Supporting Information

Formation of Dialkyl-*N*-Nitrosamines in Aqueous Solution: An Experimental Validation of a Conservative Predictive Model and a Comparison of the Rates of Dialkyl and Trialkylamine Nitrosation.

Ian W. Ashworth, *,^a Debasis Dey,^b Olivier Dirat,^c Paul McDaid,^d Daniel Lee,^e Justin Moser,^f Kausik K. Nanda.^g

^a Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom.

^b Pfizer Healthcare India Private Limited, Chennai, 602117, India.

^c Global CMC, Pfizer Global Product Development, Sandwich, CT13 9NJ, United Kingdom.

^d Pfizer Process Development Centre, Global Technology & Engineering, Ringaskiddy, Cork, P43 X336, Ireland.

- ^e Analytical Chemistry in Development and Supply, Merck & Co., Inc., Rahway, NJ, 07065, United States.
- ^f Global Pharmaceutical Operations Science & Technology, Merck & Co., Inc., West Point, Pa, 19486, United States.
 - ^g Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pa, 19486, United States.

ian.ashworth@astrazeneca.com

Supporting Information	Page
Derivation and application of Equation 2	S2
HPLC Method 1 – HPLC Method with UV detection for	S3
Experimental Procedure 1 & 2	33
HPLC Method 2 – HPLC Method with MS detection for	S4
Experimental procedure 1.	34
HPLC Method 3 – HPLC Method with MS Detection for	S5
Experimental Procedure 3	35
Published Berkeley Madonna Model with temperature	S7
dependence	31
Modified Berkeley Madonna model for an amine with 2 p K_{a} s	S8

Derivation and Application of Equation 2

Considering the pH dependent speciation of a poly acidic / basic compound with two p K_a s as described by Scheme S1. The dissociation constants K_{a1} and K_{a2} are defined by equations S1 and S2 respectively.

$$\begin{array}{ccc} & & K_{a1} & & K_{a2} \\ H_2 B^{2+} & & & HB^+ + H^+ & & & B + H^+ \end{array}$$

Scheme S1. Ionization equilibria of a dibasic compound

$$K_{a1} = \frac{[HB^+][H^+]}{[H_2B^{2+}]} (S1) K_{a2} = \frac{[B][H^+]}{[HB^+]} (S2)$$

These equilibria may be linked by a mass balance expression (S3) where $[B]_T$ is the total concentration of all forms of B.

$$[B]_T = [B] + [HB^+] + [H_2B^{2+}] (S3)$$

By substitution from (S2) and (S1) into (S3) it is possible to obtain an expression (Equation S4) in terms of the [B], [H+] and the dissociation constants.

$$[B]_T = [B] + \frac{[B][H^+]}{K_{a2}} + \frac{[B][H^+]^2}{K_{a1}K_{a2}}$$
(S4)

This may be rearranged to give an expression (Equation S5) for the fraction of B in the unprotonated form.

$$\frac{[B]}{[B]_T} = \frac{1}{\left(1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}}\right)}$$
(S5)

Dividing through by $[H^+]^2/K_{a1}K_{a2}$ gives the more useful form Equation 2.

$$\frac{[B]}{[B]_T} = \frac{\frac{K_{a1}K_{a2}}{[H^+]^2}}{\left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1}K_{a2}}{[H^+]^2}\right)}$$
(2)

In a similar manner expressions can be derived for the fraction of B in the mono and diprotonated forms (equations S6 and S7 respectively).

$$\frac{[HB^+]}{[B]_T} = \frac{\frac{K_{a1}}{[H^+]}}{\left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1}K_{a2}}{[H^+]^2}\right)} (S6)$$
$$\frac{[H_2B^{2+}]}{[B]_T} = \frac{1}{\left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1}K_{a2}}{[H^+]^2}\right)} (S7)$$

The general form and trend that may be seen in equations 2, S6 and S7 continues as additional pK_as are added and the expansion of this approach to cover up to five pK_as has been described previously.¹

HPLC Method 1 – HPLC Method with UV detection for Experimental Procedure 1 & 2

<u>Equipment</u>

Thermo Vanquish UHPLC Systems

Column:

Acquity UPLC BEH C18 1.7 µm, 3.0 x 50 mm

Chromatographic Conditions:

Flow rate:	0.7 mL/min
Injection volume:	1 µL
Column temperature:	40°C
Detector:	UV, 254 nm

Gradient:

Time (min.)	% Mobile Phase A	% Mobile Phase B
0	95	5
2	95	5
7	30	70
7.5	30	70
7.6	95	5
10	95	5

Preparation of Reagents

Mobile Phase A:	0.1% (v/v) Formic Acid in Water (Milli-Q Filtered)
Mobile Phase B:	0.1% (v/v) Formic Acid in acetonitrile
Diluent:	Acetonitrile/Water (50/50 v/v)

Quantification of analytes

For 4-phenyl piperidine, *N*-nitroso-4-phenyl piperidine and 1-methyl-4-phenyl piperidine the peak areas were used to approximate the total quantity of *N*-nitroso-4-phenyl piperidine that had formed.

For the formation of NDEA from diethylamine and triethylamine a NDEA standard was used. The standard was prepared by dissolving NDEA in acetonitrile at a dilution of 1 mg/mL.

Retention Times

Component	Approximate Retention Time, min.
NDEA	2.6
N4PhP	6.3

HPLC Method 2 – HPLC Method with MS detection for experimental procedure 1.

The method used was as per Method 1 with the exception that MS detection was used as described in the following section.

MS Parameter	Value
Instruments	Thermo Orbitrap ID-X (High Res MS)
Ion Source	H-ESI
Scan Mode	SIM (m/z 191.12, isolation window m/z 0.4)
Ion Mode	Positive
Vaporizer Temp (°C).	250
lon Transfer Temp (°C)	300
Orbitrap Resolution	120000
Divert Valve (min)	0-6 ; 7-10

Mass Spectrometry Conditions (For Limited Nitrite Experiment):

HPLC Method 3 – HPLC Method with MS Detection for Experimental Procedure 3

<u>Equipment</u>

Thermo Scientific Ultimate 3000 Liquid Chromatography System

<u>Column</u>

X-Select HSS T3 3.5 µm, 100 x 4.6 mm

Chromatographic Conditions:

Flow rate:		0.5 mL/min
Injection volun	ne:	5 µL
Column temperature:		40°C
Detector:	UV, PDA	200 to 400 nm

Gradient:

Time (min.)	% Mobile Phase A	% Mobile Phase B
0	70	30
3	60	40
6	45	55
8	10	90
12	10	90
12.1	70	30
18	70	30

Preparation of Reagents

Mobile Phase A:	0.1% (v/v) Formic Acid in Water (Milli-Q Filtered)
Mobile Phase B:	100% Methanol
Diluent:	Methanol/Water (50/50 v/v)

Quantification of analytes

For the detection and quantification of *N*-nitroso-4-phenylpiperidine, a *N*-nitroso-4-phenylpiperidine standard was used. The standard was prepared by dissolving *N*-nitroso-4-phenylpiperidine in acetonitrile at a dilution of 0.5 mg/mL. Using this standard, the linear range of the method was established from 1 ppb to 50 ppb.

Retention Times

Component	Approximate Retention Time, min.
N-Nitroso-4-phenylpiperidine	11.7

Mass Spectrometry Conditions (For Limited Nitrite Experiment):

MS Parameter	Value
Instruments	Thermo Orbitrap QExtractive (High Res MS)
Ion Source	H-ESI

Scan Mode	SIM
Ion Mode	Positive
Capillary Temp	275 deg C
Auxiliary Gas Temp	400 deg C
Sheathe Gas Flow Rate	55
Auxiliary Gas Flow Rate	15
Sweep Gas Flow Rate	3
Spray Voltage	3.50
Maximum IT	200 ms
Mass Range	70 to 300 m/z
Orbitrap Resolution	70000
Divert Valve (min)	0 – 9.5 min

Published Berkeley Madonna Model² with Temperature Dependence

Berkeley Madonna model used to simulate 4-phenyl piperidine and diethylamine nitrosation. Temperature set at 25 °C (ARR = 1) changing the ARR term to 10, 100 and 1000 varies the temperature to 35, 45 and 55 °C respectively.

METHOD RK4

STARTTIME = 0STOPTIME=86400{86400 s is equivalent to 24 hours}DT = 100DTOUT = 0{Output time interval (0 = store every step) can be used to limit number of output time points in long simulations}

; I Ashworth, December 2019

; Model for rate of nitrosamine formation by N2O3, CINO & H2NO2+ in aqueous media at 25°C

INIT R2NH = 0.1 INIT NO2 = 0.2 CL = 0

INIT NITROSAM = 0

KNA = 7.079E-4	{Ka of nitrous acid at 25°C}
KECLNO = 1.1E-3	{association constant of CLNO, M-2}
KRCLNO = 3.1E7	approximate rate constant for secondary amine nitrosation by
CLNO, M-1s-1}	
KEN2O3 = 3E-3	{association constant of N2O3, M-1}
KRN2O3 = 1.2E8	{typical rate constant for secondary amine nitrosation by N2O3, M-
1s-1}	
KRNO = 7000	{approximate rate constant for NO+ nitrosation, M-2s-1}
PKA = 10.5	{pKa of secondary amine, 4-phenyl piperidine}
KA=10^(-PKA)	
PH = 3.15	{pH of reaction 3.15 is the maximum for N2O3 based nitrosation}
H=10^(-PH)	
ARR = 1	{temperature term - 1 = 25C, 10 = 35C, 100 = 45C, 1000 = 55C (higher may
be used but the model v	will become extremely conservative}

; pH speciation models

fH = H/(H+KNA)	{f HNO2 in protonated form}
fN = KA/(H+KA)	{f R2NH in free base form}

; Kinetic model

RXN1 = ARR*KRCLNO*KECLNO*H*R2NH*NO2*CL*fH*fN	{Nitrosation by CINO}
RXN2 = ARR*KRN2O3*KEN2O3*R2NH*NO2*NO2*fH*fH*fN	{Nitrosation by N2O3}
RXN3 = ARR*KRNO*H*R2NH*NO2*fH*fN	{Nitrosation by H2NO2+}

D/DT(R2NH) = -RXN1-RXN2-RXN3 D/DT(NO2) = -RXN1-RXN2-RXN3 D/DT(NITROSAM) = RXN1+RXN2+RXN3

Modified Berkeley Madonna model for an amine with 2 pKas

Berkeley Madonna model that may be used to simulate 4-(piperidin-2-yl)pyridine nitrosation

METHOD RK4

STARTTIME = 0STOPTIME=86400{86400 s is equivalent to 24 hours}DT = 100DTOUT = 0{Output time interval (0 = store every step) can be used to limit number of output time points in long simulations}

; I Ashworth, January 2023 ; Model for rate of nitrosamine formation by N2O3, CINO & H2NO2+ in aqueous media at

25°C for a dibasic amine where the unprotonated (free base) form is reactive

INIT R2NH = 0.1 INIT NO2 = 0.2CL = 0**INIT NITROSAM = 0** KNA = 7.079E-4 {Ka of nitrous acid at 25°C} {association constant of CLNO, M-2} KECLNO = 1.1E-3KRCLNO = 3.1E7 {approximate rate constant for secondary amine nitrosation by CLNO, M-1s-1} KEN2O3 = 3E-3 {association constant of N2O3, M-1} KRN2O3 = 1.2E8 {typical rate constant for secondary amine nitrosation by N2O3, M-1s-1} KRNO = 7000 {approximate rate constant for NO+ nitrosation, M-2s-1} PKAAM1 = 4.6{pKa1 of amine} PKAAM2 = 8.6{pKa2 of amine} KAAM1=10⁽⁻PKAAM1) KAAM2=10^(-PKAAM2) PH = 3.15 {pH of reaction 3.15 is the maximum for N2O3 based nitrosation} H=10^(-PH) {temperature term - 1 = 25C, 10 = 35C, 100 = 45C, 1000 = 55C ARR = 1(higher may be used but the model will become extremely conservative) ; pH speciation models

fH = H/(H+KNA)

{f HNO2 in protonated form}

A1 = KAAM1/H A2 = KAAM1*KAAM2/(H^2) DENOMINATOR = 1+A1+A2 FH2AM = 1/DENOMINATOR FHAM = A1/DENOMINATOR FAM = A2/DENOMINATOR

{f amine in most (di) protonated form - unreactive} {f amine in mono protonated form – unreactive} {f amine in unprotonated form – reactive}

; Kinetic model

RXN1 = ARR*KRCLNO*KECLNO*H*R2NH*NO2*CL*fH*FAM	{Nitrosation by CINO}
RXN2 = ARR*KRN2O3*KEN2O3*R2NH*NO2*NO2*fH*fH*FAM	{Nitrosation by N2O3}
RXN3 = ARR*KRNO*H*R2NH*NO2*fH*FAM	{Nitrosation by H2NO2+}

D/DT(R2NH) = -RXN1-RXN2-RXN3 D/DT(NO2) = -RXN1-RXN2-RXN3 D/DT(NITROSAM) = RXN1+RXN2+RXN3

References

- 1. Ashworth, I. W.; Meadows, R. E. A General Liquid-Liquid Partitioning Equation and Its Consequences: Learning from the pH Dependent Extraction of a Pharmaceutical Intermediate. *J. Org. Chem.* **2018**, *83*, 4270-4274. See ESI Page S9.
- Ashworth, I. W.; Dirat, O.; Teasdale, A.; Whiting, M. P. Potential for the Formation of *N*-Nitrosamines During the Manufacture of Active Pharmaceutical Ingredients: An Assessment of the Risk Posed by Trace Nitrite in Water. *Org. Process Res. Dev.*, **2020**, *24*, 1629-1646.