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Abstract: Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving
rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the
disease, how to prevent and treat it, and to limit and hamper its global dissemination. Consider-
ing the above, the search for prophylactic approaches has led to a revolution in the reglementary
pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way.
Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being
pursued. However, their physicochemical characteristics or reported adverse events have sometimes
limited their use. Hence, nanotechnology has been employed to potentially overcome some of
these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present
hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies
on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available
prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of
cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored,
and the potential application of cyclodextrins to increase their promising application against COVID-
19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes
increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential
use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as
well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.
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1. Introduction

Infectious diseases are responsible for millions of deaths yearly, and the associated
economic costs for preventing and treating them are huge. For this reason, it is increas-
ingly important to understand how these diseases evolve to reduce their impact on the
socioeconomic landscape and health sector [1].

In 2019, a new coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus
emerged, quickly becoming a pandemic. This disease is transmitted from person to person
by the inhalation of droplets released during coughing or sneezing. Although several body
systems can be affected, the most impacted is the respiratory system, and symptoms can
range from fever to pneumonia. While some patients are asymptomatic or only present
mild symptoms, some develop severe symptoms with poor prognosis [2].

Since its beginning, many scientific resources have been devoted to better under-
standing the virus and finding the best treatment. Several therapies have been developed,
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including vaccines, antivirals, monoclonal antibodies, and others. Despite vaccines playing
a pivotal role in preventing and containing the spread of the virus, antiviral agents have
played a key role in treating the disease. However, drawbacks have limited their translation
to clinics, namely low bioavailability, and in some cases, adverse events that have been
reported.

The use of cyclodextrins (CDs) allows the formation of inclusion complexes (ICs) for
the benefit of certain drugs, providing more safety and greater efficacy [1,3].

CDs are cyclic oligosaccharides composed of six or more glucose units connected
by alpha-1,4 bonds. They have hydrophobic cavities with a hydrophilic exterior which
gives them the ability to complex with several drugs, improving their solubility, stability,
and bioavailability [3,4]. Due to these versatile properties, the global CDs market size is
projected to increase from USD 260 million (2020) to more than USD 390 million (2027),
with a compound annual growth rate (CARG) of 5.5 % [5].

The potential application of CDs in the encapsulation of antiviral drugs such as favipiravir
(FPV), remdesivir (REM), dexamethasone (DEX), ivermectin (IVM), hydroxy(chloroquine)
(HCQ), interferon-beta (IFN-β), lopinavir/ritonavir (LPV/RTV), oseltamavir (OTV), and
fenofibrate have been explored with some promising results. This manuscript brings
together the ongoing clinical trials with these drugs, at the time of this review, to provide
more detailed information about the main specifications of their use, and to allow a clearer
analysis of the feasibility of their incorporation into CDs. In addition, this work provides
updated information about the new proposals for therapeutic approaches for the treatment
of COVID-19, highlighting new candidate drugs for this purpose: bepridil, glycyrrhizin,
plitidepsin, thapsigargin, and polyphenols. Experimental studies of these drugs with CDs
are also mentioned as well as the ongoing clinical trials.

This review also aims to raise awareness of the importance of toxicological analysis of
CDs, focusing on aspects such as the daily dose administered, the route of administration,
and the type of cyclodextrin. These aspects, together with the information collected from
clinical and experimental studies, are essential to make available conclusions on the viability
of incorporating these drugs into CDs.

Therefore, this review aims to provide a comprehensive overview of the current
therapeutic regimen against COVID-19 and the ongoing clinical trials, highlighting the
potential use of CDs to overcome some therapeutic failures. Moreover, the potential
application of CDs in new therapies was emphasized. Finally, the regulatory landscape of
cyclodextrins will be covered.

2. COVID-19 Etiopathology

COVID-19 is an infectious disease declared as a pandemic on 11 March 2020 by
the World Health Organization (WHO) [6]. Briefly, COVID-19 is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to a diverse group
of coronaviruses characterized by enveloped, single-stranded, positive sense ribonucleic
acid (RNA) viruses with a long-range tropism, which gives them the ability to cause
overwhelming diseases [7].

Viruses are known to enter the host cell with the help of receptors that mediate
endocytosis. In the case of SARS-CoV-2, it has been reported that the spike protein is
responsible for binding to the angiotensin-converting enzyme 2 (ACE-2) receptor on the
host cell surface, which is the entry point for the virus. However, SARS-CoV-2 entry
is not only dependent on the binding of the spike protein to the ACE-2 receptor, but it
also requires the priming of the spike protein by the serine-2 transmembrane protease
(TMPRSS2), which is crucial for the fusion of the virus to the host cell membrane. This
synergy between the ACE-2 receptor and TMPRSS2 is necessary for the virus to enter into
the host. The expression of TMPRSS2 is much higher than the ACE-2 receptor, suggesting
that the latter is the limiting factor for SARS-CoV-2 during the early stage of infection [8,9].

Evidence has shown that the first target of the virus is the respiratory system. However,
it can cause alterations in different body organs. Although some patients are asymptomatic
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or have mild to moderate symptoms, a percentage can develop severe illness [10]. The
most common complications are acute respiratory failure syndrome (ARDS), septic shock,
and sepsis. Risk factors such as age and comorbidities such as chronic diseases are related
to severe illness and mortality [2].

Several symptoms have been associated with this disease, such as fever, cough, diffi-
culty in breathing, headache, fatigue, sore throat, rhinorrhea, anorexia, myalgias, diarrhea,
and in severe cases, pneumonia. The primary transmission mode is from person to per-
son, through inhalation of the droplets released when coughing or sneezing. In general,
symptomatic people are more contagious. However, transmission is also possible through
fomites [2].

Moreover, it is valuable to mention that viruses are susceptible to mutations leading to
the potential development of new variants. In response to the emergence of new SARS-CoV-
2 variants, WHO has classified the variants according to the Greek alphabet (e.g., Alpha,
Beta, Gamma, and Delta).

The strains of interest present mutations on the spike protein, which often results in
altered virus comportment and may lead to immune escape [2,7,11].

Therefore, comprehensive knowledge of the current prophylactic and treatment
schemes for COVID-19 is of the utmost importance to preparing efforts to fight disease
dissemination.

3. COVID-19 Prevention and Treatment Approaches

As the pandemic evolved, so did the search for potential prophylactic and therapeutic
agents (Figure 1).
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Vaccines have undoubtedly conquered the research space to prevent SARS-CoV-2
because of their advantages in the prophylaxis of COVID-19. Besides that, some therapies
have also been considered against COVID-19. Many of these therapies have emerged from
drug repurposing. Repurposing of a drug consists of using an existing medicine with a
new therapeutic purpose beyond its primary indications [7,12–15].
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Table 1 summarizes the currently available therapies against COVID-19 and their main
underlying action mechanisms.

Table 1. Potential therapeutic agents used in the treatment of COVID-19.

Drug Drug Class Mechanism of Action Reference

Chloroquine and
Hydroxychloroquine Antimalarials

Increasing endosomal pH; interfering with the
glycosylation of cellular receptors of SARS-CoV-2;

immunomodulator.
[16]

Remdesivir Antivirals
Interfering with the viral replication;

inhibiting the viral RNA-dependent RNA
polymerase (RdRp).

[7]

Favipiravir Antivirals Binds to the viral RdRp and reduces its
reproduction. [16]

Lopinavir and Rotinavir Protease inhibitors Could act by inhibiting SARS-CoV-2 protease for
protein cleavage; interfering with virus replication. [16]

Darunavir Protease inhibitors Could act by inhibiting SARS-CoV-2 protease for
proteins cleavage; interfering with virus replication. [16]

Niclosamide Anthelmintics Inhibiting replication and
3CL protease enzyme inhibition. [14]

Ivermectin Anthelmintics Inhibits IMPα/β1 associated nuclear import of
proteins of the virus. [16]

Convalescent Plasma
Therapy Immunoglobulins Non-neutralizing antibodies bind to the pathogen

and contribute to prophylaxis and recovery. [14]

Mesenchymal Stem
Cell Therapy Pluripotent stem cells Prevent the release of cytokines. [14]

Glycyrrhizin Prenol lipids Inhibits replication, adsorption, and penetration of
the virus. [14]

Cinanserin 5-HT 2A and 5-HT 2C
receptor antagonist Inhibition of the protease enzyme. [14]

Dexamethasone Corticosteroids
Reduces inflammation-induced lung damage and,

consequently, inhibits the progression to respiratory
failure.

[17]

IFN-β Immunomodulators
Increases the production of anti-inflammatory

cytokines and downregulates the production of
pro-inflammatory cytokines.

[18]

Baricitinib Janus kinase (JAK) inhibitors
Interfering with viral entry by inhibiting one of the

endocytosis regulators and
can prevent the activation of STAT.

[16]

Tocilizumab
Bamlanivimab

Etesevimab
Lenzilumab

Risankizumab
CR3022

Monoclonal Antibodies
Neutralizing antibodies can block the entry of the

virus into host cells and recruit host effector
pathways to destroy virus-infected cells.

[7,16]

Camostat Mesylate Transmembrane protease,
serine 2 (TMPRSS2) inhibitor Interfering with viral entry. [16]

3.1. Vaccines

The spread of COVID-19 has mobilized research and development (R&D) efforts.
Therefore, several approaches for vaccine development against COVID-19 have been tested,
such as inactivated virus, live attenuated, recombinant protein, adenovirus vector, influenza
virus vector, as well as mRNA and DNA vaccines. As a revolutionary innovation, mRNA
vaccine technology has uniquely controlled the COVID-19 pandemic [19].
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Briefly, mRNA vaccines are composed of a vehicle, particularly lipid nanoparticles,
that enables the delivery of a nucleic acid molecule encoding the antigen of interest. In
the case of SARS-CoV-2, the spike protein is delivered into the target cell in the human
host, allowing the host cell to produce the target protein and express the antigen to elicit an
immune response [19].

Currently, two mRNA-based vaccines are approved against COVID-19: Comirnaty
(BNT162b2) and Spikevax (mRNA-1273) [20]. According to the literature, mRNA tech-
nology is desirable as it works as a template for protein translation and does not require
bioreactors. It reduces the risk of bacterial contamination and makes scaling up less
challenging. Moreover, mRNA vaccines reduce the risk of immunogenicity compared to
other viral vector-based modalities. However, the dependency on cold-chain storage and
transport may hamper their global applications [20].

3.2. Antiviral Drugs

Given the clinical picture presented by patients with SARS-CoV-2, another potential
therapy is antiviral drugs such as remdesivir (REM), favipiravir (FPV), and lopinavir/ritonavir,
which will be described in more detail later in the manuscript.

In brief, these drugs can inhibit the entry of the virus by targeting the type-II trans-
membrane serine protease (TMPRSS2) and the ACE-2 receptor. They may also interfere
with endocytosis or with the action of RNA-dependent RNA polymerase (RdRp) and the
SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) through fusion inhibitors.

Despite the promising prospects for this therapeutic class, some groups of antiviral
drugs remain to be explored to treat COVID-19 [21,22].

3.3. Convalescent Plasma

The convalescent plasma of patients who have recovered from COVID-19 presents
neutralizing antibodies in its constitution, which can fight infection by minimizing the
inflammatory response [17]. The reduction in the inflammatory response may happen due
to viremia suppression contributing to prophylaxis and recovery.

The administration of passive antibodies may be an option to achieve rapid immu-
nity [14].. In theory, the administration of convalescent plasma should be completed at an
early stage for superior efficacy [23]. However, its application continues to be controver-
sial [24].

3.4. Monoclonal Antibodies

Monoclonal antibodies (mAbs) have effectively prevented and treated various viral
infections [25]. Currently, potent neutralizing mAbs have been investigated against COVID-
19, by targeting the receptor-binding domain (RBD) of the spike glycoprotein of SARS-
CoV-2, blocking the binding between the S protein and the host receptor, ACE2 [26,27].
Moreover, other neutralizing mAbs can mediate viral activity by targeting nonblocking
epitopes of the RBD or N-terminal domain (NTD) of the spike protein [28,29]. Some
neutralizing antibodies studied against COVID-19 have been reviewed previously [30].

However, the emergence of new virus strains with mutations in the protein epitopes
may hinder the application of these selective immunotherapies.

Therefore, to overcome mutational virus escape, cocktail therapies aiming at adminis-
tering antibodies targeting multiple epitopes on the spike protein have been investigated.
Nevertheless, these treatment approaches may be challenging and considerably increase
manufacturing costs [31].

Recently, the emergence of bispecific mAbs (bsAbs) has gained interest for the treat-
ment of COVID-19 as one molecule can target two different antigen-binding sites [31].
However, the use of these approaches remains to be fully explored.

Although applying mAb-based interventions against SARS-CoV-2 may require peri-
odic updates due to the shifting antigenic landscape, the potential passive immunization in
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persons with a high risk of ineffective responses is a significant leap forward in the fight
against viral evolution [32].

3.5. Interferons

Interferons (IFNs) induce the encoding of several proteins that can inhibit viral replica-
tion by decreasing cellular metabolism, interfering with the membrane formation necessary
for virus replication, and inducing the release of cytokines that promote adaptive immunity.
There are three families of IFNs, but only type I and type III are produced when the immune
system detects the presence of viral nucleic acids. IFN-α belongs to type I, as well as INF-β,
and fights coronaviruses by inhibiting virus replication [17,25].

According to Sodeifian et al. [33], it is paramount to establish the best time window
to prescribe this type of treatment, as evidence has revealed that the administration of
INF before the viral peak and the inflammatory phase of the illness could offer a highly
protective effect. On the contrary, the administration of IFN during the inflammatory
and severe phase of the disease may cause immunopathology and long-lasting harm for
patients [33].

3.6. Corticosteroids

Corticosteroids are readily available agents extensively used as anti-inflammatory
agents against respiratory infections. However, evidence has suggested that no clear bene-
fits have been observed regarding their application in SARS and MERS patients. Therefore,
their application in the initial phase of the COVID-19 pandemic was not recommended [34].

Later, due to preliminary data demonstrating lower mortality in patients with COVID-
19 treated with corticosteroids, the use of corticosteroids for treating patients with severe or
critical COVID-19 has been recommended [35].

Corticosteroids may play a pleiotropic role in different pathophysiological components
in severe COVID-19 [36]. One of the studied drugs is dexamethasone (DEX), a synthetic
glucocorticoid (detailed later) [17].

4. Cyclodextrins and Antiretroviral Agents

CDs are versatile tools for drug delivery and produce effective inclusion complexes
for antiretroviral therapies [3].

4.1. Definition and Structure

CDs are produced through the enzymatic degradation of starch from rice, corn, and
potatoes by cyclodextrin glucanotransferases. These enzymes come from plants and mi-
croorganisms, usually Bacillus strains. CDs can be stored without detectable degradation
for several years at room temperature [4].

CDs are cyclic oligosaccharides composed of six or more glucopyranoside (Glpc) units
connected by alpha-1,4 bonds (Figure 2).

Depending on the number of Glpc units, CDs can exist in various forms: α-CD (six
units), β-CD (seven units), or γ-CD (eight units), as illustrated in Figure 2 [37]. CDs are
also formed from nine or ten units, being classified as δ-CDs and ε-CDs, respectively.

Larger CDs known as ζ-CD, are formed from eleven units, although they present poor
complexation capability compared to naturally occurring CDs.

The first three CDs listed are of natural origin and are crystalline and homogeneous
substances. Some of their properties are listed in Table 2. Therefore, the most effective ones
are α-CD, β-CD, and γ-CD, since when the number of units is more than eight, the CDs are
more expensive and lose their complex ability [3,4].

CDs present a truncated cone-like shape, and the hydroxyl groups are exposed on the
opposite edges of the cone. At the narrow end, there are the primary 6-hydroxy groups
of the glucose molecules, and at the broad end there are the secondary 2- and 3-hydroxy
groups. This unique geometry allows for its high-water solubility while maintaining the
size of the hydrophobic cavities. This cavity allows the encapsulation of hydrophobic
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substances; therefore, they form inclusion complexes without modifying the structure and
chemical properties of the host. Their cylindrical structure provides them with advantages
such as being more resistant to enzymatic degradation and hydrolysis. Moreover, it
confers improved complexing properties and a higher solubilizing potential than linear
dextrins [3,4].
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shape [37].

Table 2. Characteristics of α-CD, β-CD, and γ-CD [4].

Cyclodextrin α-CD β-CD γ-CD
Height [nm] 0.78 0.78 0.78

Inner Diameter [nm] 0.47–0.52 0.60–0.65 0.75–0.83
Outer Diameter [nm] 1.46 1.54 1.75

Synonyms Cyclomaltohexaose Cycloheptaamylose Cyclomaltooctaose
Molecular Formula C36H60O30 [C6H10O5]7 C48H80O40

Mw [g/mol] 972 1132 1297
Solubility in Water at Room

Temperature [mg/mL] 130 18.40 249

Hydrogen Bound
Donor Count 18 21 24

Hydrogen Bond
Acceptor Count 30 35 40
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CDs have been used for a variety of functions (Figure 3). Indeed, their versatility
makes them suitable to be applied as excipients in various fields, such as in the food
industry, cosmetics, chemicals, catalysts, agriculture, and biotechnology. CDs have also
been employed to increase drug solubility and bioavailability, work as stabilizer agents,
and promote antiviral action, operating as antigen vectors, vaccine adjuvants, and antibody
stabilizers [3].
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The most relevant CD in the pharmaceutical industry is β-CD due to its cavity size,
which is the most suitable for the most common drugs, its simple production, effective
complexation, low cost, and ability to increase bioavailability and reduce toxicity. Although
it has a lower aqueous solubility than α-CD and γ-CD, it constitutes about 90% of the
CDs used. Other disadvantages of β-CD are the high affinity for cholesterol, which leads
to nephrotoxicity due to the crystallization of β-CD-cholesterol complexes in the kidney,
which are poorly soluble in water [4].

Chemically modified CDs are obtained from natural CDs through substitutions and
the functionalization of the hydroxyl groups. The need to develop CD derivatives arose due
to several factors. Among them is the limited solubility in water due to the intramolecular
hydrogen bonds of the naturally occurring CDs. For this reason, chemically modified
CDs have been demonstrated to improve and increase natural CDs’ physical and chemical
properties and their inclusion capacity.

The use of propylene oxide with α-CD, β-CD, and γ-CD leads to the hydroypropy-
lated CDs derivatives; for example, hydroxypropylated-β-cyclodextrin (HP-β-CD) or
hydroxypropylated-γ-cyclodextrin (HP-γ-CD). On the other hand, the application of
methyl iodide drives the formation of randomly methylated CDs (e.g., randomly methy-
lated β-cyclodextrin (RM-β-CD)). The employment of 4-butane sultone has also been
reported to produce sulfobutylether CDs (e.g., sulfobutylether β-cyclodextrin (SBE-β-
CD)) [4].

The formation of ICs (Figure 4) can be explained based on the structure and character-
istics of the CDs. The interaction between the CD cavity and the hydrophobic part of the
drug results in the formation of the drug–cyclodextrin complex. The organic compounds
are incorporated into the CD cavity and, consequently, the drug’s physical, biological, and
chemical alterations are made. In addition to improving the physicochemical stability of
the therapeutic molecule, the formation of these complexes also interferes with the release
kinetics, and pharmacodynamic and pharmacokinetic properties [4].
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The complexing ability of CDs has allowed insoluble drugs to improve their bioavail-
ability by improving release profile, dissolution rate, chemical stability, and absorption
efficiency. All these factors increase the oral bioavailability of the drug and enhance its
biological activity [4].

Despite the many functions of CDs, the focus of this work is on their application in
antiviral drug delivery. CDs interact with the various active pharmaceutical ingredients
(APIs) used to treat viral diseases, either by forming ICs or by using the excess amounts to
create products with increased solubility and/or activity [3,39].

Drugs with antiviral activity are aimed at fighting viral infections. However, their
physicochemical properties, such as solubility, stability, and permeability, may hamper
their clinical translation. CDs have been used as excipients to protect and slowly release
the active ingredient to optimize the bioavailability and distribution of these drugs.

The use of CDs as antiviral drug delivery systems has been properly explored [39]. The
next chapter will address some drugs that are currently being studied against COVID-19,
and the application of CDs to overcome some challenges will be underlined.
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4.2. Cyclodextrins and Anti-SARS-COVID-19 Molecules

Despite the intense focus on vaccine development, searching for drugs that alleviate
the symptoms of SARS-CoV-2 has not been abandoned. To this end, molecules already
known were used in various studies to determine whether they could directly or indirectly
inhibit the spread of the virus (Figure 5).
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Some of these treatments have revealed certain limitations. Therefore, the use of CDs
as host molecules for anti-COVID-19 drugs has been exploited. Supramolecular interaction
studies were performed with the corresponding α-, β-, and γ-CDs and showed that the
stoichiometry of the complexes formed was 1:1. Some of the proposals announced were the
use of SBE-β-CD as a solubilizer of REM, HP-β-CD for the lopinavir/ritonavir combination,
and the use of β-CD as a flavor modifier for oseltamivir [3,39].

Moreover, the combination of ritonavir with other antiviral agents, such as nirma-
trevil (PF-07321332), has been addressed in clinical trials and has shown clinical efficacy
in reducing hospitalization by 80% [40]. PF-07321332 is a reversible covalent inhibitor of
the Mpro related to SARS-CoV-2 that binds to the catalytic cysteine (Cys145), interrupting
the viral replication cycle [41,42]. According to EMA/783153/2021 (16 December 2021),
PF-07321332 belongs to the BCS II/IV, presenting low solubility with permeability to be
clarified. The use of CDs for oral administration is not fully exploited. However, the appli-
cation of 2-hydroxypropyl-β-CD in the formulation of PF-07321332 for IV administration
in monkeys has been tested [41].

4.2.1. Favipiravir

Favipiravir (FPV) (Figure 5) is a prodrug and a purine base analog that is metabolically
activated by phosphoribosylation to yield the activated metabolite FPV-ribofuranosyl-50-
triphosphate (T-705RTP).

The primary mechanism of action is based on the binding and inhibition of the RNA-
dependent RNA polymerase (RdRp), preventing transcription and replication of viral genomic
RNA. There are several proposals to explain the interaction between FPV and RdRp, one of
which is that T-705RTP inhibits viral RNA synthesis by terminating the nascent viral RNA
chain [43,44].

The pharmacokinetics of FPV are complex and nonlinear, depending on time, dose, and
weight. Bioavailability is almost complete at 97.6%; maximum concentration is 51.5 µg/mL;
peak concentration occurs at 1 h, and half-life ranges from 4.8 to 5.6 h. In a phase 3 clinical
trial, FPV has been reported to be metabolized and inhibited by an aldehyde oxidase
(AO). Therefore, an appropriate starting dose is required to maintain adequate blood levels.
Based on single-dose toxicity studies, the oral and intravenous lethal dose of FPV in mice is
approximately >2000 mg/kg. In rats, the oral lethal dose is >2000 mg/kg, while in dogs
and monkeys, it is >1000 mg/kg [43,44].

Clinical trials that are currently recruiting using FVP are summarized in Table 3.
Reported adverse effects of FVP in men were well tolerated in clinical trials but are

associated with increased uric acid and should be used with caution in patients with a
history of gout or hyperuricemia. Other adverse effects may include diarrhea, increased
transaminases, and decreased neutrophil counts [44].

The disadvantages of FPV include that it is poorly soluble in physiologically buffered
saline (PBS) (≈0.01%) and its effective dose is relatively high (600–1600 mg/day). A 1:1 sto-
ichiometry complexation of β-CD and FPV would require an oral intake of approximately
4.3–13.5 g/day of β-CD, which significantly exceeds the European Medicines Agency
(EMA) recommendation (0.5–1 g/day). Other CDs are well tolerated in higher amounts,
but their molecular weight is higher than that of β-CD.

Some of the literature is already available on the behavior of the FPV/CD complex.
However, its structure suggests that the formation of this complex would maintain only
constant low stability and marginally improve its water solubility [3,44].
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Table 3. Clinical trials using favipiravir for the treatment of COVID-19. Data was collected from
clinicaltrials.gov on 28 November 2022. Inclusion criteria: Recruiting, adult population, from 1 Jan-
uary 2022 to 31 December.

NCT Number Phase Therapeutic Regimen

Dose Administration
Type Other Drugs

NCT04613271 3
A total of 1600 mg twice a day
on day 1 and 600 mg twice a

day, on day 7–14
- Favipiravir +

Azithromycin

NCT04918927 2
A total of 800 mg twice daily on

day 1, followed by 400 mg
4 times daily from day 2 to day 7

- Favipiravir +
Nitazoxanide

NCT05014373 3
A total of 1800 mg twice daily

for one day, followed by 800 mg
(4 tablets) twice daily

Oral
Favipiravir +
Standard of

Care

NCT04694612 3
A total of 1800 mg on D1 twice
+ 800 mg twice a day from day

2 for a total of 5 days
- Remdesivir

NCT04718285 2

A total of 200 mg in a regimen
of a 1600 mg twice daily

loading dose followed by
600 mg twice daily

Oral
Montelukast +

Favicovir
(Favipiravir)

NCT05041907 2
A total of 1800 mg on D0 twice

+ 800 mg twice daily for a
further 6/7 days

- -

4.2.2. Remdesivir

Remdesivir (REM) (Figure 5) has potent viral activity against mRNA viruses, and after
the pandemic began, it has been tested against SARS-CoV-2 with positive results in some
clinical trials [45].

In April 2020, REM was approved by the EMA to be used in critically ill patients with
COVID-19. REM was also the first antiviral approved by the Food and Drug Administration
(FDA) for the treatment of COVID-19 [45–47].

REM is a prodrug transformed metabolically by intracellular esterases and kinases
for a pharmacologically active nucleoside, a triphosphate analog (GS443902). This active
metabolite competes with adenosine phosphate and acts as an inhibitor of RdRp, thereby
inhibiting viral replication.

The use of REM has also been presented in clinical trials, as reviewed in Table 4.
Because of its hepatic first-pass metabolism, oral bioavailability is low. Therefore, the

alternative is intravenous infusion as a parenteral solution. However, its low water solubil-
ity (0.028 mg/mL) at neutral or slightly acidic pH hampers its parenteral administration.

To overcome this problem, excipients with solubilizing capabilities, such as surfactants,
polymers, co-solvents, and SBE-β-CD can be used [46–48].

In the case of REM, satisfactory solubility was achieved using SBE-β-CD, which
now has values between 7.6 and 9.7 mg/mL. Although SBE-β-CD has a much poorer
complexing capacity than HP-β-CD, its anionic properties can increase the solubility of
ionizable molecules at a tolerable pH. It should also be added that although adverse effects
on the kidney have been reported from SBE-β-CD, they are less than those observed for
HP-β-CD, albeit the drug/CD ratio is worse [3,39,47].

clinicaltrials.gov
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Table 4. Clinical trials using remdesivir for the treatment of COVID-19. Data was collected from
clinicaltrials.gov on 28 November 2022. Inclusion criteria: Recruiting, adult population, from 1
January 2022 to 31 December 2022.

NCT Number Phase Therapeutic Regimen

Dose Administration
Type Other Drugs

NCT04431453 2/3 - IV -

NCT04713176 3 200 mg IV

DWJ1248 with
Remdesivir

Placebo with
Remdesivir

NCT04738045 4

A loading dose of 200 mg then
100 mg once daily and

lopinavir/ritonavir at a dose of
400/100 once daily for 5 days

IV
Lopinavir/

Ritonavir and
Remdesivir

NCT04970719 3 A total of 200 mg followed by
100 mg once a day IV -

NCT04978259 4 - IV -

NCT04694612 3 A total of 200 mg followed by
100 mg daily IV -

NCT04779047 4 A total of 200 mg on day 1 then
100 mg once daily for 5 days IV -

NCT04693026 3 A total of 200 mg on day 1 then
100 mg daily IV Remdesivir +

Baricitinib

NCT04321993 2 A total of 200 mg on day 1 then
100 mg daily IV

Remdesivir
(antiviral) +
Barictinib

NCT04488081 2 A total of 200 mg on day 1 then
100 mg daily IV -

Vámai et al. [46] have studied the molecular interactions of REM in the cavity of CDs
and concluded that the ethylbutyl moiety in β-CDs performs a crucial role in the complex-
ation of REM into the β-CD cavity (Figure 6). While in the case of γ-CDs, the phenoxy
moiety is the main on responsible for the REM complexation in the γ-CD cavity [46].

Moreover, the complexation of REM into SBE-β-CD is preferably at a low pH when
REM is protonated, which increases solubility. Even though it was expected that the
strength of the complex would decrease with an increasing pH, it was shown that the
drug remains encapsulated by the addition of NaOH, so that it can be administered in the
human body at a neutral pH. The influence of the number of CD substitutions on the affinity
constant in the formation of inclusion complexes was also studied, and the conclusions were
that the lower the number of substitutions, the lower the affinity constant, i.e., inclusion
complexes with 6SBE and 7SBE have a higher affinity than those with 5SBE [48,49].

When using CDs to increase the solubility and stability of a molecule, it is necessary
to quantify the affinity between the two compounds and to know the structure that results
from their complexation. A very high-affinity constant is not optimal because the molecule
may not be released. In contrast, a low affinity constant will cause solubility to increase
and protection from degradation to become inadequate [48]. Some studies have reported
the application of REM combined with CDs in clinical trials, which will be discussed
further [50,51].

clinicaltrials.gov
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Figure 6. Suggested structures of inclusion complexes of the two β-cyclodextrins (CDs) derivatives
(yellow) and remdesivir (REM) and the proposed sugammadex-REM complexes (blue) based on
2D ROESY NMR spectra (under pH 2.0 conditions). Reprinted from [46], Copyright (2022), with
permission from Elsevier.

4.2.3. Dexamethasone

DEX (Figure 5) belongs to the corticosteroid class and has anti-inflammatory and im-
munosuppressive properties. Its indications are the treatment of asthma, allergic reactions,
arthritis, and other autoimmune diseases. After demonstrating its efficacy in reducing
mortality in critically ill COVID-19 patients, it was included in the National Institutes of
Health (NIH) recommended list, although its viral activity is still under investigation. The
administration of low doses of DEX reduces the risk of death by up to one-third in patients
requiring ventilators, and by one-fifth in patients requiring oxygen without invasive venti-
lation. It is ineffective in non-severe cases but has not caused significant adverse effects.
However, DEX can induce hormonal changes, fluid retention, weight gain, anxiety, and
sleep disturbances [3,52].

The mechanism of this drug is to suppress the immune system by blocking two
pathways of inflammation, vasodilation, and immune cell migration.

DEX penetrates the host membrane and binds to the glucocorticoid receptors present
in the cytoplasm. This binding leads to a series of immune cell responses resulting in the
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suppression of pro-inflammatory cytokines such as interleukin 1,2,6,8 (IL-1, IL-2, IL-6, IL-8),
tumor necrosis factor (TNF), and interferon-γ (IFN-γ). It also increases the expression of
interleukin-10 (IL-10), an anti-inflammatory cytokine, and inhibits neutrophil adhesion to
endothelial cells, preventing the release of lysosomal enzymes and chemotaxis at the site of
inflammation. Moreover, it also inhibits macrophage activation, which is important for the
cytokine storm in SARS-CoV-2-infected patients. Other advantages of this drug include its
long duration of action, which allows for a once-daily administration and lowers costs, and
the fact that it is already on the market [52].

The use of DEX is being addressed in some recruiting clinical trials for the treatment
of COVID-19 (Table 5).

Table 5. Clinical trials using dexamethasone for the treatment of COVID-19. Data was collected
from clinicaltrials.gov on 28 November 2022. Inclusion criteria: Recruiting, adult population, from
1 January 2022 to 31 December 2022.

NCT Number Phase Therapeutic Regimen

Dose Administration
Type Other Drugs

NCT04663555 4 A total of 20 mg once daily
followed by 10 mg once daily IV -

NCT05062681 4 8 mg 12 h - -

NCT04970719 3 6 mg IV Remdesivir +
Dexamethasone

NCT04836780 3 A total of 6 mg once daily - -

NCT04452565 2/3 4 mg -

NA-831+
Dexamethasone

Atazanavir +
Dexamethasone

NCT04528329 4 Early vs. late use Early vs. late use -

NCT04890626 3 - - Baricitinib +
dexamethasone

NCT04826822 3 A total of 2 mg twice daily Oral Spironolactone +
Dexamethasone

NCT05279391 - A total of 6–8 mg once daily - -

NCT04784559 3 Country-specific product
information

Country-specific
product

information

Plitidepsin +
Dexamethasone

NCT04545242 4 A total of 6 mg/day or 20 mg
daily IV -

NCT04488081 2 A total of 6 mg once daily IV or oral -

DEX is a hydrophobic drug that hampers achieving therapeutic concentrations when
administered orally. Hence, the entrapment of DEX in CDs has been exploited to increase
its water solubility and bioavailability while reducing adverse effects. A study showed that
the inclusion of dexamethasone in β-, γ-, and HP-β-CD could be an interesting approach
for drug delivery. The result showed that the DEX/β-CD complex is a suitable strategy to
overcome the problems of low solubility and improve bioavailability, which also enhances
performance in the treatment of COVID-19 [53].

The encapsulation mode of DEX into the cavity of β-CD as an inhibitor of the COVID-
19 main protease has been investigated using density functional theory with the recent
dispersion corrections D4 and molecular docking (Figure 7) [53].

clinicaltrials.gov
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Figure 7. Side (a) and top (b) views of the partial inclusion of dexamethasone(DEX) in the β-CD
cavity as calculated at the BLYP-D4/def2-TZVP level of theory in the gas phase. The structural
analysis of the most stable DEX enclosed into the β-CD complex in the gas phase and an aqueous
solution indicated the partial inclusion of the dexamethasone in the β-CD cavity from the wider rim
(mode A). Adapted from [53], under Creative Common CC BY license.

4.2.4. Ivermectin

The FDA approved Ivermectin (IVM) (Figure 5) is a broad-spectrum antiparasitic
and it has shown antiviral activity against several viruses in vitro. In addition to its viral
activity, it has also demonstrated anti-inflammatory activity [54].

IVM was identified as an inhibitor of the interaction between the human immunodefi-
ciency virus (HIV-1) and the importin (IMP) α/β1 heterodimer, responsible for the HIV-I
integrase nuclear import and replication. Moreover, IVM has also proved to inhibit the
host nuclear import and viral proteins [55,56].

IVM has been reported for the prophylaxis and treatment of COVID-19 [57]. Recruiting
clinical trials using IVM for the treatment of COVID-19 are summarized in Table 6.

However, the application of IVM in COVID-19 remains controversial [58].
One proposed solution to overcome the limitations of IVM, such as poor solubility,

bioavailability, and neurotoxicity, is to develop a formulation aiming at a local action. For
that, HP-β-CD has been employed to formulate an inhaled dry powder of IVM [59]. The
use of HP-β-CD has increased the aqueous solubility of IVM 127-fold. The inhalation of
IVM-HP-β-CD at 0.05 and 0.1 mg/kg revealed a safety profile in rats [59].

4.2.5. Interferon-Beta

IFN-β is a cytokine produced in mammalian cells and IFN-β 1b is produced in modi-
fied Escherichia coli cells. When the human organism is exposed to chemical or biological
stimulation, the immune system initiates its production. It exhibits antiviral and anti-
inflammatory properties and activates the immune system. Its antiviral action is based on
inhibiting viral replication through interaction with Toll-like receptors (TLRs) [60].

In cell culture and animal experiments, interferons have been shown to inhibit coron-
avirus replication. In addition, studies have demonstrated the efficacy of IFN-β against
SARS-CoV-2 in vitro and strong activity to reduce the replication of MERS-CoV.

Therefore, considering this information, IFN-β was redirected to treat COVID-19.
Observations made after the initiation of its use were a significant reduction in length of a
hospital stay, mortality, intensive care unit (ICU) admission, and intubation rate [60].

However, IFN-β use is limited by its short half-life, side effects, route of administration,
and limited access to the central nervous system (CNS). The fact that IFN-βmust be admin-
istered in high doses may increase the occurrence of adverse effects and consequently affect
patient compliance by decreasing efficacy. If the route of administration is subcutaneous or
intramuscular, problems with the production of neutralizing anti-IFN-β antibodies (NAB)
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may occur, reducing bioavailability and efficacy. Currently, two clinical trials are recruiting
using INF-β for inhalation (NCT04469491) and intravenous bolus injection (NCT02735707)
against COVID-19.

Table 6. Clinical trials using ivermectin for the treatment of COVID-19. Data was collected from
clinicaltrials.gov on 28 November 2022. Inclusion criteria: Recruiting, adult population, from 1 Jan-
uary 2022 to 31 December 2022.

NCT Number Phase Therapeutic Regimen

Dose Administration
Type Other Drugs

NCT05155527 2 A total of 600 mcg/kg
once daily Oral Ivermectin +

Favipiravir

NCT04681053 3 6 mg Oral and inhaled -

NCT05305560 2
A total of 200 mcg/kg on
D1 then 100 mcg/kg daily

from D2 to D28
Oral -

NCT04723459 - - - Ivermectin
impregnated mask

NCT04729140 4 200 mcg/kg (3 mg) Oral Ivermectin +
Doxycycline

NCT04834115 3 A 200 mcg/kg single dose,
maximum dose of 18 mg Oral -

NCT04716569 2/3 - Intranasal spray -

NCT04472585 1/2

A total of 200 ug/kg body
weight once every 48 h Subcutaneous Ivermectin with

Zinc0.2 mg/kg/day Oral

NCT04959786 2/3 - -

Ivermectin,
ribavirin,

nitazoxanide and
zinc

NCT04435587 4 A total of 600 mcg/kg/day
once daily for 3 days Oral -

NCT04779047 4 36 mg -
Hydroxychloroquine,

Tocilizumab,
Ivermectin

NCT05045937 - 0.4 mg/kg - -

NCT04885530 3 7 mg tablets Oral -

NCT04951362 2/3 - Intranasal spray -

NCT04351347 2/3 Larger doses - -

NCT05041907 2 A total of 600 mcg kg/day
for 7/7 days - -

NCT04703608 3 A total of 0.3–0.4 mg/Kg
daily for 3 days - -

NCT02735707 3
A total of 0.2 mg/kg once

daily with a maximum
daily dose of 24 mg/day.

Enteral -

The systemic administration of IFN-β may cause inflammation, erythema, or even
necrosis at the administration site [61].

Hence, the use of CDs may be the desired solution to overcome these problems. For
example, methylated CDs may positively affect the secretion of IFN-β through cholesterol-

clinicaltrials.gov
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RM-β-CD interactions in cell membranes. However, their use in the treatment of SARS-CoV-
2 is still unclear [3]. There is also a study linking CDs to IFN-β in the context of multiple
sclerosis treatment. This study reports a formulation consisting of chitosan and SBE-β-CD
loaded with IFN-β to deliver cytokines intranasally to the CNS. However, further research
is needed to relate the use of CDs and IFN-β to the treatment of COVID-19 [61].

4.2.6. Lopinavir/Ritonavir

Lopinavir (LPV) (Figure 5) is a drug used to treat infections caused by the HIV-1 virus.
LPV belongs to the biopharmaceutics classification system (BSC) class IV, meaning that it
has low permeability and solubility in aqueous media, namely 2.27 µg/mL in water and
2.93 ± 0.08 µg/mL in PBS at pH 7. In addition to these properties affecting absorption in
the gastrointestinal tract, its bioavailability is also reduced by cytochrome P-450 metabolism
and P-glycoprotein efflux transport [45,62].

Ritonavir (RTV) belongs to the class of protease inhibitor drugs. It is particularly im-
portant in improving the pharmacokinetics of LPV against HIV-1 protease [63]. Considering
this, the combination of LPV with RTV has been addressed in COVID-19 (Table 7) [64].

Moreover, to enhance the bioavailability of LPV, the application of CDs has been
addressed [3,45].

In a study conducted by Adeoye et al. [62], it was demonstrated that CDs improved the
solubility of LPV with more pronounced effects for the newly synthesized form of HP-γ-CD
with a high number of substitutions ((HP)-17-γ-CD). Later on, the same group crosslinked
pyromellitic dianhydride (PMDA) with two CD derivatives (methyl-β-CD-MβCD and
(2-hydroxy)propyl-β-CD-HPβCD) and observed an increase in the solubilization of LPV
by 12–14 fold and antiviral activity against HIV-1, particularly with pMβCD [65].

4.2.7. Oseltamivir

Oseltamivir (OTV) (Figure 5) is an antiviral drug designed to influenza viruses (A and
B) in patients with a high risk of complications.

Its antiviral activity is based on blocking the viral activity of the enzyme neuraminidase,
which is located on the surface of the virus, thus preventing viral replication. Therefore,
the efficacy of OTV has been evaluated in several clinical trials to treat SARS-CoV-2 virus
infections [3,66].

Based on a search performed on clinicaltrials.gov (access date 28 November 2022, range
from 1 January 2022 to 31 December 2022), two clinical trials are using OVT for COVID-19
in a recruiting stage addressed at the adult population. One is a pharmacovigilance study
(Phase 4, NCT04973462) and the other is an interventional study (Phase 3, NCT02735707)
aiming the administration of OTV twice daily for five days across a total of 10 days via
enteral administration.

According to the EMA report, EMA/CHMP/315246/2014, OTV is a compound with
limited absorption and scarce data on its solubility, which makes its BCS classification
difficult. However, taking into consideration the bioequivalence requirements, if the
applicant generates solubility data and classifies the drug according to the BCS criteria as
highly soluble, oseltamivir could be classified as a BCS class III drug, and a BCS biowaiver
could be applicable.

In previous studies, this molecule has demonstrated moderate aqueous solubility
(≈0.2%) and satisfactory bioavailability (>80%) [3].

Oral suspensions of oseltamivir phosphate are dispensed orally in capsules and sus-
pension. However, an oral suspension is preferable for pediatric administration. Therefore,
OVT is prepared as a powder for reconstituted suspension, which degrades in a few
days [67]. Hence, HP-β-CD was used to formulate ICs with OTV to improve solubility and
stability, especially in formulations where OTV is suspended and needs to be reconstituted.
This formulation showed an extended shelf life of more than 90 days without affecting the
properties of the active ingredient [67].
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Table 7. Clinical trials using lopinavir and ritonavir for the treatment of COVID-19. Data was collected
from clinicaltrials.gov on 28 November 2022. Inclusion criteria: Recruiting, adult population, from
1 January 2022 to 31 December 2022.

NCT Number Phase Therapeutic Regimen

Dose Administration
Type Other Drugs

NCT04738045 4
A Remdesivir 200 mg loading dose then 100 mg once

daily and lopinavir/ritonavir at a dose of 400/100 once
daily for 5 days

IV Lopinavir/ Ritonavir and
Remdesivir

NCT04779047 4

A dose of remdesivir 200 mg at day 1 then 100 mg once
daily for 5 days and lopinavir/ritonavir at a dose of

400/100 once daily for 5 days, plus 800 mg of
tocilizumab once

IV Lopinavir/ Ritonavir,
Remdesivir, Tocilizumab

NCT04403100 3

Hydroxychloroquine 400 mg: Loading dose of two
tablets followed by one tablet of 400 mg on the

following 9 days.
Lopinavir/ ritonavir 200/50 mg: Loading dose of four

tablets twice a day on day 1 followed by two tablets
twice a day on the following 9 days

Oral Hydroxychloroquine plus
Lopinavir/ Ritonavir

NCT04466241 2/3

Lopinavir/ritonavir 200 mg/50 mg: two tablets
morning and evening from day 1 to day 10.

Telmisartan 40 mg: 1 tablet daily from day 1 to day 10
Oral

Lopinavir/ritonavir +
telmisartan

Lopinavir/ritonavir 200 mg/50 mg: two tablets
morning and evening from day 1 to day 10.

Atorvastatin 20 mg: 1 tablet daily from day 1 to day 10

Lopinavir/ritonavir +
atorvastatin

NCT04351724 2/3 A dose of 200 mg/50 mg 4-0-4 on day 1 and
3-0-3 thereafter - -

NCT04381936 2/3 Lopinavir/ritonavir 400 mg/100 mg every 12 h for
10 days

By mouth (or
nasogastric

tube)
-

NCT04390152 1/2 Hydroxychloroquine 400 mg + lopinavir/ritonavir
400/100 or azithromycin 500 mg -

Hydroxychloroquine,
lopinavir/ritonavir and
ventilation support plus

placebo

NCT04380818 - Ritonavir/lopinavir
400/100 mg/12 h for 7–10 days - -

NCT04410510 2/3

Lopinavir/ritonavir: 200/50 mg or 400/100 mg
capsules every 12 h for 7 to 14 days.

Hydroxychloroquine: 200 mg tab with a load of 400 mg
every 12 h the first day, followed by 200 mg every 12 h
for 10 days. P2Et active extract capsule equivalent to

250 mg of P2Et every 12 h for 14 days

-
Lopinavir/ritonavir,
Hydroxychloroquine,

P2Et active extract capsule

NCT02735707 3

Lopinavir/ritonavir-400/100 mg Enteral -
or 5 mL 80/20 mg per mL solution suspension,

every 12 h
Via gastric

tube

In a recent study, Rajamohan et al. tested methylated-β-Cyclodextrin (M-CD) and
sulfated-β-Cyclodextrin (S-CD) as inclusion complexes for OTV. Their results showed
that OVT was successfully complexed into the cavity of both modified M-CD and S-CDs
(Figure 8(A1,A2), respectively), offering increased antiviral activities with more pronounced
effects when using S-CD (Figure 8B) [66].
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Figure 8. (A) Oseltamivir (OVT) orientation in (1) methylated-β-Cyclodextrin (M-CD) and (2)
sulfated-β-Cyclodextrin (S-CD) inclusion complexes and (B) their antiviral effects in HCoV-229E
infected MRC-5 cells. Briefly, OVT offers increased antiviral activity with more pronounced effects
when using S-CD. Reprinted from [66], Copyright (2022), with permission from Elsevier.

4.2.8. Fenofibrate

Fenofibrate (Figure 5) is a drug that belongs to the class of fibrates and is used to
treat lipid metabolic disorders such as hypercholesterolemia, hypertriglyceridemia, and
dyslipidemia.

The mechanism of action of the SARS-CoV-2 virus suggests the upregulation of genes
related to lipogenesis and the process of cholesterol synthesis in bronchial epithelial cells.
SARS-CoV-2 infection appears to cause lipid deposition in the lung, which may control the
severity of the disease. Hence, it has been suggested that fenofibrate may be a potential
agent against COVID-19 by reducing the replication of SARS-CoV-2 in lung cells [3,68,69].
However, based on the clinical trial NCT04517396, fenofibrate has not led to decreased
COVID-19 severity [70].
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Currently, a phase 3 clinical trial (NCT04661930) is recruiting the adult population to
administer fenofibrate p.o. once daily for 10 days in patients with COVID-19 (clinicaltrials.
gov, access date 28 November 2022, ranging from 1 January 2022 to 31 December 2022).

Fenofibrate belongs to BCS class II, meaning it is poorly soluble, which affects its
bioavailability and permeability, although the latter is high. Its bioavailability profile
ranges from 60% to 81%.

Therefore, to improve the physicochemical properties of fenofibrate, several studies
have been performed using CDs to form ICs, such as HP-β-CD, which showed the improved
absorption and solubilization of fenofibrate in an aqueous medium [3,68,71].

4.2.9. Cetylpyridinium Chloride

Cetylpyridinium chloride (CPC) (Figure 5) is a quaternary ammonium compound
commonly used as an antimicrobial agent in oral hygiene products. The main components
of mouthwashes have an antiseptic action and help to reduce the spread of microorgan-
isms [72,73].

Recently, CPC has been shown to exhibit antiviral activity against the SARS-CoV-2
virus. The mechanism of action is related to the disruption of the viral lipid membrane.
This disruption of the lipid membrane will interfere with the ability of the virus to enter
cells, which may reduce the viral burden in saliva and the risk of transmission [73,74].

Currently, a clinical trial (NCT05178173) is ongoing, aiming to inactivate the SARS-
CoV-2 virus in the saliva of COVID-19-positive patients using antiseptic mouth rinses
(Volume of 20 mL) with 0.075% CPC.

The use of CDs to enclose CPC has not been fully explored. However, an expired
patent (CA1314225C, Canada) mentions the application of CDs to enclose CPC.

5. New Candidates for COVID-19 Treatment

COVID-19 has gained huge attention due to its socioeconomic impact and health
repercussions. Therefore, the scientific community has combined its efforts to identify new
treatment approaches for COVID-19. Some of them are summarized in Figure 9.
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Figure 9. The chemical structure of drugs that are candidates for COVID-19 treatment, e.g., bepridil,
thapsigargin, plitidepsin, glycyrrhizin, and polyphenols. Polyphenol structures were adapted
from [75] under a Creative Common CC BY license.

5.1. Bepridil

Bepridil (Figure 9), a calcium channel blocker with significant antianginal activity, was
reported to be potent against SARS-CoV-2 in vitro [76]. The antiviral analysis of bepridil
indicated that it has low micromolar EC50 values in inhibiting SARS-CoV-2 in two highly
permissive mammalian cell lines, Vero E6 and A549/ACE2 cells [76]. The structure moiety
N-phenyl-N-benzylamine may be responsible for the structure−activity relationship with
the main protease and the potent effect against SARS-CoV-2 [76].

Bepridil has been reported as a class 1 according to the Biopharmaceutics Drug Dis-
position Classification System (BDDCS) [77], presenting high solubility and permeability.
Therefore, according to the FDA, it can undergo biowaiver regulation. Moreover, due to its
physicochemical properties, its complexation into CDs has not been reported, to the best of
our knowledge.

5.2. Glycyrrhizin

Glycyrrhizic acid (GlyA) (Figure 9) is the major triterpene glycoside contained in
licorice root (Figure 9) [78].

GlyA has been accepted as a treatment for chronic viral hepatitis C for over 20 years in
Japan. Due to the availability of human safety data from GlyA intravenous administration
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in treating hepatitis C, GlyA has been proposed for COVID-19-infected patients using dose
escalation studies under a compassionate use exception [79].

Interestingly, the use of GlyA nanoparticles against COVID-19 has been recently
reported [80]. The formation of ICs of GlyA with CDs has revealed that the binding affinity
of GlyA to γ-CD is about 300 times higher than that to β-CD [81]. The conjugation of GlyA
complexed to β-CD has demonstrated beneficial results for treating influenza virus agents
(Figure 10) [82]. However, the participation of this combination addressing COVID-19
treatment has not been exploited yet, to the best of our knowledge.

 

4 
 

Figure 10. Schematic representation of the synthesis approach to conjugate glycyrrhetinic (GlyA) acid
(A) to β-cyclodextrin and (B) their efficacy in inhibiting influenza virus infection. Accordingly, the
conjugation of GlyA complexed to β-CD has demonstrated beneficial results for treating influenza
virus agents. Adapted from [82], Copyright (2021), with permission from Elsevier.

5.3. Plitidepsin

Plitidepsin (Figure 9) is a marine cyclic depsipeptide extracted from the ascidian Aplid-
ium albicans. This compound has been actively studied due to its anticancer properties [83].
Indeed, in 2003, plitidepsin received orphan designation by the EMA (EU/3/03/151).
Lately, plitidepsin has been repurposed for treating multiple myeloma because it targets
cofactor Eukaryotic translation elongation factor 1 alpha (eEF1A) [84].

More recently, with the emergence of COVID-19, plitidepsin has been pointed out
as a possible antiviral candidate against SARS-CoV-2 [84,85]. In fact, plitidepsin has
shown antiviral activity against SARS-CoV-2 by inhibiting the activity of eEF1A. eEF1A
participates in mRNA translation in RNA virus replication, being involved in the enzymatic
delivery of aminoacyl tRNAs to the ribosome and the aminoacylation-dependent tRNA
export pathway [86]. Plitidepsin can also inhibit the translation of the open reading frames
(ORF) 1a and 1b, reducing the production of polyproteins (PP) and decreasing the amount
of RNA-dependent RNA polymerase. Moreover, this drug is also responsible for inhibiting
the translation of different subgenomic mRNAs, leading to a deficient production of viral
structures and accessory proteins [86].

Preclinical data have revealed that plitidepsin presents potent antiviral effects against
SARS-CoV-2, namely in infected Vero E6 and hACE2-293T cells, by reducing the expression
of the viral structural protein N [85]. Moreover, plitidepsin underwent interventional
clinical trials for COVID-19. The proof-of-concept phase 1 clinical trial, APLICOV-PC
(NCT04382066), demonstrated the safety profile of plitidepsin. However, there were
some limitations, namely the limited number of participants [87]. A phase 3 clinical
trial, NEPTUNO (NCT04784559), is recruiting for hospitalized patients with COVID-19



Int. J. Mol. Sci. 2023, 24, 2974 24 of 32

of moderate severity. The therapeutic protocol includes the treatment groups that receive
1.5 or 2.5 mg/day of plitidepsin and DEX by intravenous administration and the control
arms that only receive DEX [87].

Due to its hydrophobicity, with a LogP > 5, plitidepsin is nearly insoluble in aqueous
media requiring an adjuvant to allow intravenous administration. Therefore, plitidepsin
has been formulated using Cremophor®(CRE) and Tween 80 to increase drug solubility,
although hypersensitive reactions have been reported. Taking it into consideration, other
strategies have been proposed, namely the use of block copolymers, such as poly(ethylene
glycol)-block-poly(γ-benzyl-L-glutamate) (PEG-b-PBLG) copolymer and poly(trimethylene
carbonate)-block-poly(glutamic acid) (PTMC-b-PGA) [88]. To the best of our knowledge,
the use of CDs to complex plitidepsin has not yet been addressed.

5.4. Thapsigargin

Thapsigargin (TG) (Figure 9) is a sesquiterpene lactone found in the roots and fruits
of the Thapsia L. species. TG works as a non-competitive inhibitor of the sarcoplas-
mic/endoplasmic reticulum Ca2+ ATPase pump (SERCA) with potential applications
in anticancer therapy [89].

Recently, TG has been proven to present potent antiviral properties against influenza A
virus replication by the ER stress unfolded protein response (UPR) [90]. More recently, TG
has been proposed to be an acid-stable inhibitor of SARS-CoV-2 [91] and other respiratory
viruses, efficient in separate infections as well as in co-infections. The ER stress response
seems to be the main underlying antiviral action mechanism, although it remains to be
fully explored [92].

TG encapsulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for a target
release has been exploited [93,94]. As far as we know, no study has addressed the applica-
tion of CDs to carrier TG. However, an interesting experiment reports the modulation of
TG store-dependent Ca2+ entry in macrophages by methyl-β-CD [95].

5.5. Polyphenols

Polyphenols are secondary plant metabolites that protect them against diseases, in-
fections, and damage [96]. Polyphenols include, but are not limited to, phenolic acids,
coumarins, flavonoids, stilbenes, and lignans (Figure 9) [75].

These molecules have been reported to present a range of health benefits [97,98],
including in treating infectious diseases [99–101]. Therefore, the use of polyphenols as
SARS-CoV-2 antiviral agents has been explored. For example, an in silico study test-
ing green tea polyphenols, e.g., epigallocatechin gallate (EGCG), epicatechin gallate, and
gallocatechin-3-gallate against COVID-19 have revealed that these three components can
strongly interact with the catalytic residues of the SARS-CoV-2 main protease (Mpro), consti-
tuting potential drug candidates for COVID-19 treatment [102]. Similarly, Ghosh et al. [103],
using docking and molecular dynamics simulation approaches, have shown that the six
polyphenols present in Broussonetia papyrifera can inhibit the catalytic activity of Mpro.
Therefore, due to the promising applications of polyphenols in treating COVID-19, it is
of interest to expand the research to other registered polyphenols [104]. Based on this,
Wu et al. [105] have conducted a large virtual screening for more than 400 polyphenols
with the potential to bind to SARS-CoV-2 Mpro or papain-like protease (PLpro), which are
central proteases to the viral life cycle. Their results revealed that several polyphenols, such
as petunidin 3-O-(6”-p-coumaroyl-glucoside), present promising binding interactions with
SARS-CoV-2 Mpro and PLpro [105].

The translation of polyphenols from the bench to the bedside has already occurred for
the treatment of COVID-19. Actually, resveratrol has been studied in a phase 2 clinical trial
(NCT04400890) to evaluate its safety and explore its effectiveness for COVID-19. Moreover,
the use of Caesalpinia spinosa extract is also being studied in patients with symptomatic
COVID-19 (NCT04410510). Moreover, quadrate therapy of chicoric acid, 13-Cis retinoic acid
(aerosolized), minocycline, and vitamin D has been explored for patients with multidrug-



Int. J. Mol. Sci. 2023, 24, 2974 25 of 32

resistant COVID-19 (NCT05077813). Interestingly, glucoside- and rutinoside-rich crude has
been investigated for vaccine-adverse reactions (NCT05387252).

Despite the promising applications of polyphenols in the treatment of COVID-19, they
are susceptible to the negative impact of light, oxygen, and pH, which may hamper their
extraction process and applications [106]. Therefore, the encapsulation of polyphenols into
nanocarriers has been reported to circumvent these limitations [106].

Indeed, the use of CDs to complex polyphenols has already been reported with
encouraging repercussions [107–112]. Moreover, taking advantage of sustainable green
chemistry, CDs have been demonstrated to be promising contributors to the extraction of
polyphenols [113–115].

6. Regulatory Issues and Toxicity

CDs have been used for a variety of purposes globally. Therefore, the need to regulate
their applications has been promoted in Western countries.

In Japan, natural CDs are presented in the Japanese Pharmacopoeia and are considered
food additives [116].

Furthermore, the JECFA, an international expert committee composed of members of
the Food and Agriculture Organization of the United Nations (FAO) and the World Health
Organization (WHO) have worked on the regulation of native CDs in food and additives,
being the pharmaceutical application of CDs under the responsibility of the EMA or the
FDA [117].

From 2000 to 2004, the use of native CDs as food additives was declared “Gener-
ally Recognized As Safe” (GRAS) by the FDA [117]. Moreover, the chemically modified
SBE-β-CD and HP-β-CD were listed as inactive pharmaceutical ingredients and can be
used in oral formulations [118]. Due to their physicochemical properties, namely their
high molecular weight and hydrophilic nature, low octanol-water partition coefficients,
and the presence of several hydrogen bond donors and acceptors, CDs do not promptly
permeate biological membranes through passive diffusion [116]. The oral availability of
CDs is minimal, without significant absorption in the gastrointestinal tract. The total
daily dose for α-CDs can reach 6000 mg and for γ-CDs 10,000 mg [118]. However, the
acceptable daily intake of β-CD is restricted to 5 mg/kg [118]. Moreover, at high doses
greater than 1000 mg/kg/day, the oral intake of CDs leads to reversible diarrhea and cecal
enlargement (EMA/CHMP/495747/2013) [119]. CDs are poorly absorbed via mucosal
membranes. However, at high doses, CDs can increase drug permeability by direct action
on mucosal membranes, enhancing drug absorption and/or bioavailability by topical
administration. These may be due to the solubilization of membrane components with
mild and reversible perturbations on the cell membrane compared to surfactants that
generally induce irreversible membrane damage [118]. For instance, nasal and pulmonary
formulations containing 10% HP-β-CD, RM-β-CD, or less than 1.5% of β-CD have not
shown tissue damage [119]. The use of CDs in rectal products has also been addressed,
and the results revealed that in humans, the use of 230 mg of β-CD in suppositories did
not induce irritation in rectal mucosa. In rabbits, the use of 12% of HP-β-CD did not
cause rectal mucosal irritation. Alpha-CD can damage the epithelial cell layer [118], but
no rectal product on the market reports its use [119]. Applying absorption-promoting
agents can enhance the dermal absorption of CDs. The use of DM-β-CDs advantageously
sustains a scent for a prolonged time compared to the use of surfactants. Alpha-, β-, and
γ-CDs are safe for dermal applications at up to 0.1% [118]. CDs used in eye formulations
have been reported to increase drug penetration and are not toxic or irritant for the eye of
the rabbits when presented in a solution up to 10% (SBE-β-CD) or 12.5% HP-β-CD [119].
The parenteral administration of CDs has been reported to be favorable, but some safety
and toxicity considerations should be addressed [120]. In fact, β-CDs have demonstrated
pronounced hemolytic activity compared to α- and γ-CDs [116]. However, the use of α-CD,
β-CD, and ME-β-CD has not been recommended for IV administration as they present
nephrotoxicity at relatively low doses. The list of CDs not recommended for parenteral
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administration also includes RM-β-CD, which may only be used in topical formulations
because of its high hemolytic activity and nephrotoxicity. On the other hand, the parenteral
administration of HP-β-CD and SBE-β-CD have been considered safe at a concentration of
ca. 250 mg/kg/day in humans older than two years when given for 21 days or six months,
respectively [119].

Most of the regulators agree that CDs are excipients and not integral to the drug.
However, this topic can be division- and product-specific and further studies to fully assess
the toxicity associated with CDs are required [117,119,121].

7. Clinical Trials

Three clinical studies have stated the application of CDs in COVID-19 (Table 8).

Table 8. Summary of clinical trials involving cyclodextrins for the treatment of COVID-19.

Trial ID Date
Registration

National
Competent
Authority

Active
Substances

Pharmaceutical
Form

Doses and
Route of

Administration
Trial Status

CTRI/2021/05/
033744 24 May 2021 IN-CDSCO Remdesivir

(GS-5734)

Lyophilizate for
solution for

infusion

A total of
200 mg on day
1, followed by
100 mg for the

next 4 days
Intravenous

Ongoing

EUCTR2020-
003486-19-GB 14 August 2020 UK - MHRA

Sulforadex or
Sulforaphane/
α-Cyclodextrin

complex
(SFX-01)

Hard Capsules 300 mg
Oral

GB-no longer
in EU/EEA

EUCTR2020-
001803-17-GB

5 June 2020 UK–MHRA

Remdesivir
(GS-5734)

Lyophilizate for
solution for

infusion

100 mg
Intravenous

GB-no longer
in EU/EEA

10 August 2020
IT-Italian
Medicines

Agency
Ongoing

Briefly, the CTRI/2021/05/033744 clinical trial aims to address the lack of information
on the pharmacokinetics of REM and its vehicle SBE-β-CD in patients with renal disease,
taking into account that both are excreted through the kidneys. Inclusion criteria include
people between the ages of 18 and 90 of either sex with severe COVID-19 and renal disease
who have an indication for treatment with REM [50].

The following clinical study, EUCTR2020-003486-19-GB, aims to compare the efficacy
of Sulforadex or Sulforaphane/α-Cyclodextrin complex (SFX-01) versus placebo in treating
patients with a suspected COVID-19 respiratory tract infection. Moreover, it also intends to
evaluate the safety of SFX-01 and explore its underlying action mechanisms [122].

The last study, EUCTR2020-001803-17-GB, plans to evaluate the safety, tolerability,
pharmacokinetics, and efficacy of REM by determining its antiviral activity and exposure
to SBE-β-CD in patients up to 18 years with laboratory-confirmed COVID-19 [51].

8. Final Remarks and Future Perspectives

Despite the rapid development of vaccines and therapies that helped control COVID-
19, an open path remains to eradicate the disease [123]. In this regard, this review article
was intended to explore the potential of using cyclodextrins (CDs) as drug delivery sys-
tems for the treatment of viral infections, specifically for COVID-19. Resulting from the
formation of inclusion complexes (ICs) between CDs and antiviral drugs, which improve
the physicochemical properties of the drugs, CDs can improve the solubility, stability, and
absorption of antiviral drugs as well as increase bioactivity and reduce toxicity. These
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complexes protect drugs from degradation, increase their solubility, and interfere with
drug pharmacokinetics, improving their bioavailability and biological activity. In addi-
tion, the use of CDs can also allow for oral, inhalation, or topical drug administration,
which is useful for avoiding side effects or administration problems associated with direct
systemic administration. Chemical modification of CDs can also improve their inclusion
properties and capacity. Considering the information gathered, it appears that β-CD is
the most suitable and effective for encapsulating antiviral molecules due to its ability to
increase the solubility, stability, and absorption of the molecules as well as reduce toxic-
ity. In addition, β-CD is the most common form of cyclodextrin used due to its simple
production, complexation efficiency, and low cost. However, it is important to note that
other forms of cyclodextrins, such as α-CD and γ-CD, have also been studied and used to
encapsulate antiviral molecules. Several anti-SARS-COVID-19 molecules are presented,
including remdesivir, dexamethasone, ivermectin, interferon-beta, lopinavir/ritonavir,
oseltamivir, fenofibrate, and cetylpyridinium chloride, but also new candidates such as
bepridil, glycyrrhizin, plitidepsin, thapsigargin, and polyphenols which have been studied
in combination with CDs to increase their efficacy in treating COVID-19. Although there are
promising pre-clinical reports on CDs as drug nanocarriers for the treatment of COVID-19,
their applications in clinical trials remain scarce. Some of the clinical trials mentioned are
still in the early stages and have not yet been completed. Therefore, more research is needed
to evaluate the safety and efficacy of these drugs combined with CDs in the treatment of
COVID-19, as well as the long-term safety of all these associations.

In addition, some results indicate that CDs may also work as potential active pharma-
ceutical ingredients by themselves, which may influence the current regulatory landscape
in using CDs.

In the future, the use of computational approaches, namely molecular dynamics, may
constitute an important tool to anticipate the solubility and interaction of some drugs with
CDs [124–126].
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