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Abstract: Digital twins capacitate the industry 4.0 paradigm by predicting and optimizing the per-
formance of physical assets of interest, mirroring a realistic in-silico representation of their func-
tional behaviour. Although advanced digital twins set forth disrupting opportunities by delineating 
the in-service product and the related process dynamic performance, they have yet to be adopted 
by the pharma sector. The latter, currently struggles more than ever before to improve solubility of 
BCS II i.e., hard-to-dissolve active pharmaceutical ingredients by micronization and subsequent sta-
bilization. Herein we construct and functionally validate the first artificially intelligent digital twin 
thread, capable of describing the course of manufacturing of such solidified nanosuspensions given 
a defined lifecycle starting point and predict and optimize the relevant process outcomes. To this 
end, we referenced experimental data as the sampling source, which we then augmented via pattern 
recognition utilizing neural network propagations. The zeta-dynamic potential metrics of the nano-
suspensions were correlated to the interfacial Gibbs energy, while the density and heat capacity of 
the material system was calculated via the Saft-γ-Mie statistical fluid theory. The curated data was 
then fused to physical and empirical laws to choose the appropriate theory and numeric description, 
respectively, before being polished by tuning the critical parameters to achieve the best fit with 
reality. 

Keywords: digital twin; Pharma 4.0; nanosuspensions; spray drying; milling; micronization;  
solubility improvement; digital shadow; artificial neural networks; SAFT; Gibbs energy 
 

1. Introduction 
A digital twin is the mirrored functional space model of a manufacturing unit that 

responds to physical state changes which is purposed for surveillance, optimization and 
prediction [1].The depth of the replication appointment to the physical asset by the digital 
model space remains ambiguous, hence various integration levels occur, whilst optimal-
ity appears controversially dependent of the corresponding functionality, complexity and 
availability of infrastructures [2]. The birth of the digital twin pertained to a crafty inspi-
ration of the NASA Apollo 13 mission controllers 52 years ago. In a need-based, lifesaving 
attempt, the crew set up and modified simulations to mimic the multiplicity of the space-
craft’s physical conditions, those which occurred 45,000 miles from the Earth’s surface. 
This first successful approach spurred inspiration across applied scientific fields.  

Since then, digital modeling is emancipating the state-of-the-art approach for deliv-
ering process and product lifecycle awareness, enabling unparalleled plantwide control, 
optimization, and prediction for material manufacturing [3]. Akin to such product mate-
rial ontologies, artificial neural networks (ANNs) have ascended as a surrogate, respon-
sive framework, poised to identify and simulate non-linear dependencies between digital 
twin variables [4]. As such, ANNs constitute the requirements for demanding, multiple, 
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complex experiments towards the generation of the product manufacturing cycle (PML) 
data, irrelevant. Moreover, ANNs recognize the relationship patterns between independ-
ent and dependent variables of the PML, whether the available data set is insufficient or 
noisy [5]. The latter advancement proves to be of extreme importance, hence such varia-
bles lie at the core of the digital twin mechanistic and/or empirical algorithms, whilst poor 
data set availability effects common burdens when dealing with expensive raw and start-
ing materials, such as those handled by the pharma industry. Successful applications of 
the ANNs in the field include the calculation of API’s critical quality attributes and their 
physicochemical properties, the prediction of the in-vitro drug release profile, the identi-
fication of raw material–tablet properties characterization, the dissolution behavior, and 
the size effect of injectable microparticle prediction [6]. 

For such a heavily regulated sector, ANN-fused artificially intelligent digital twins 
might accurately predict the critical process parameters, the final product’s quality attrib-
utes, integrate the process steps and lead seamless scale-up studies. The advantages of 
possessing this blend of stochastic, empirical, and mechanistic knowledge becomes inval-
uable in terms of technical, economical and risk eliminating factors by the creation of 
novel, in-silico intelligent analogues to the physical product. Counterintuitively, although 
digital twin applications could transform the pharmaceutical industry, whereas precision 
and risk elimination are evidently required, the penetration of these Pharma 4.0 tools ap-
pears limited. In addition, artificially intelligent, advanced digital twin systems, i.e. 
ANNs-fused digital twins, have not been reported by the field’s literature. 

Under this lens, arguably, one significant contemporary technological challenge of 
the pharmaceutical industry is to improve solubility and in vivo dissolution profiles of 
poorly soluble active pharmaceutical ingredients (APIs). To address this challenge, APIs 
are mixed with stabilizers and formulation excipients composites and comminuted by wet 
media milling into nanosuspensions. The obtained, coated, liquid crystals are further sta-
bilized by spray drying solidification to allow for further processability. Taking into ac-
count the proven reliability and scalability of this method, we introduced novel thermo-
dynamic models to calculate such composite material solubility by assessing the obtained 
stabilizer-coated nanoparticle Gibbs energy anisotropic minimization, quantified by the 
implementation of PC-SAFT interrogations coupled with elastic tensor analysis [7]. 

In this current research, we build on these foundations to create a novel, fully opera-
tional, neural network-intelligent digital twin, capable of describing the course of manu-
facturing of solidified nanosuspensions given a defined PML launching chronic point, and 
also predict and optimize the engaged process outcomes [2]. Elaborating on this strategy, 
the ANN was embedded in a stepwise manner among data sampling, model deployment 
and curve fitting towards the implementation of the digital twin (Figure 1). The ANN 
fulfilled the mission of augmenting the abundance of the available discrete data generated 
to calibrate and validate the model whilst eliminating the experimental burden and the 
model’s uncertainty [8]. 
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Figure 1. Digital twin deployment and parameter estimation strategy by steps: (a) real data sam-
pling from the physical object, (b) data multiplication via pattern recognition using artificial intelli-
gence algorithms aiming accuracy enhancement, (c) determination of the proper descriptive physi-
cal and empirical laws, and (d) adjustment of tuning parameters to achieve best curve fit. 

2. Materials and Methods 
2.1. Process Design 

The API’s formulation processes, including wet milling and spray drying steps, were 
modelled using the Siemens gProms Formulated Products® platform Process Systems En-
terprise, gPROMS, (www.psenterprise.com/products/gproms, accessed on 2 August 
2022). Before formulation, it is crucial to select the compatible polymer or surfactant to 
coat the liquid crystals, the one which best enhances the API’s dissolution performance 
[9]. This pivotal step was included in the process model; the selection was based on the 
implementation of the computational statistical associating fluid theory criteria (PC-
SAFT) to substitute for the experimental trials. 

In detail, the stabilizer’s addition generates a semi-solid interface that adds to the 
dissolution’s Gibbs energy decrease by GEE (J mol−1), according to Equations (1)–(3) [7]. 𝐺𝐸𝐸 = 𝐺௠௦ + 𝐺௠௜ = 𝑅𝑇𝑙𝑛 ௄మ௄భ  (1)𝐺௠௦ = 2𝛾𝑉௠𝑟 (1 − 𝐶𝑟) (2)

𝐺௠௜ = 1.7 𝜀஺௉ூ𝜎஺௉ூ𝜌௦௧௔௕𝛥(𝜎௦௧௔௕ି஺௉ூ)(𝜀௦௧௔௕ି஺௉ூ)𝑚௦௧௔௕ 𝛾𝑉௠𝑟  (3)

The 𝐺௠௦  and 𝐺௠௜ terms refer to the particle’s surface and the interface caused by the 
stabilizer Gibbs energy. Where ௄మ௄భ is the ratio of the dissolution equilibrium coefficient 
post and prior the powder’s size decrease respectively, T (K) is the dissolution tempera-
ture and R (J mol−1 K−1) is the universal gas constant. In Equation (2) γ (Ν m−1) is the surface 
tension, Vm (m3 mol−1) the API’s molar volume, r (m) the particle’s characteristic size and 

C (m) a parameter equal to 1.5 ቀ௏೘ேಲቁభయ, while in Equation (3) Δ (m) is the material’s distance 
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between the molecular layers, mstab (−) the stabilizer’s number of segments per chain based 
on PC-SAFT theory, and ε (eV) and σ (m) are the depth of pair potential and the segment 
diameter, respectively. The terms εstab-API and σstab-API were calculated using the Berthelot-
Lorentz combining rules. Stabilizer candidates were chosen, namely Poloxamer-188, 
Poloxamer-407 and HPC-SL. As far as poloxamers are concerned, since both are copoly-
mers containing ethylene oxide (EO) and propylene oxide (PO) groups in different pro-
portions, the component’s PC-SAFT parameters were calculated using Berthelot-Lorentz 
rules (see Table 1). 

Table 1. PC-SAFT parameters of EO and PO groups for the calculation of the Poloxamers copoly-
mers’ corresponding ones. 

Group mseg (−) σi (A) ui/k (K) Source 
EO 0.052 ΜWtotal 2.89 206.74 [10–14] PO 0.037 MWtotal 3.34 192.72 

The polymer that contributes dominantly to the Gibbs energy decrease is the one to 
be chosen as the stabilizer. Gibbs energy is not calculated experimentally, yet on the other 
hand the zeta-dynamic potential can be correlated to the interfacial Gibbs energy. The 
physical parameter estimations regarding the API and the stabilizers were performed us-
ing the gProperties® package of Siemens Process Systems Enterprise (https://www.psen-
terprise.com/products/gproms/properties, accessed on 2 August 2022). The Saft-γ-Mie 
equations of state were utilized to calculate the temperature dependence on the density 
and the heat capacity of the components. 

The wet milling process model was based on the main batch grinding Equation (4) 
and three supplementary empirical grinding functions, each of them complemented by 
their corresponding breakage rate. This batch grinding mass balance set up explains the 
change of the powder’s mass fraction containing particles of size interval i: ௗ௪೔ௗ௧ = ∑ ቂ𝑆௝𝑤௝ ௗ൫௕(௜,௝)൯ௗ௫೔ ቃ௜ିଵ௝ୀଵ − 𝑆௜𝑤௜   (4)

The initially examined breakage function was the one proposed by de Vegt et al. [15], 
and it is referred to as the de Vegt model (Equation (5)). The corresponding breakage rate 
is strongly dependent on the product’s material properties (Equation (6)): 𝑏(𝑖, 𝑗) = 𝑆௜𝑆௝ (5)

𝑆(𝑖) = 𝑐 𝐸௞௜௡,௜𝐸௙௥௔௖௧,௜ඨ𝑃௬𝜌𝑉𝐻ඥ𝑥௜𝐾ଵ௖  
(6)

𝐸௞௜௡,௜ = 𝑊௠,௞௜௡𝜌𝑉௜ (7)

𝐸௙௥௔௖௧,௜ = 0.896 ቆ𝜋(1 − 𝜐ଶ)𝛶 ቇଶଷ ቆ0.0183𝛿ଶ ൬𝑉଴𝑉௜  ൰ଵ/ସቇହ/ଷ
 (8)

In Equations (5)–(7), S(i) (s−1) is the breakage rate of a particle of size interval i, Ekin (J) 
and Efract (J m−3) are the kinetic energy of the particles and the fracture energy, respectively, 
Py (Pa) is the yield pressure, ρ (kg m−3) is the particle’s density, V (m3) is the mill’s chamber 
volume, H (Pa) is the particle’s hardness, xi (m) is the particle size i, K1C (Pa m−1/2) is the 
stress intensity factor, Wm,kin the mass specific impact energy (J kg−1) and b(i,j) (−) is the 
mass fraction of the product that fell from size interval j to i. In equation (8), δ is the solu-
bility parameter (Pa1/2), Vi (m3) is the particle’s volume, υ (−) is the Poisson’s ratio, Υ (Pa) 
is the Young’s modulus of elasticity and V0 (m3) is the unit’s crystal volume. While all the 
other parameters in Equations (6) to (8) are pre-estimated, the breakage rate parameter c 
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(−) is a tuning parameter, estimated by experimental data. The second breakage function 
and breakage rate used for the wet milling simulations is proposed by Austin et al. [16] 
and it is referred to as the Austin model (see Equations (9) and (10):  

𝑏(𝑖, 𝑗) = 𝜑 ቆ𝑥௜𝑥௝ቇఊ + (1 − 𝜑) ቆ𝑥௜𝑥௝ቇఉ
 (9)

𝑆(𝑖) = ቐ    𝑎 ൬ 𝑥௜𝑥௖௥௜௧൰ௗ    𝑥௝ ≥ 𝑥௖௥௜௧          0        𝑥௝ < 𝑥௖௥௜௧  (10)

Where φ, γ, β, d (−) and a (s−1) are the tuning parameters, while xi and xj are the prod-
uct’s and the post-breakage final particle size accordingly (m), and xcrit is the critical par-
ticle size, namely the size after which no breakage occurs. The last breakage function was 
the one proposed by Kapur et al. [17] and it is referred to as the Kapur model (model Equa-
tions (11) and (12)): 𝑏௜,௝ = ቆ𝑥௜𝑥௝ቇ௘

 (11)𝑆௜ = 𝐴𝑥௜௞ (12)

where e, k (i) and A (s−1) are the tuning parameters. Apparently, all three breakage func-
tions and rates encumber tuning and physical parameters respectively, with Austin pre-
senting the highest number of considered tuning parameters and de Vegt the lowest. The 
parameter estimation was conducted in the Siemens Process Systems Enterprise 
gPromsFP® Model Validation platform (https://www.psenterprise.com/prod-
ucts/gproms/modelbuilder, accessed on 2 August 2022), applying the Maximum Likeli-
hood Estimation method. In the spray drying process, the droplets’ hydrodynamic diam-
eter was assumed to obey lognormal distribution and for the drying rate calculation the 
Oakley’s model was adapted [18]. For each particle size interval i was defined from the 
particle size distribution and was dispersed in a droplet, which in turn belongs to a size 
interval z, the local mass and energy balance describing the spray drying model which is 
described respectively by the Equations (13) and (14). −𝑚ሶ ௦,௜,௭ 𝑑𝑥௜,௭,௝,௧𝑑𝑡 = 𝑁ሶ௜,௭,௝,௧ (13)𝑚ሶ ௦,௜,௭ ቀ𝐶௣,௦,௜ + ∑ 𝑥௜,௭,௝,௧𝐶௣,௝ேೕ௝ୀଵ ቁ ௗ்೔,೥ௗ௧ = ℎ𝐴௜,௭൫𝑇௚ − 𝑇௜,௭൯ + 𝑚ሶ ௦,௜,௭ ∑ 𝜆௝ேೕ௝ୀଵ ௗ௫೔,೥,ೕ,೟ௗ௧    (14)

where 𝑚ሶ ௦,௜,௭ (kg s−1) is the corresponding solids particles flowrate, 𝑥௜,௭,௝,௧ (kg kg−1) is the 
dry basis moisture content of the liquid specie j, 𝑁ሶ௜,௭,௝,௧ (kg s−2) is the drying rate time 
derivative, 𝐶௣,௦,௜ (J kg−1 K−1) is the solid material’s specific heat capacity and 𝐶௣,௝ the liq-
uid specie’s corresponding one, 𝑇௜,௭ (K) is the solid particle’s temperature, h (J m−2 s−1 K−1) 
is the heat transfer coefficient, 𝐴௜,௭ (m2 s−1) is the shrinking rate of the surface area of the 
droplet, 𝑇௜,௭ (K) is the droplet’s temperature, and λj (J kg−1) is the latent heat of vaporiza-
tion of the liquid specie j. The local vapor phase’s mass balance for the evaporated liquid 
specie j and the vapor’s phase energy balance is described in Equations (15) and (16), re-
spectively. ௗ௠ೡ,ೕௗ௧ = 𝑚ሶ ௩,௜௡𝑥௩,௝,௜௡ − 𝑚ሶ ௩,௢௨௧𝑥௩,௝,௢௨௧ + ∑ ∑ ׬ 𝑁ሶ௜,௭,௝,௧௧ഓ௧ୀ଴ 𝑑𝑡ே೥௭ୀଵே೔௜ୀଵ   (15)

ௗுೡௗ௧ = 𝐻௩,௜௡ − 𝐻௩,௢௨௧ + ∑ ∑ ∑ ׬ 𝑁ሶ௜,௭,௝,௧௧ഓ௧ୀ଴ 𝑑𝑡 𝐶௣,௩,௝(𝑇௩ − 𝑇଴)ேೕ௝ୀଵே೥௭ୀଵே೔௜ୀଵ − ∑ ∑ ℎ ׬ 𝐴௜,௭,௧൫𝑇௩ − 𝑇௜,௭൯𝑑𝑡௧ഓ௧ୀ଴ே೥௭ୀଵே೔௜ୀଵ   (16)

where 𝑚ሶ ௩,௜௡ and 𝑚ሶ ௩,௢௨௧ (kg s−1) are the inlet and outlet mass flowrate of the vapor phase 
respectively, 𝑥௩,௝,௜௡ and 𝑥௩,௝,௢௨௧ (kg kg−1) are the inlet and outlet mass fractions of the liq-
uid specie j in the vapor phase respectively, 𝐻௩,௜௡ and 𝐻௩,௢௨௧ (J s−1) are the inlet and outlet 
enthalpy flowrates of the vapor phase respectively and 𝐶௣,௩,௝ (J kg−1 K−1) is the specific 
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heat capacity of liquid specie j in the vapor phase, tτ (s) is the droplets residence time 
inside the spray dryer’s chamber and Tv (K) is the vapor phase’s temperature. The unhin-
dered drying rate Νu,z,j (kg s−1), i.e., the drying rate of the very same droplets without con-
taining solids described by Equation (17) and is interlinked to the actual drying rate by 
the relative drying rate f (−) (Equation (18)). 𝑁ሶ௨,௭,௝,௧ = ௛ఒೕ 𝐴௜,௭,௧(𝑇௩ − 𝑇௪௕,௝)  (17)𝑁ሶ௜,௭,௝,௧ = 𝑓𝑁ሶ௨,௭,௝,௧  (18)

where Twb,j (K) is the wet bulb temperature of the liquid specie j.  

2.2. Experimental Study and digital twin Thread Structuring 
The wet milling process of the API Itraconazole nanosuspension was performed by  

a Pulverisette 7 Premium (Fritsch GmbH, Idar-Oberstein, Germany). Delivered discrete 
experimental values [19] were first used to train an ANN and form a complete size reduc-
tion profile (see Table 2), while afterwards this profile is used as a basis to fit the tuning 
parameters of the digital twin model. The process reduced the powder’s particles’ sizes 
approximately by one order [8]. Post wet milling, the micronized API suspension was 
spray dried to remove the liquid phase and obtain the desired dry powder product [19]. 
The spray dryer used in the experiment was the Büchi B-191 Mini Spray dryer (Büchi, 
Flawil, Switzerland). 

Table 2. Discrete experimental sampling values used as training data for the ANN. These values 
represent three performed experiments using Itraconazole as API and Poloxamer-188 as stabilizer 
[19], which proved to be the most suitable after the Gibbs energy analysis. 

Time (s) 
Experiment 1 

D50 (μm)  
Experiment 2 

D50 (μm)  
Experiment 3 

D50 (μm)  
360 1.39 1.31 1.37 
720 0.874 0.792 0.846 

1440 0.784 0.742 0.783 
2160 0.522 0.501 0.520 
2880 0.467 0.434 0.436 
3600 0.305 0.297 0.301 

The technical specifications of the mill’s mechanical parameters, such as the rotation 
and the revolution speed, the capacity and the equipment’s volume, were determined by 
the manufacturer. Moreover, the specific ranges of input data were adopted by the man-
ufacturer’s technical specification sheet of the Buchi B191 Mini Spray dryer (Büchi, Swit-
zerland). Both data input sets are herein demonstrated in Table 3. 

Table 3. Input and output parameters considered for the development of the digital twin. 

MODEL PARAMETER TYPE VALUE UNIT 
 Water quantity input 9 mL 
 API content input 0.5 gr 
 Stabilizer content input 0.25 gr 
 Mannitol content input 1 gr 

Wet mill Initial particle size (D50) input 1.5 μm 
 Grinding time input 1 hr 
 Rotor speed input 600 rpm 
 Rotor diameter input 40 mm 
 Equipment volume input 48 mL 
 D50(t) output - - 
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 Air temperature input 110 °C 
 Air flow input 800 L hr−1 

Spray dryer Air pressure input 5 bar 
 Drying chamber volume input 5 L 
 Drying time input 1 hr 
 Final product size (D50) output 10 μm 

The system descriptive equations were concluded by Section (B), containing linear 
and differential equations. For instance, the Equations (13)–(18) were considered as a sys-
tem of six non-linear algebraic equations: 𝑓൫𝑡, 𝑥ሶ௜,௭,௝,௧, 𝑁ሶ௜,௭,௝,௧൯ = 0   Equation (13)   (19)𝑓൫𝑡, 𝑥௜,௭,௝,௧, 𝑥ሶ௜,௭,௝,௧, 𝑇௜,௭, 𝑇ሶ௜,௭൯ = 0     Equation (14) (20)𝑓൫𝑡, 𝑚ሶ ௩,௝, 𝑁௜,௭,௝,௧൯ = 0      Equation (15)  (21)𝑓൫𝑡, 𝐻ሶ ௩, 𝑁௜,௭,௝,௧, 𝑇௜,௭൯ = 0     Equation (16) (22)𝑓൫𝑡, 𝑁ሶ௨,௭,௝൯ = 0   Equation (17) (23)

 𝑓൫𝑡, 𝑁ሶ௨,௭,௝, 𝑁ሶ௜,௭,௝,௧൯ = 0    Equation (18) (24)

The system’s variables embedded first order derivatives and were calculated utiliz-
ing finite difference approximations. Specifically, the Backward Differentiation Approxi-
mations (BDF) were adopted, which present a universally approved method to approach 
DAE system solutions [20]. By applying the BDF using a time step size hs, at time tn, the 
DAE system transforms into a linear system featuring six equations bearing six unknown 
variables, each derivative of them being approximated as in Equation (25). 

 𝑥ሶ௜,௭,௝,௧೙ = ℎ௦ି ଵ ∑ 𝑎௟𝑥௜,௭,௝,௧೙ష೗௞௟ୀ଴  (25)

where k is the degree of the interpolating polynomial and al is the lth polynomial’s level 
coefficient. 

2.3. Integration of Artificial Neural Networks for Parameter Tuning 
The ANN was properly trained to simulate the dynamic comminution profile inside 

the physical mill. Data sampling during the wet mill process is a difficult task, hence it 
requires temporary terminations. In addition, the final crystal size itself is not adequate 
for the characterization of the mill’s performance. It is therefore crucial to obtain addi-
tional information of the dynamic profile in order to fulfil the purposed optimization and 
prediction purposes. The discrete experimental training data includes the D50 values 
taken after sampling in between 6-min intervals. The transfer function used for the hidden 
layers was the Sigmoid Function (Equation (26)), due to its ability to identify non-linear 
relationships. For the output layer, the transfer function selected was the Rectified Linear 
Unit (ReLU), hence the case was addressed through a regression scenario and not as a 
classification (Equation (27)). The ANN training adopted the error backpropagation meth-
odology towards defining the weights’ adjustments, but its layout was forward propagat-
ing. Furthermore, the weights wi,j connecting a layer with nj neurons with the next layer 
with ni neurons, followed the He initialization (Equation (28)). 𝑓(𝑥) = ଵଵି௘షೣ  (26)𝑔(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)  (27)𝑤௜,௝ ∝  ට ଶ௡ೕ     𝑖 ∈ (1, 𝑛௜) , 𝑗 ∈ (1, 𝑛௝) (28)

For the identification of the D50(t) profile, polynomial regression was used with high 
efficiency, especially whereas polynomial fitting is of a higher order (≥4).  
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3. Results 
3.1. Material Critical Quality Attributes and the Material System’s Interfacial Gibbs Energy 
Assesment 

The density and the heat capacity temperature profile of the pure stabilizers, calcu-
lated via the Saft-γ-Mie statistical fluid theory, are shown in Figure 2. Poloxamer-188 ma-
terial poses the lowest density and the lowest heat capacity, while HPC is denser than 
poloxamers. Calculations of the pure stabilizers’ densities were pivotal for the determina-
tion of the stabilizer’s interfacial Gibbs energy. Apparently, density effects the intermo-
lecular forces of the stabilizer-API composite (see Table 4). For higher temperatures, the 
composite’s cohesive forces decrease as the kinetic energy of the molecules increases, and 
thus they tend to escape their structured positions [21]. For the same reason, when tem-
perature increases the material tends to expand, the density decreases, and the corre-
sponding particle’s surface tension γ (Ν m−1) decreases as well, see Equation (29) [9]. In 
addition, the zeta-potential bourn within the semi-solid interface that the stabilizer’s ad-
dition forms [22], is utilized as indicator of its efficiency (Table 3). A stabilizer causing 
high absolute values of zeta-potential, creates strong repulsive forces (Coulomb forces) 
preventing the particles from aggregating.  

 𝛾 = −0.33𝑘஻𝑇 ቀேಲఘெ௥ ቁమయ [𝑙𝑛 ቀ ௌబହହ.଺ቁ + 5] (29)

In Equation (29), where kB (J K−1) is the Boltzmann constant, Mr (g mol−1) and ρ (g m−3) 
are respectively the molecular weight and the density of the particle, NA (mol−1) the Avo-
gadro number and S0 (−) the solubility of the pure API in water in absence of the stabilizer. 

 
Figure 2. Saft-γ-Mie stabilizer candidates, material properties results (a) Poloxamers’ densities (b) 
Poloxamers’ heat capacities (c) HPC-SL density (d) HPC-SL heat capacity as a function of tempera-
ture. 
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According to the results shown in Table 4, the free Gibbs energy of the interface is 
correlated both to the density and the zeta-potential. The decrease of surface density and 
tension enhances the binding with the stabilizer, which in turn plays a crucial role in the 
zeta-potential absolute value increase [23]. While Gibbs energy is a measurement of the 
maximum non-expansion work available in a system, interfaces of higher Gibbs free en-
ergy favors the effects of the electrostatic Coulomb forces. Among the three investigated 
stabilizers, Poloxamer-188 presents the highest interfacial Gibbs energy, and as a result 
the highest contribution in the dissolution Gibbs energy enhancement (Equation (1)) and 
the highest absolute zeta-potential, making it suitable for selection.  

Table 4. Interfacial Gibbs energy and material properties correlation. 

Stabilizer 𝐆𝐦𝐢  (J mol−1) Density (kg m−3) Z-potential 
HPC-SL 0.0019 1320 −11.7 

Poloxamer-407 0.0039 954 −13.7 
Poloxamer−188 0.0056 951 −17.0 

3.2. Parameter Fitting 
The results of the milling’s dynamic profile mapping appear in Figure 3. The artificial 

neural network achieved fitting within 1.6% mean squared error (MSE), while the second-
order polynomial achieved fitting with 1.1% MSE. Although using polynomial fitting pro-
vides a bit lower percentage of MSE, the advantages of using ANNs for pattern recogni-
tion are numerous, as discussed in the introduction section. Also, the discrete experi-
mental data points appear to be noisy. Deep neural networks identify noisy data rather 
than memorize it and include it in the training process [24]. However, there exist data 
fusion algorithms with insignificant computational requirements used to minimize noise 
during sampling, such as the Extended Kalman filter. 

 
Figure 3. Wet milling dynamic comminution profile of experimental data points, ANN generated 
and best-fit polynomial curve. 

The Maximum Likelihood Estimation best-fit results comparing the three breakage 
functions are shown in Figure 4. The Austin model provided the best experimental fit with 
the lowest MSE, while the de Vegt model provided the highest one. Furthermore, as dis-
cussed above, the Austin model’s breakage function included more tuning parameters 
than the rest, with the Kapur model being the second and the de Vegt model being the 
last one. Considering this fact, it was found that the polyparametricaly tuned model ex-
hibited a suitable experimental fit curve. As expected, the integration of numerous tuning 
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parameters enhances the curve fitting performance, especially when it desired to interpo-
late complex experimental data profiles. The tuning parameter herein successfully plays 
the role of ‘’correction factor’’. 

 
Figure 4. Result dynamic profiles for the three breakage functions (a) de Vegt function’s best fit 
curve generating a 0.89% MSE (b) Kapur function’s best fit curve generating a 0.08% MSE, and (c) 
the Austin function’s best fit curve generating a 0.02% MSE. 

3.3. Sensitivity Analysis 
3.3.1. Wet Milling 

A sensitivity analysis was performed against the various considered tuning parame-
ters regarding the breakage functions conducted to examine their effects on the model 
outputs. Figure 5 shows the effect of the de Vegt model’s breakage rate parameter c (−) on 
the final D50 size profile. Parameter c is the tuning parameter existing in the model, while 
the others are predetermined according to the material’s and the mill’s characteristics (see 
Equations (6)–(8)). 

 
Figure 5. Breakage parameter c effect on the size comminution profile. 

The de Vegt model’s breakage distribution function remained the same during the 
analysis as when combining Equations (5) and (6) the final form appears dependent on 
the ௫௜௫௝ size reduction ratio (Equation (30)). 
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𝑏(𝑖, 𝑗) = ൬௫೔௫ೕ൰ଵ.ଶହ
  (30)

Apparently, increasing c provides higher breakage rates for larger particles and re-
sults in efficient comminutions. However, with the latter featuring the only tuning param-
eter for a given API, each desired final size shall unveil its own unique reduction profile. 
De Vegt model’s breakage function is ideal for qualitative analysis cases, e.g., when only 
the initial and the final sizes are of the main interest. In Figures 6 and 7, Austin’s commi-
nution profiles are illustrated, based on the breakage rate’s sensitivity analysis. The effects 
of the tuning parameters a (s−1) and d (−) were interrogated, and it was found that by in-
creasing each or both of a and d, the breakage rates of interval sizes i (Equation (10)), and 
thus the comminution efficiency, increases (Figure 6). The breakage distribution function 
b(i,j) during the Austin model’s relative sensitivities remained the same, with φ = 0.3, γ = 
1.17 and β = 4. In comparison to de Vegt model, a desired D50 size is achieved via various 
profile paths (Figure 7a). In addition, even when φ = 1 and γ = 1.25, namely when the 
distribution function b(i,j) is the same with the de Vegt’s one, the existence of the exponent 
d as a secondary tuning parameter in the S(i) calculation function allows the formation of 
multiple profiles leading to the same result (Figure 7b). This is the benefit of engaging 
multiple tuning parameters within the breakage rate function, as they render the digital 
twin capable of fitting multiple profiles. 

 
Figure 6. D50 time profiles with Austin’s breakage function in various a and d parameter values 
with γ = 1.17 and φ = 0.3 (a) a = 8 x 10-5 and (b) d = 1.6. 
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Figure 7. Austin’s breakage function for a D50 = 1 μm final size via various time profile paths with 
(a) γ = 1.17 and φ = 0.3 and (b) with γ = 1.25 and φ = 1 (de Vegt approximation). 

Figures 8 and 9 illustrate the Kapur model D50 time profile results (e = 6), following 
the same strategies. The Kapur model proved to be a sufficient breakage function as it 
recognizes multiple time profiles. Nevertheless, the b(i,j) distribution function contains 
one tuning parameter in comparison with the Austin model, and this is the reason that 
effective experimental fit accuracy cannot be approached by the theory. 

 
Figure 8. D50 time profiles with Kapur’s breakage function in various k and A parameter values 
with e = 6 (a) A = 0.008 and (b) k = 1.2. 
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Figure 9. Kapur’s breakage function for a D50 = 1μm final size via (a) various time profile paths with 
e = 6 and (b) various profile paths with e = 1.25 (de Vegt approximation). 

3.3.2. Spray Drying 
Two-factor sensitivity analysis was conducted to the spray drying model to map the 

design space. Figure 10 presents the obtained analysis’s contour diagram, whereas the 
factors considered are the air temperature and the air volume flow rate, while the response 
is the final product’s humidity, which constitutes the critical quality attribute related to 
the process. The contours below describe the final moisture content of the product de-
crease as the air’s temperature and/or its volumetric flow rate increases for the given initial 
dry humidity (g g−1). The air water capacity threshold rises proportionally with tempera-
ture when the temperature increases the air’s given humidity (g g−1) covering a lower pro-
portion of the moisture threshold and its relative humidity decreases, allowing humidity 
absorption [7]. 

 
Figure 10. Contour sensitivity analysis diagram of the spray drying model. 
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4. Discussion 
In our artificially intelligent digital twin thread, comminution efficiency appears de-

pendent both on the material system selection and on the equipment’s parameter settings. 
The relevant capacity and the physical properties of the API and of the grinding media 
were included in the digital twin’s working parameters, defining the quality attributes of 
the final product. Therefore, this digital twin thread is capacitated to analyze what-if 
equipment and material scenarios for early production assessments towards the reduction 
of material waste and the optimization of time schedule and process functions serving 
multiple batch mill units [25]. In addition, the algorithm is poised to identify irreversible 
faults and incompatibilities beforehand, for the related processes and the material system 
(e.g., over-efficient comminution profiles, API’s unwanted loss by dissolution during mill-
ing etc.) and propose controller actions to avoid them. Spray drying is a complex proce-
dure, crucial for the final API’s powder formation. It is a continuous process enabling real-
time data sampling and immediate response to changes of the physical object’s properties. 
In our digital twin, the spray drying process is described as a multi-parametric block, since 
the final temperature and moisture content of the product depend on the drying air’s tem-
perature, pressure, and capacity as far as the initial product’s flow, temperature, and drop-
let size distribution. Therefore, it can predict the drying efficiency given the air tempera-
ture specification, hence apart from the convergent mass and energy balances it exploits 
psychrometric calculations to determine the air’s relative humidity and its moisture ca-
pacity threshold [7], thus being advantageous in delivering realistic analysis reports. 

Our algorithm may receive real-time data and return forecasts of the temperature 
profile inside the spray dryer for any given initial input conditions, an extremely im-
portant operation, hence the product is required to be obtained in a stable crystalline state, 
while its temperature should not overcome the API’s and the excipients' melting point 
[26,27]. This digital twin ameliorates any scale-up related efforts and product degradation 
risks, while contributing to the optimization of the process outlining the system’s design 
spaces. In this recursive digital model, the proper empirical law selection, the one that 
more accurately describes the physical object’s progress, is dependent on the crowd of its 
tuning parameters, namely the parameters acceptable to be adjusted within boundless 
values towards improvement of the model’s prediction accuracy. Considering processes 
like wet milling, although the material and energy balances invoke fundamental laws of 
physics, models that describe specific functions, such as the comminution laws, must in-
clude data-driven parameters. Under this lens, for this specific unit block, using trained 
neural networks could replace such models efficiently, although limitations should be 
considered, and those lie in the idiosyncratic nature of the methods such as the ability of 
the empirical models to point out relative dependencies between variables [28]. ANNs 
identify patterns without obeying a strict mathematical function, thus generalizing the 
relationship between independent-dependent variables. Both ANNs and polynomial fit-
ting are efficient, depending on the circumstances chosen. In addition, as the adjective 
‘’empirical’’ implies, experiments cannot be avoided completely, hence even the structure 
of the mathematical models requires real data for their parameter training.  

Contemplating the limitations of the integration depth of our approach, there exist 
cases where a specific level of uncertainty is required, for instance when model discrep-
ancy needs to become recognized. A model can simultaneously be mechanistically biased, 
including over-confident parameter estimates, and therefore can also be effected by model 
discrepancy. In this research, the adjusted parameters were not predetermined, hence 
they do not possess physical status, yet their existence lies within calibration purposes, 
such as fitting experimental data towards the enhancement of the digital twin’s validity. 
Such tuning parameters, although as iterated irrelevant of physical interrelations, become 
scientifically vital, whereas complex process simulations are considered, as they aid the 
translation of the data set ontologies to the related physical property [8]. Adjusting tuning 
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parameters to discrete data points vertically amplifies the model’s data value and there-
fore improves overall accuracy as uncertainty, and its minimization, shall be in frame with 
the output results.  

The digital twin thread requires input modifications when APIs other than Itracona-
zole are considered. Specifically, different APIs provide different experimental data and 
consequently different ANN weights and physichochemical parameters must be plugged 
to the system’s agent. ANNs, however, carry the flexibility to link different input types 
with desired outputs, and as such various physicochemical properties can be utilized, 
constituting this digital twin as a universal predictive platform suitable for BCS II drugs 
[29], whereas the iterated processes are examined. Pharma 4.0 capacitating digital twins 
fused with artificial wisdom will in the future decrease the need for the implementation 
of experiments and exploit real time manufacturing process data towards the constant 
adjustment of the tuning parameters, succeeding the control and prediction of the pro-
cess’s progress and material’s quality attributes in time. Although fully functional digital 
twins require demanding computational and sensoring infrastructure as continuous 
curve fitting, probabilistic forecast, information evaluation and system configuration are 
taking place simultaneously, their multimodal capabilities shall be undeniably useful for 
industry deployment in the years to come. 
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