple 
design and quality factors. 

In vitro micronucleus test A low weight was given to studies based on cell lines with high 
background micronuclei frequency (higher than 2%). 

The weight of a study was not influenced by whether the 
background MN frequency was high, but on whether the 
control MN frequencies were within pre-agreed normal 
ranges. The same approach was applied to in vitro CA 
and gene mutation studies (not discussed by EFSA). 

Jo
urn

al 
Pre-

pro
of



In vitro comet assay Evaluation of the relevance of the test design included 
identification of possible interferences (e.g. interaction of 

nanoparticles with dye and lysis condition) within the comet 
assay at the applied test conditions. 

In vitro comet assays were not reviewed (not included) 
because, as indicator tests (as specified in OECD 

guidance document; OECD, 2015a), they are less relevant 
in terms of genotoxic or carcinogenic risk. 

In vivo studies Because TiO2 needs to be assessed as a food additive, 
administration by non-oral routes of exposure was considered 
of limited or low relevance, depending on the reliability of the 

study and other aspects such as information on the level of 
dispersion. 

Of the non-oral routes, IP dosing was considered less 
physiologically relevant. However, IV studies were 

considered particularly relevant since exposure of the 
target tissue (e.g., bone marrow, liver) was more likely 

than by oral dosing.  

 

TiAb = title and abstract (initial stage of screening literature) 
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Table 8: Comparison of EFSA and Expert Panel studies considered appropriate for review and included in the final assessments 

 EFSA approach Expert Panel approach 

Study type No. of studies available 
for evaluation 

No. of studies achieving High or Limited 
relevance (No. positive) 

No. of datasets 
reviewed 

No. achieving Moderate or higher weight 
after WoE assessment 

(No. positive) 

In vitro 

Bacterial reverse mutation 
(Ames test) 

8 0 15 0 

Mammalian cell gene 
mutation 

14 7 (3 positive) 16 2 (0 positive) 

MN or CA 56 43 containing 67 datasets (26 datasets 
positive) 

62 12 (2 positive) 

Comet assay 142 106 containing 142 datasets (102 datasets 
positive) 

0 0 

DNA binding 5 5 (unclear whether these considered 
positive) 

0 0 

8-OHdG adducts 5 5 (4 positive) 0 0 

γH2AX foci  4 4 (2 positive) 0 0 

ToxTracker 1 1 (0 positive) 0 0 

Sub-totals 235 231 datasets (137 positive) 93 14 (2 positive) 

In vivo 

Gene mutation 6 6 (1 positive) 9 2 (0 positive) 

MN or CA 26 15 (8 positive) 35 13 (7 positive) 

Comet 44 18 containing 19 datasets (12 datasets 
positive) 

51 3 (1 positive) 

DNA binding 2 2 (unclear whether these considered 
positive) 

0 0 

8-OHdG adducts 2 1 (1 positive) 4 2 (0 positive) 

γH2AX foci  2 2 (2 positive) 0 0 

Sub-totals 82 45 (24 positive) 99 20 (8 positive) 

Totals 317 276 (161 positive) 192 34 (10 positive) 

Note: Studies measuring formation of reactive oxygen species, epigenetic DNA methylation and cell transformation were discussed in the EFSA opinion, but 

not included in the table above since they appear to be taken as supporting information rather than direct evidence of genotoxic effects.  
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Table 9: Comparison of specific in vitro study datasets from Appendix J of EFSA (2021): Shaded rows show differences in relevance and/or conclusion 

Publication and dataset EFSA assessment* Expert Panel assessment** 

Kazimirova et al. (2020); mammalian cell Hprt 
gene mutation test 

High relevance; Reliability score 1; Nano score 1; 
Negative 

Moderate weight (included); ToxR Klimisch score 
2; Nano score 10; Negative 

Du et al. (2019); mouse lymphoma Tk mutation 
test 

Low relevance; Reliability score 3; Nano score 3; 
Inconclusive (based on cellular uptake not 

demonstrated although cytotoxicity induced) 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 1; Negative (based on 24-hour 

exposure and induction of cytotoxicity) 

Andreoli et al. (2018); in vitro MN study on 
human lymphocytes with 5 forms of TiO2 

High relevance; Reliability score 1; Nano score 1; 
Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 4; Negative 

Li et al. (2017a); in vitro MN study on TK6 cells; 
microscopy & flow cytometry methods 

High relevance; Reliability score 1 (for 
microscopy results); Nano score 2; Positive for 
microscopy; Inconclusive for flow cytometry 

Low weight (excluded); ToxR Klimisch score 2; 
Nano score 7; Negative (<2-fold increase) with 
limitations for microscopy; Uninterpretable for 

flow cytometry 

Zijno et al. (2015); in vitro MN study in Caco-2 
cells 

High relevance; Reliability score 1; Nano score 2; 
Negative 

Moderate weight (included); ToxR Klimisch score 
2; Nano score 7; Negative 

Stoccoro et al. (2017); in vitro MN study in A549 
cells 

High relevance; Reliability score 1; Nano score 1; 
Positive 

Low-moderate weight (excluded); ToxR Klimisch 
score 2; Nano score 3; Inconclusive (test 

materials not well characterised) 

Kurzawa-Zegota et al. (2017); in vitro MN study 
on human lymphocytes 

High relevance; Reliability score 1; Nano score 2; 
Positive 

Low weight (excluded); ToxR Klimisch score 3; 
Nano score 2; Uninterpretable (abstract only, 

very few details) 

Kazimirova et al. (2019); in vitro MN study in 
human lymphocytes & TK6 cells 

High relevance in TK6 cells; Reliability score 2; 
Low relevance in human lymphocytes; Reliability 
score 3; Nano score 1; Negative in both cell types  

Low-moderate weight (excluded); ToxR Klimisch 
score 2; Nano score 10; Negative with 

limitations (treatment time prior to cytochalasin 
B too short) 

Demir et al (2015); in vitro MN study on HEK293 
human embryonic kidney cells and NIH/3T3 

mouse fibroblasts 

High relevance; Reliability score 1; Nano score 1; 
Positive in both cell types 

Low weight (excluded); ToxR Klimisch score 2; 
Nano score 3; Positive with limitations (unusual 

cells for MN studies, negative control MN 
frequencies not established, slides not coded) 

Di Bucchianico et al. (2017); in vitro MN study on 
BEAS-2B cells with NM-100, NM101 & NM-103 

High relevance; Reliability score 1; Nano score 1; 
Negative for NM-101 but results for other forms 

not mentioned 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 10; Negative for NM-100 & 

NM101, weak positive for NM-103 
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Vales et al. (2014); in vitro MN study BEAS-2B 
cells 

High relevance; Reliability score 1; Nano score 1; 
Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 9; Negative 

Pittol et al. (2018); in vitro MN study on L-929 
mouse fibroblasts 

Limited relevance; Reliability score 2; Nano score 
3; Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 6; Negative 

Brandao et al. (2020); in vitro MN study on 4 cell 
lines 

High relevance; Reliability score 1; Nano score 1; 
Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 3; Negative 

Zijno et al. (2020); in vitro MN study on BEAS-2B 
cells 

High relevance; Reliability score 1; Nano score 1; 
Negative 

Low-moderate (excluded) based on too short 
exposure time before cytochalasin B; ToxR 
Klimisch score 2; Nano score 7; Negative  

In vitro comet studies High relevance for 20 studies; 16 Positive Low weight; all in vitro comet assays excluded 

* Reliability score range 1-5; Nano score range 1 (highest) to 4 (lowest) 

** ToxR Klimisch score range 1-3; Nano score range 0 (lowest) to 10 (highest) 

“Limited relevance” in the EFSA scheme is considered similar to “Moderate weight” in the Expert Panel scheme, since both were considered suitable for 

further evaluation. 
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Table 10: Comparison of specific in vivo study datasets from Appendix K of EFSA (2021): Shaded rows show differences in relevance and/or conclusion 

Publication and dataset EFSA assessment* Expert Panel assessment** 

Suzuki et al. (2020); in vivo gpt & spi mutation 
studies in transgenic mice, 1x/week IV dosing for 

4 weeks 

Limited relevance; Reliability score 2; Nano score 
1; Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 3; Negative with restrictions 

(based on only 1x/week dosing)  

Chakrabarti et al. (2019); in vivo MN & CA studies 
in mouse bone marrow, 90 daily oral doses 

Limited relevance; Reliability score 2; Nano score 
4; Positive for both MN & CA 

Low-moderate weight for CA study (excluded); 
Moderate-high weight for MN study (included); 

ToxR Klimisch score 2; Nano score 3; CA data 
uninterpretable; MN data Positive with 

limitations (MN in bone marrow after 90 days 
dosing unusual; evidence of oxidative stress)  

Grissa et al. (2015); in vivo MN study in rat bone 
marrow, 60 daily oral doses 

Limited relevance; Reliability score 2; Nano score 
2; Positive 

Moderate weight (included); ToxR Klimisch score 
2; Nano score 4; Positive (associated with 
haematological changes & inflammation) 

Suzuki et al. (2016); in vivo MN study in mouse 
reticulocytes, 1x/week IV dosing for 4 weeks 

Limited relevance (based on IV route not being 
relevant); Reliability score 2; Nano score 1; 

Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 3; Negative 

Manivannan et al. (2020); in vivo CA study in 
mouse bone marrow, 28 daily oral doses 

Limited relevance; Reliability score 2; Nano score 
2; Positive 

Moderate-high weight (included); ToxR Klimisch 
score 3 (unreliable); Nano score 8; Positive (at 

high bone marrow toxicity) 

Shukla et al. (2014); in vivo MN study in mouse 
bone marrow, 14 daily oral doses 

High relevance; Reliability score 1; Nano score 1; 
Positive 

Moderate-high weight (included); ToxR Klimisch 
score 2; nano score 6; Borderline positive (<3-

fold), associated with oxidative stress 

Relier et al. (2017); in vivo MN study in rat 
peripheral blood, endotracheal instillation to 

lung 3 times 4 days apart 

Low relevance; Reliability score 3; Nano score 1; 
Equivocal 

Moderate weight (included); ToxR Klimisch score 
2; Nano score 8; Equivocal 

Jensen et al. (2019); in vivo comet assay in lung 
and liver, oral dosing once/week for 10 weeks 

High relevance; Reliability score 1; Nano score 2; 
Negative 

Moderate weight (included); ToxR Klimisch score 
1; Nano score 3; Negative 

Shukla et al. (2014); in vivo comet assay in mouse 
liver, 14 daily oral doses 

High relevance; Reliability score 1; Nano score 1; 
Positive without and with Fpg 

Low weight (excluded); ToxR Klimisch score 3 
(unreliable); Nano score 5; Positive with 

limitations (inadequate description of method, 
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no early sample times, high control %tail 
intensity, increases in ROS and liver injury)  

Relier et al. (2017); in vivo comet assay in rat 
lung, blood and liver, endotracheal instillation to 

lung 3 times 4 days apart 

Limited relevance; Reliability score 2; Nano score 
1; Positive in all 3 tissues 

Moderate weight (included); ToxR Klimisch score 
2; Nano score 8; Positive in lung and liver 

(associated with inflammation and oxidative 
stress) 

Jin et al. (2013); in vivo DNA binding assay in rat 
liver, 45 daily intranasal administrations 

High relevance; Reliability score 1; Nano score 1; 
Positive for NPs anatase and anatase/rutile 

mixture 

Low weight (excluded); not reviewed since 
adducts are only an indicator of genotoxic 

potential, not an apical endpoint. 

Li et al. (2010); in vivo DNA binding assay in 
mouse liver, 14 daily IP injections 

High relevance; Reliability score 1; Nano score 1; 
Positive 

Low weight (excluded); not reviewed since 
adducts are only an indicator of genotoxic 

potential, not an apical endpoint. 

* Reliability score range 1-5; Nano score range 1 (highest) to 4 (lowest) 

** ToxR Klimisch score range 1-3; Nano score range 0 (lowest) to 10 (highest) 

“Limited relevance” in the EFSA scheme is considered similar to “Moderate weight” in the Expert Panel scheme, since both were considered suitable for 

further evaluation. 
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Table 11 Comparison of test response profiles from TiO2 to the profile characteristics of confirmed genotoxic carcinogens (adapted from 
Brusick et al. (2016); based on Bolt et al. (2004) and Petkov et al. (2015)). 

Characteristic Carcinogens with a proven genotoxic mode of action TiO2 

Profile of Test Responses in 
Genetic Assays 

Positive effects across multiple key predictive endpoints (i.e. 
high weight studies such as gene mutation in bacteria or in 
vivo, chromosomal aberrations or micronuclei in vivo). 

No valid evidence for gene mutation in mammalian cells or in vivo; 
chromosomal damage in rodents only at doses inducing cytotoxicity, 
inflammation, oxidative stress. 

Structure Activity 
Relationships 

Positive for structural alerts associated with genetic activity. Not done 

DNA binding  Agent or breakdown product are typically electrophilic and 
exhibit direct DNA binding. 

No evidence of DNA binding, and no evidence of 8-OHdG adducts in 
robust in vivo studies  

Consistency  Positive test results are highly reproducible both in vitro and in 
vivo. 

Conflicting and/or non-reproducible responses in the same test or 
test category both in vitro and in vivo. 

Response Kinetics Responses are dose dependent over a wide range of exposure 
levels. 

Dose responses in robust, reliable test systems generally not 
observed. 

Susceptibility to Confounding 
Factors (e.g. Cytotoxicity) 

Responses are typically found at non-toxic exposure levels. Positive responses in robust, reliable test systems typically associated 
with evidence of apoptosis, necrosis, inflammation and oxidative 
stress. 

 

Jo
urn

al 
Pre-

pro
of



 

                                           

0

2

 

 

 

10

12

1 

1 

Gene muta on mammalian cells M  CA Total

Posi ve E uivocal  nconclusive  ega ve

 o. of datasets

Jo
urn

al 
Pre-

pro
of



 

                                            

0

5

10

15

20

25

Gene muta on M  CA Comet   OH dG Total

Posi ve E uivocal  ega ve with restric ons  ega ve

 o. of datasets

Jo
urn

al 
Pre-

pro
of



 

 

                                           

 

 

 

 

 

  

  

  

  

                                      

                                   

               

Jo
urn

al 
Pre-

pro
of



 

                                            

 

 

  

  

  

  

                                  

                                               

               

Jo
urn

al 
Pre-

pro
of



1 
 

Highlights 

• EFSA have recently banned titanium dioxide in foods due to concerns over genotoxicity 

• A tiered weight of evidence analysis was performed on genotoxicity data for TiO2, according 

to relevance and reliability. 

• TiO2 was positive for chromosome damage mainly at levels where reactive oxygen or other 

cellular toxicity were prevalent. 

• TiO2 was negative for point mutations in vivo, the panel noted more data would be required 

to make definitive conclusions. 
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