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bstract

nsiGmaTM-25 is a continuous production plant integrating a twin-screw granulatio
id bed drying, granule conditioning, and a tableting unit. The particle size distr
tion (PSD), active pharmaceutical ingredient (API) content, and liquid content
t granules after twin-screw granulation affect the quality of intermediate and fin
oducts. This paper proposes methods for real-time monitoring of these quantities an
ntrol-oriented modeling of the granulator.
e PSD of wet granules is monitored via an in-line process analytical technology (PAT
obe based on the spatial velocimetry principle. The algorithm for signal processin
d evaluation of PSD characteristics is developed and applied to the acquired PSD dat
dynamic process model predicting PSD characteristics from granulation paramete
trained via the local linear model tree (LoLiMoT) approach. The experimental dat
uired for the model training are collected via systematically designed excitation run
nally, the performance of the identified model is examined and verified by means of
w set of validation runs. Furthermore, an in-line PAT probe based on Raman spe
scopy is developed and integrated after the granulator. The API- and liquid conten
produced wet granules are evaluated from the spectral data by means of chemometr
deling, and chemometric models are validated on a separate set of experimental dat
e solutions proposed in this research can be used as a reliable (and necessary) bas
the development of advanced quality-by-design control concepts (e.g., PSD proce

ntrol). Such concepts would ultimately improve the ConsiGmaTM-25 process perfo
nce in terms of robustness against disturbances and quality of intermediate and fin
oducts.

ywords: ConsiGmaTM-25, Twin Screw Granulation, Continuous Manufacturing,
ta Driven Process Modeling, Local Linear Model Tree (LoLiMoT), Control Oriente
odeling, Process Analytical Technology (PAT)
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Introduction

The pharmaceutical industry nowadays is in transition from standard batch-base
continuous manufacturing. The continuous manufacturing of pharmaceuticals com
th a range of benefits, such as increased production flexibility, better quality contro
uced energy consumption, and lower environmental footprint via waste reductio
ee et al., 2015).
e ConsiGmaTM-25 is a well-known continuous manufacturing plant integrating a twin
ew granulator (TSG), a fluid-bed-dryer (FBD), a granule-conditioning unit (GCU
d a tablet press (TP). The common ConsiGmaTM-25 operation mode, i.e., the ope
ion with empirically determined, constant process parameters and with only limite
l-time monitoring of intermediate/final critical quality attributes (CQA), does no
lly exploit the benefits of continuous manufacturing. Potential disturbances (equip
nt faults, material variability, or operator mistakes) lead to quality degradation of in
mediate/final products. Thus, the process performance could be improved by mean
the pharmaceutical quality-by-design (QbD) approach (ICH, 2009, 2005, 2008, 2012
ecifically via the implementation of quality and process control concepts (Yu et a
14). There are some essential requirements for the development of model based con
l concepts: real-time monitoring of CQAs via process analytical technology (PAT
ols, and the process models linking the critical process parameters (CPP) to CQA
e performance of the ConsiGmaTM-25 twin-screw wet granulation unit is significant
ecting the final product quality: Wet granulation is a size enlargement process tha
proves the flowability properties of raw material, reduces the risk of segregation, an
proves content uniformity (Seem et al., 2015). The particle size distribution (PSD)
t granules is considered an intermediate CQA affecting the final product quality (e.g
blet dissolution (Markl et al., 2020; Zaborenko et al., 2019)), and the performanc
the subsequent unit operations (e.g., filter clogging in the FBD due to formation
2
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es). The active pharmaceutical ingredient (API) content of the wet granules is anoth
ermediate CQA. A long-term out-of-specification (OOS) API content of wet granul
e to material segregation or equipment faults would be reflected in the final produc
., tablet quality. Therefore, the paper at hand focuses on the solutions required fo
e real-time monitoring and control of PSD and API content (i.e., PAT equipment an
ocess models).
approach for the real-time monitoring and control of the granule size after the twin
ew granulation is proposed in (Nicoläı, 2019). This study raises the issue of th
nlinear behavior of the granulation process claiming that the granule size controll
ould consider this system property when choosing the correct control action. Linea
ntrollers, e.g., PID controllers, therefore cannot fully exploit the potential of the gran
tion process. However, if the process model capturing the nonlinear behavior of th
estigated system would be available, more sophisticated, nonlinear model-based con
l concepts could be developed. Although several modeling approaches for twin-scre
anulation can be found in the literature (Barrasso et al., 2014, 2013; Barrasso an
machandran, 2015), they are typically not directly applicable to the design of mode
sed control strategies. Advanced modeling approaches, such as gPROMS (gProm
23), offer a possibility for in-silico process investigation via digital twin and flowshe
deling (Wang et al., 2022; Metta et al., 2019). Although very promising for sensitivit
alysis, these models are not yet suitable to capture the dynamic behavior of twin scre
anulation. If such a feature is available, the modeling procedure could be transferre
m the ConsiGmaTM-25 line to the simulation environment. However, due to compu
tional demand, it is not possible to directly apply these models for model predictiv
ntrol design. In contrast, (Shirazian et al., 2017) proposes a modeling approach base
an artificial neural network (ANN) algorithm for a static prediction of PSD chara
istics for different operating conditions based on experimental data. Although th
omising results presented in this work indicate the potential of the data-driven AN
proach (in terms of accuracy and computation time), they do not consider furth
portant prerequisites, such as the dynamic behavior of the system or the real-tim
asurement of critical quantities.
e paper at hand closes the existing gaps by providing a systematic framework for d
loping a dynamic process model for granule size prediction that is suitable for mod
edictive control (MPC) concepts. It can be used as a step-by-step guide through th
velopment of a PAT strategy, definition of model structure (model inputs and ou
ts), systematic design of excitation runs (collecting experimental data that accurate
ect the dynamic behavior of the system), signal processing, and model training. I
der to monitor the PSD of wet granules in real-time, an in-line PAT probe based o
e spatial filter velocimetry principle is mounted at the TSG outlet. The relevant PS
aracteristics are extracted from acquired distribution data and the respective CPP
e identified. Furthermore, a process model describing the relation between the granu
ion CPPs and PSD characteristics is developed by means of a local-linear model tre
oLiMoT) algorithm (Nelles, 1997). For control design purposes, LoLiMoT is a pow
ul data-driven alternative to physically motivated modeling approaches suggested
3
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arrasso et al., 2014, 2013; Barrasso and Ramachandran, 2015). Although this mod
ntification approach is tailored to a specific pharmaceutical model formulation, th
oposed method for the design of excitation runs is generally applicable and can b
ickly adapted to different formulations. As shown in (Rehrl et al., 2019), proce
dels based on the LoLiMoT approach allow a straightforward development of ad
nced model-based process control concepts, e.g., MPC. A nonlinear MPC integratin
e process model identified in this work would not encounter the nonlinearity issu
ised in (Nicoläı, 2019). To capture the remaining CQAs of the wet granulation, th
per proposes an in-line PAT solution based on Raman spectroscopy, as well as the ap
opriate chemometric modeling approach for extracting API content information fro
quired spectral data. In addition to the API-, the liquid content of wet granules
tracted from the spectral data by means of chemometric modeling. This could b
alternative to the approach for the real-time monitoring of liquid content after th

anulation via NIR proposed in (Nicoläı et al., 2018).
e performance of all the solutions developed in this study is confirmed via separa
s of validation experiments. Finally, based on these solutions, typical application
using on the quality/process control for the ConsiGmaTM-25 production plant a
oposed.

Materials and Methods

. Materials

Wet granules were produced from a powder pre-blend and deionized water. Th
e-blend material consisted of Methyl 4-hydroxybenzoate (Sigma Aldrich, USA), als
own as Methylparaben, as the API surrogate material, and three excipients, i.e., V
PHARM HPMC (Demacsa, Mexico), Avicel PH101 (DuPont, Ireland), and Granula
0 (Meggle, Germany). Table 1 shows the nominal pre-blend composition.

Table 1: Formulation of pre-blend material.

Nr. Raw Materials Quantity (wt. %)

1
Methyl 4-hydroxybenzoate

API surrogate
4.12

2 VIVAPHARM HPMC 5.15

3 Avicel PH101 21.41

4 Granulac 200 69.32

. Granule size modeling

.1. Technical process description

The loss-in-weight feeder K-TRON KT 20 (Coperion K-Tron, Switzerland, (Cop
n, 2023)) was placed at the inlet of the TSG of the ConsiGmaTM-25 plant (GEA
lgium, (GEA, 2023)). It was filled with the pre-blend material which was fed at
4
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minal solid feed rate (SFR) of 15 kg/h. A liquid tank stored deionized water, whic
s supplied to the TSG by means of a mass flow controlled peristaltic pump at a liqu
d rate (LFR) of 60 g/min, resulting in the nominal liquid-to-solid ratio (LS) of 24%
e TSG with a screw diameter of 20mm and a length-to-diameter ratio of 20:1 wa
erated with the nominal screw speed (SS) of 700 rpm. The chosen screw configur
n was: 1K/6 / 2x1T / 2x1,5T / 4x2T / 6K/4 60° / 1x1,5T / 6K/4 60° / 1x1,5T
/6 60°, with K representing kneading- and T representing transport elements (e.g
/6 60° stands for two kneading elements shifted by 60◦, with a length of 1/6 of the
meter). The nominal barrel temperature (BT) of 30◦C was controlled by a PID con
ller. The pre-blend material was conveyed among the granulator screws, the liqu
s distributed, and wet granules were produced. Figure 1 shows a schematic diagra
the investigated granulation unit.

ure 1: Schematic representation of the ConsiGmaTM-25 granulation unit with the Parsum prob
nitoring the size of wet granules. Legend: Solid feed rate (SFR), liquid feed rate (LFR), screw spee
), barrel temperature (BT).

.2. PAT strategy

The size of the wet granules was captured in-line by means of an IPP 80-P inlin
rticle probe (Parsum GmbH, Germany, (Parsum, 2023)) mounted at the TSG outle
e probe uses the spatial filter velocimetry principle. In brief, in the measuremen
lume a laser diode emits a beam sensed by an array of optical fibres connected to in
idual photo-detectors. Particles passing through the volume therefore cast a shado
the detectors, generating a signal on the whole array whose frequency is proportion
5
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the velocity. The time of flight is determined by the time a single photo-detector
cked by the shadow of a moving particle. From these two signals, the chord lengt
tribution and subsequently the PSD is calculated by the instrument software IP
.00 (Dieter et al., 2011; Silva et al., 2013).
e IPP 80-P probe was mounted directly in the product stream at the granulator outl
th the help of a custom built mechanical interface, depicted in Figure 2. The desig
nsists of a Ø100mm cylindrical tube intersected with a Ø80mm tube sideways, wit
lded tri-clamp flanges, and a conical shape toward the bottom. The stainless ste
erface can be opened for inspection and is easy to clean. The D12 disperser unit wit
inlet opening of Ø7.5mm that includes a teflon coated cap for less adhesion of th
t granules, was attached to the probe. An air unit constantly supplies the dispers
d cleans the optical windows with an air flow set to 6 and 30 l/min, respectivel
ditional purge air pulses are used every 8 s to remove granules if they got stuck o
ck the disperser inlet. An additional valve is mounted on top of the TSG for pressu
mpensation, such that the internal ConsiGmaTM-25 pressure sensor does not trigg
alse alarm due to the pulses.
e instrument software was set to a ring buffer of 5000 particles for fast response, usin
e whole measurement range from 50 to 6000µm and an acquisition rate of 1s. Th
ftware outputs are the number-density and volume-density distribution of the PSD, a
ll as the velocity distribution, aspect ratio, and particle rate (the number of particl
r second passing the probe). In this work a volumetric density distribution q3(x
en for a size array x of ndist = 36 size fractions, was used. All process data were cen
lly stored and made available on the SIMATIC SIPAT 5.1.1.0 platform (Siemens AG
rmany, (Siemens, 2023)). Methods and collectors were defined in SIPAT to interfac
th the Parsum OPC-DA server (Parsum GmbH, Germany, (Parsum, 2023)) and th
ix OPC-DA (GE Digital, USA, (iFix, 2023)) for the ConsiGmaTM-25 SCADA/HM
stem.

.3. Particle size distribution (PSD) characteristics to be modeled

In order to use the PSD information captured via the Parsum probe for modeling o
ntrol purposes, the relevant scalar characteristics should be extracted from measure
tribution data. These PSD characteristics should reflect the physical properties
e produced granules and also be available in real-time (important for application in
dback control concept). Following that idea, the four statistic moments (M1,M2,M
d M4) are defined as PSD characteristics (Stieß, 2008; Ramsey et al., 2002). Th
nnotation of individual moments is explained by an example with three arbitrar
tributions depicted in Figure 3.

D-Moment 1. The first moment (mean/expected value) of a distribution is define

M1 =

∫ ∞

−∞
q3(x)x dx. (1

increase in the average size of produced granules is reflected by an increase of M1.
6
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ure 2: Mechanical interface integrating the Parsum IPP 80-P inline particle measuring prob
unted at the granulator outlet (CAPRI, 2023a).

D-Moment 2. The second central moment (variance) of a distribution is defined as

M2 =

∫ ∞

−∞
q3(x)(x−M1)

2 dx. (2

2 captures the distribution broadness, i.e., the higherM2 gets, the higher the possibilit
find the granules further away from the mean value M1.

D-Moment 3. The third standardized moment (skewness) of a distribution is define

M3 =

∫ ∞

−∞
q3(x)

(
x−M1√

M2

)3

dx. (3

3 provides information on the distribution shape, i.e, the relative size of the distributio
ils. A negative value of M3 implies a longer distribution tail on the left, and a positiv
lue of M3 implies a longer tail on the right side of the observed distribution.

D-Moment 4. The fourth standardized moment (kurtosis) of a distribution is define

M4 =

∫ ∞

−∞
q3(x)

(
x−M1√

M2

)4

dx. (4

ilar to M3, M4 also provides information on the distribution shape. It is a measu
the overall tail extremity, without giving information on which side the effect is mo
onounced.
addition to the statistic moments, the following deviation measures are define
ain, the meaning of individual measures is illustrated with the help of three di
bution examples in Figure 3.
7
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ference Deviation. The first deviation measure represents the deviation from an a
rary reference distribution q3ref and is calculated as

eref = (M1 −M1ref )

ndist∑

i=1

|q3,i − q3ref,i|. (5

is measure is a suitable choice for implementing a PSD control loop: A distributio
at yields the best final product properties and that results in a robust process pe
mance can be selected as the reference distribution. The control loop would the
at driving eref to zero. For the model development purpose, an arbitrary Gaussia

tribution with a mean value of 1555µm and a standard deviation of 900µm is chose
a reference distribution (for this reference distribution, eref approximately equals zer
nominal process parameters).

rmal Deviation. The second deviation measure is calculated as

enormal =

ndist∑

i=1

(
q3,i − q3normal,i(M1,M2)

q3normal,i(M1,M2)

)2

(6

d it represents the deviation from the Gaussian distribution with the equivalent fir
d second characteristic moments. This quantity is relevant for the development of th
nal processing concept. However, it is not relevant for the modeling as it cannot b
ectly correlated to the specific physical properties of the granules.

D signal processing. The cleaning of the Parsum PAT probe (for more details plea
er to Section 2.2.2) sometimes results in corrupted PSD measurements. The corrupte
D data provide no useful information and could compromise the process modelin
e developed PSD signal processing algorithm detects and replaces the corrupted PS
ta in the following way: The current value of normal deviation enormal is compare
the mean value over a time window nfilter = 20, and the respective difference
lculated. If the calculated difference exceeds the threshold of 2.5 standard deviation
er the same time window, the measured PSD is detected as corrupted. The corrupte
D is replaced with the mean value over the same time window. Figure 4 depic
e performance of this concept. Furthermore, in order to improve the signal-to-noi
tio (SNR), all introduced PSD characteristics are low-pass filtered via the followin
erence equation

yfilt,k = 0.15yk + 0.85yfilt,k−1 (7

th yk representing the evaluated and yfilt,k representing the filtered value of the sign
the k-th time instant. The filter coefficients are chosen as a compromise between th
hieved SNR and the time delay brought into the system by filtering.

.4. Definition of model structure

The aim of modeling is to develop a simple, yet comprehensive description of the sy
of interest. The process parameters that have an influence on the product qualit
8
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ure 3: PSD characteristics illustrated by three arbitrary distributions: A distribution shift fro
t (PSD 1) to the right (PSD 3) correlates with an increase of the respective first moment M1, i.e
th an increase in the average size of the produced granules. The low M2 value of the narrow secon
tribution indicates the low chance of finding the granules further away from the calculated M
e first distribution with the long tail on the right implies an overall higher amount of agglomerat
n fines (reflected in the positive sign of M3). The opposite can be stated for the third distributio
racterized by the negative M3 value. The lowest tendency toward granule size outliers of the secon
tribution is correlated with the lowest M4 value (compared to PSD 1 and PSD 3), and vice vers
e second distribution is similar to a Gaussian and exhibits a low enormal value. The first an
rd distributions show higher, yet similar deviation, again reflected in the respective enormal value
illustrate the meaning of the reference deviation, PSD 2 is chosen as the reference distributio
sitive/negative eref values imply the production of larger/smaller granules than for the referen
tribution. The total extent of the deviation is reflected in the absolute value of the reference deviatio
9
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ure 4: The developed PSD signal processing concept detects and replaces a corrupted measuremen

tributes are determined and considered as model inputs. In control-oriented modelin
e model inputs can be perceived as process actuators (i.e., can be externally manip
ted in real-time). Real-time monitored quantities that reflect the product qualit
tributes are considered as model outputs.
order to select the model structure, a systematic investigation of the influence
anulation process parameters on the granule size was performed. Solid feed rat
uid-to-solid (LS) ratio, screw speed, and barrel temperature were considered to b
tential model inputs, and the PSD characteristics introduced in Section 2.2.3 we
nsidered to be potential model outputs. A design of experiments (DoE) was pe
med using the Plackett Burman screening design in Modde DoE software (Sartoriu
rmany, (Sartorius, 2023a)). This DoE is shown in Table 2 and it involved eleve
ns with simultaneous changes in granulation process parameters. The duration
ividual runs was adjusted during the experiments, such that both model inputs an
tputs reach a steady state. Obtained results indicate a strong relationship betwee
e granule size (more specifically its first, second, fourth moment, and the referenc
viation) and granulation LS. Influence of other process parameters was not confirme
erefore, these are excluded from the modeling procedure. The proposed structure
e granule size process model is depicted in Figure 5. Due to reproducibility issues, th
ird characteristic moment is excluded from the model structure.
10
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ble 2: Executed DoE for capturing the effect of granulation process parameters on the
e of wet granules.

un Nr. LS SFR BT SS M1 M2 M3 M4 eref
[/] [%] [kg

h
] ◦C [rpm] [mm] [mm2] [/] [/] [/]

1 24 15 30 700 2.2 1.7 -0.07 1.7 0.07
2 18 10 35 900 1.0 0.6 0.22 1.7 -0.21
3 18 20 35 900 1.2 0.6 0.04 1.78 -0.11
4 30 10 35 500 3.0 2.4 0.13 2.2 0.22
5 30 20 35 500 2.9 2.0 -0.2 2.1 0.19
6 24 15 30 700 2.0 1.5 -0.1 1.8 0.06
7 18 20 25 500 1.3 0.7 -0.06 1.7 -0.10
8 18 10 25 500 1.2 0.6 -0.07 1.7 -0.14
9 30 20 25 900 3.0 1.6 0.176 2.4 0.21
10 30 10 25 900 3.0 2.3 0.1 2.2 0.21
11 24 15 30 700 2.0 1.3 -0.18 1.9 0.06

cronyms:
anulation process parameters: Liquid-to-solid ratio (LS), solid feed rate (SFR),
rrel temperature (BT), screw speed (SS).
rticle size distribution characteristics: Moment 1 (M1), moment 2 (M2), mo-
nt 3 (M3), moment 4 (M4), reference deviation (eref ).

.5. Local linear model tree (LoLiMoT) approach

The process modeling is performed by means of the LoLiMoT approach (Nelle
97). LoLiMoT is an algorithm for the data-driven identification of nonlinear system
means of weighted local linear models (LLM).

neral description. The standard model structure depicted in Figure 6a involves
uts u1, . . . , up, and one output ŷ. Each of M LLMs outputs is associated with th
pective validity function Φ1, . . . ,ΦM . LoLiMoT is a two-step approach: The first ste
olves LLM parameter identification (wi0, . . . , wip, i ∈ 1, . . . ,M), with individual LLM
tputs defined as

yi = wi0 + wi1u1 + . . .+ wipup. (8

e second step involves the input range partitioning in order to determine the tre
ucture of the M LLMs. The final model output is calculated as a weighted sum
ividual LLMs

ŷ =
M∑

i=1

ŷiΦi(u). (9

gure 6b illustrates the application of the LoLiMoT algorithm for the approximatio
a nonlinear static function.

sign of excitation run. Data-driven modeling implies a direct relationship betwee
e experimental data used for the model identification and the model quality. Th
11
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Figure 5: Proposed structure of the granule size process model.

(a) Standard LoLiMoT model structure.

(b) The nonlinear static function y is approximated
via four LLMs. LLM parameters, i.e., the offset and
the slope of straight lines, and the respective validity
functions are determined. The final model output ŷ is
calculated as a weighted sum of individual LLMs.

Figure 6: LoLiMoT approach.

oice of appropriate excitation signals for modeling experiments is crucial to obta
accurate model. Therefore, a combination of two excitation runs was performe
e first excitation run involved amplitude modulated pseudo random binary sign
PRBS) LS variations. APRBS, characterized by random level amplitude (A) an
el duration (L) is a standard choice for the LoLiMoT excitation signal. The results
e first excitation run were utilized to design the second excitation run. Again, the L
uence was chosen in an APRBS-like fashion, but A and L were optimized to achiev
e maximal average distance between the new and existing data points. The followin
ragraph can be used as a step-by-step guide for the design of the excitation run (fo
e visual representation of the introduced steps please refer to Section 3.1).

ep 1. An APRBS LS sequence was designed using the System Identification Toolbo
MATLAB (MATLAB, 2023c) and applied to the real production plant. The PS
produced wet granules was captured via the Parsum probe, and the first momen
s evaluated according to Equation 1. The first part of the experiment (approximate
irty minutes) involved slow transitions between the random amplitude levels offering a
ight into the steady-state behavior of the system. The second part of the experimen
12
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olved fast transitions between the random amplitude levels capturing the syste
havior in high dynamic regions.

ep 2. The designed LS- and measuredM1 sequences were provided as the identificatio
ta for the LoLiMoT algorithm. Preliminary LoLiMoT training was performed and th
uro-fuzzy-model(NFM) (Mishra, 2020) describing the relation between the LS and M
s obtained. This NFM was used to predict the first characteristic moment M1,LO

so, the collected data was used to examine the coverage of input-output (IO) spac
pically, there are a few non-covered areas remaining in the IO space (for more detai
ase refer to Section 3.1). To improve the model performance in these areas, the secon
citation run was designed.

ep 3. In order to avoid repeating the already available experimental data points, th
w APRBS-like LS sequence was designed in an optimal manner. The work (Hein
d Nelles, 2018) introduces an approach for the iterative optimization of LoLiMo
citation signals. Level amplitude A and level duration L are considered optimiz
n variables in each iteration. The optimization objective is defined by means of th
lowing cost function

J =
1

L

N+L∑

k=N+1

dNN(Xold,xk). (10

e function dNN calculates the smallest distance between any existing data point store
Xold and the newly created one xk, i.e., maximizing J is equivalent to maximizing th
tance between the existing and new data points. The proposed algorithm involv
e following steps:

• Initialization: The data matrix Xold is filled with the available data set of size N
In the first iteration, Xold contains the identification data collected in the Step 1

• Optimization problem is defined as

max
A,L

1

L

N+L∑

k=N+1

dNN(Xold,xk),

s.t. 17% ≤ A ≤ 32%

20 s ≤ L ≤ 240 s

L ∈ Z

(11

with xk holding the to-be-optimized LSnew = [Anew . . . Anew] signal of the lengt
Lnew, and the respective first moment M1,new predicted via the preliminary NFM
obtained in step 2. The optimization problem is solved by means of a genet
algorithm using the Global Optimization Toolbox in Matlab (MATLAB, 2023a
The genetic algorithm is chosen due to its capability to consider integer constrain
(i.e., L ∈ Z). The optimal Anew and Lnew are obtained, the new LS sequence
appended to the existing one, and the matrix Xold is accordingly extended. Not
13
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For more details on the introduced approach (e.g., dNN ,Xold,xk definition) plea
refer to (Heinz and Nelles, 2018; Universität Siegen, 2023).

• The optimization procedure is repeated until the specified experiment duration
reached.

ep 4. The optimal LS sequence obtained in the Step 3 was applied to the ConsiGmaTM

, the resulting PSD variations were measured (the respective M1 evaluated), and th
al IO space coverage was examined.
14
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. Granule API- and liquid content

.1. Technical process description

For the creation of the chemometric model, granules of different levels of API conten
ed to be presented to the Raman probe. In order to generate the intentional variation
the API concentration, a second loss-in-weight feeder was installed at the granulato
et. The first and second feeder were filled with the pre-blend materials with the AP
ncentration of 8% and 0%, respectively. The quantity of individual excipients in th
e-blends was adjusted to keep the same ratio as for the pre-blend depicted in Table
e two feeders supplied the pre-blend powders with the nominal SFR of 7.725 kg/h, an
75 kg/h, resulting in the nominal API concentration of 4.12% at the granulator inle
e remaining granulation parameters stayed the same as introduced in Section 2.2.
schematic representation of the ConsiGmaTM-25 granulation unit depicted in Figure
ains similar with two adaptations: The setup is extended with an equivalent secon
s-in-weight feeder placed at the granulator inlet, and the Parsum measurement prob
oviding size distribution data is replaced by a Raman probe providing spectral dat
the granulator outlet (please refer to Section 2.2.1 for more details).

.2. PAT Strategy

The API content of the produced wet granules was captured by means of a sam
ng device and the Raman method. The Raman method is the study of in-elastical
ttered light (i.e., photons scattered as different wave number) from a monochromat
ht source in the context of vibrational spectroscopy. A fingerprint of specific bands
served representing the different molecular bonds of the material and its attributes lik
lymorphic form. This makes the method interesting to be utilized as a PAT tool, a
e peak heights correlate with concentration. Compared to near-infrared spectroscop
IRS), only a modest influence of PSD is present (Paudel et al., 2015). However, th
line implementation is more complex than NIRS, as the measurement volume has t
shielded from external light sources and the sampling device has to be built fro
terials that do not show reflective or auto-fluorescence behavior. Therefore, a sam
ng device was designed that is suitable for wet granules and dry powder handling, an
ows hosting a wide-angle illumination Raman probe. Specifically, the Rxn2TM Hybr
man process spectrometer with attached PhAT (Pharmaceutical Area Testing) prob
aiser Optical Systems, USA (Kaiser Optical Systems, 2023)) was used in the setup
cause of its rapid prototyping capability and flexible design options, 3D-printing wa
ed to create the needed parts. They were made of matte black PLA NX2 (Extrud
stria (Extrudr, 2023b)) printed on a i3 MK3S+ (Prusa, Czech Republic (Prus
23)). The design consists of two rotating compartments with a volume of approx
ately 8ml each, in an hourglass shape with a saphire glass (Edmund optics, German
dmund Optics, 2023)) on the other side, with printed cleaning seals of Flex TP
xtrdr, Austria (Extrudr, 2023a)), and purging air ducts. The device is shown in Fi
e 7. The complete construction fits inside the Ø80mm Tri-Clamp flange adapter a
ed with the Parsum probe (see Section 2.2.2). Open source hardware and softwa
lutions were used when possible. A closed loop NEMA17 stepper motor (Bigtreetec
15
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Figure 7: Sampling device used to present the granules to the Raman probe (CAPRI, 2023a).

ina) with GRBL1.1 stepper motor controller board rotates the cups. Air pulses a
nerated with a VPPE-3-1-1 pressure regulator valve (Festo, Germany (Festo, 2023
d 4 − 20mA T-Click interface board (MikroE, Serbia (MIKROE, 2023)). The com
nication and synchronization between Raman and sampling device is implemente
er OPC-UA protocol.
e OPC-UA server, using the open source python-opcua library (FreeOpcUa, 2023
ns on the Raman station and waits for a new recorded spectrum from the iC Rama
.915 software (Kaiser Optical Systems), that are pushed to subscribed clients an
rts the next sampling cycle. The sampling device control box houses a Raspberr
4 Model B (Raspberry Pi, 2023) that executes two Python scripts (using the opcu
yncio library): The OPC-UA client for sample device control and the chemometr
del prediction engine. After the signal for the new sample cycle is received, the pur
air pulse is generated, and the step motor is instructed to rotate the cups by 18

grees. Then the cups are filled with fresh granules and a 15 s Raman spectrum acqu
ion takes place (until the measurement cycle starts over again). The complete cyc
e of 20 s is chosen as a compromise between signal-to-noise ratio and measuremen
quency.

.3. Chemometric modeling

The Raman spectral data collected every 20 s (cycle time of the sampling devic
d the respective API concentration at the granulator inlet Cin (computed from th
e-blend concentrations and the feeder mass flow rates) as

Cin =
SFR1 · 8%

SFR1 + SFR2
(12

re used for the chemometric model development. The baseline of the captured R
n spectra was corrected using Whittaker’s asymmetric least square (ALS) fittin
16
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orithm (Eilers, 2003). Also, the standard-normal-variate (SNV) processing of th
ected part of the baseline-corrected spectra (i.e., subtraction of the mean value an
rmalization by the standard deviation) was performed. For initial chemometric mod
velopment SIMCA multivariate data analysis software (Sartorius Stedim Data Analy
AB, Sweden, (Sartorius, 2023b)) was used. A partial least squares (PLS) regressio
del with three PLS components was trained on the spectral range from 445 cm−1 t
25 cm−1, giving a root mean square error in cross validation of 0.20 wt% API. Mod
efficients were exported and used in a custom chemometric prediction engine impl
nted in a Python script: An OPC-UA client runs using the opcua-asyncio librar
e spectra pre-processing steps and PLS calculations are performed, and the predicte
lues are made available via an OPC-UA server.
rthermore, the Raman spectral data were used to estimate the liquid content of th
anules at the granulator outlet (LSout). In this case, the Raman spectral data and th
pective LSin at the TSG inlet calculated as

LSin =
LFR

SFR1 + SFR2
(13

re provided as the identification data for the development of the second chemometr
del. Again, the baseline correction and SNV processing of the Raman spectra we
rformed. MATLAB with the Statistics and Machine Learning Toolbox (MATLAB
23b) was used to train a PLS model with six components on the spectral range fro
0 cm−1 to 1600 cm−1. For a detailed description of DoE used for model trainin
ase refer to Section 3. Furthermore, the Raman analysis of pre-blend raw materia
s performed using the Raman PhAT probe with an exposure time of 15 s (the sam
posure time, as for the inline measurement). The obtained raw spectra are shown
gure A.13 (please refer to Appendix A).

Results and discussion

. Granule size model

perimental data for model identification. The experimental data required for mod
ining were collected via systematically designed excitation runs. As introduced
ction 2.2.5, two system excitation experiments were performed, the first excitatio
n with a typical LoLiMoT input sequence (APRBS), and the second excitation ru
th an optimal input sequence. Figure 8 outlines the steps taken for the design
o excitation runs (please refer to Section 2.2.5 for details). The introduced four-ste
proach involves the following: In Step 1 the APRBS LS sequence was designed an
plied to the ConsiGmaTM-25 (first excitation run), the induced PSD variations we
ptured via the PAT solution introduced in Section 2.2.2, and the first characterist
ment of the PSD was evaluated. Step 2 involves preliminary LoLiMoT training (
del predicting M1 from LS trained on the identification data collected in Step 1
d examination of IO space coverage. In Step 3, the LS sequence was designed in a
timal manner to cover the blank regions of IO space (empty or poorly covered region
17
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the first excitation run). For that purpose, the identification data from Step 1 an
e preliminary model trained in Step 2 were used by the optimization algorithm. Ste
basically reiterates the first two steps with the LS sequence designed in Step 3, i.e
e optimal LS sequence was applied to the ConsiGmaTM-25 (second excitation run
e first characteristic moment of PSD was evaluated, and the final IO space coverag
s examined. The experimental data obtained in Step 4 successfully extended th
eliminary IO space (Step 2), i.e., the initially empty ranges were filled with new dat
ints. Therefore, it can be stated that the collected experimental data precisely refle
e system behavior on the operating range of interest and can be used for model iden
cation.
te: Although the obtained experimental data are only valid for modeling of the inve
ated pharmaceutical formulation, the proposed method for the design of excitatio
ns is generally applicable and can be re-executed for different formulations in a time
nner.

odel identification. The PSD data collected in the two excitation runs were merge
e PSD signal processing was performed, and the PSD characteristics were evaluate
ccording to Equations 1, 2, 4, and 6 introduced in Section 2.2.3). The combine
uences (LS, M1, M2, M4, and eref ) were provided as the identification data s
the LoLiMoT training. The training was performed in MATLAB using the LMN
olbox LMN-Tool (2023); Hartmann et al. (2012) and repeated for each of the propose
del outputs, i.e., a submodel per PSD characteristics was created (please see Figu
. As a result, the final granule size process model involves four neuro-fuzzy-model
r the M1 model, the time-delayed LS and size sequences were arranged as

uT = [u1, . . . , up] = [LSk−1 . . . LSk−nLOL
,M1,k−1 . . .M1,k−nLOL

], (14

d used as the inputs for the LoLiMoT structure proposed in Figure 6a. The time dela

OL = 3 was chosen as a compromise between the model accuracy and complexit
e analog approach was followed for the remaining PSD characteristics. The LoLiMo
orithm suggested to use the structures with 15, 12, 14, and 12 LLMs for M1, M2, M
d eref models, respectively. These results (together with the obtained experiment
ta) confirm the statements regarding the non-linear behavior of granule size introduce
(Nicoläı, 2019), and justify the choice of modeling algorithm (in contrast to LoLiMoT
ear models like, e.g., transfer functions would not be sufficient to accurately refle
e system behavior in the complete operating range).

aluation of model performance. The model performance was investigated both on th
ining and validation data set. The modeling results depicted in Figures 9 and 1
icate a good agreement between the measured and predicted PSD characteristics an
nfirm the quality of the identified model. The validation experimental data set wa
t chosen randomly but originates from the preliminary control concept experiment
these experiments, the reference value for M1 is changed, and the LS is according
justed, i.e., this data set involves gradual changes of LS over the complete operatin
nge, as well as the dynamic short-time deviations from the nominal point. Therefor
18
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Figure 8: Step-by-step design of the LoLiMoT excitation run.
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e good model performance is even more significant, as this corresponds to a realist
plication example. A discrepancy between the measurement and the model predictio
the end of the validation experiment (please see the violet section in Figure 10
iginates from the difference between the LS set-point (SP) used as model input and i
pective actual value (AV). A fairly similar event would also occur in the case of ra
terial variability (e.g., PB with different PSD) or equipment faults (e.g., inaccura
ding) where the model prediction would not match the measured PSD characteristic
is indicates that the difference between the measurement and model prediction cou
used for the development of a fault detection algorithm. Furthermore, the SP an
of LS could be compared in real-time, and the potential deviations could be used a

rrection terms, additionally improving the model performance.
20



Journal Pre-proof

Fig cs
acc
 Jo

ur
na

l P
re

-p
ro

of

0 20 40 60 80 100

18

24

30

0 20 40 60 80 100

0

2000

4000

0 20 40 60 80 100

0

1

2

3
10

6

0 20 40 60 80 100

1

2

3

0 20 40 60 80 100

-0.5

0

0.5

ure 9: The granule size model trained via the LoLiMoT approach predicts PSD characteristi
urately on the training data set (CAPRI, 2023b).
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. Granule API- and moisture content model identification and validation

The experimental data required for the chemometric model development were co
ted by means of the DoE data depicted in Table 3. The variations of inlet AP
ncentration in a range of 1.33% to 7% were realized via SFR variations. Additionall
order to assure the model robustness by different amounts of granulation liquid, L
riations in a range of 18% to 30% were introduced to the system via LFR variation
us, the Raman spectral data at the boundary (1.33% and 7%) and central (4.12%
E points were captured at different LS levels. Each run was executed for approx
ately six minutes in order to achieve the steady-state operation. The chemometr
dels predicting the outlet API concentration and outlet LS were developed accordin
the procedure described in Section 2.3.3. The model calibration results are depicte
Figure B.14 (please refer to Appendix B).
e performance of the developed chemometric models was investigated for the trainin
d the validation data set (please refer to Figures 11 and 12). In both cases, a sa
actory agreement between the set inlet- and estimated outlet API concentration
nfirmed. The same can be stated for the results obtained with the second chemome
model estimating the liquid content at the TSG outlet from Raman spectral dat
e 20 s time delay between the inlet- and via models estimated outlet quantities is no
sign of the model weakness, but a consequence of the sampling time of the samplin
vice (please refer to Section 2.3.2 for more details).

able 3: Development of chemometric models DoE.

un Nr. SFR1 SFR2 LFR LSin Cin

[/] [kg
h
] [kg

h
] [ g

min
] [%] [%]

1 2.5 12.5 60 24 1.33
2 2.5 12.5 45 18 1.33
3 5.6 9.4 75 30 3.0
4 7.73 7.27 75 30 4.12
5 7.73 7.27 60 24 4.12
6 7.73 7.27 45 18 4.12
7 9.38 5.62 75 30 5.0
8 13.13 1.87 75 30 7.0
9 13.13 1.87 60 24 7.0
10 13.13 1.87 45 18 7.0

cronyms:
lid feed rate of API feeder (SFR1), solid feed
e of the excipient feeder (SFR2), liquid feed rate
FR), liquid-to-solid ratio at the granulator inlet
Sin), API concentration at the granulator inlet

in).
23



Journal Pre-proof

Fig al
da

Fig al
da
Jo
ur

na
l P

re
-p

ro
of0 10 20 30 40 50 60

0

5

10

40

60

80

0 10 20 30 40 50 60

0

5

0 10 20 30 40 50 60

10

20

30

ure 11: Chemometric model predicting API- and liquid content of wet granules from Raman spectr
ta for the training data set.
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Conclusion and outlook

The solutions proposed in this work allow the development of advanced control con
pts for granule size, API-, and liquid content of wet granules in ConsiGmaTM-25. Th
lidation results of the dynamic model for granule size indicate very good conformit
tween the measurement and model estimation and thereby confirm the model qua
. The same can be stated for the results of validation experiments obtained for th
emometric models predicting the API- and liquid content from the Raman spectr
ta. As such, these solutions can be used as a reliable (and necessary) basis for th
velopment of the following use cases.

ult detection and digital assistant. The granule size process model can run in parall
th the process. The difference between the predicted (i.e., M1,LOL, M2,LOL, M4,LO

f,LOL) and via PAT probe measured PSD characteristics (i.e., M1, M2, M4, eref
n be used as trigger signals for the fault detection algorithm. This algorithm ca
developed to detect and distinguish between different process disturbances, such a
uipment or material faults. Furthermore, the fault detection algorithm can suppo
e operator of the manufacturing line via an appropriate digital assistant concept. Th
ital assistant concept will generate valuable suggestions to the operator, e.g., to chec
e line for potential faults and eliminate them.

ft-sensor for granule size. The identified granule size process model can be used a
soft-sensor, acting as a potential replacement for the Parsum probe. The soft-senso
plication will be exceptionally valuable for the ConsiGmaTM-25 constellations whe
e mounting of the Parsum PAT probe is not feasible. The equipment setup with th
man probe placed at the TSG outlet would be an example of such a constellatio
is configuration does not allow the additional installation of the Parsum probe due t
ace limitations. In this case, the soft-sensor application will allow the simultaneou
nitoring of all intermediate CQAs, i.e., the measurement of API- and liquid conten
Raman, and the prediction of the wet granules size via the LoLiMoT approach.

ality control concept. Intermediate CQAs, i.e., granule size, API-, and liquid conten
n be monitored in real-time either via installed PAT equipment or via a soft-senso
is information can be used to discard non-conforming material by means of an ad
nced discharge control concept.

ocess control concept. The granule size dynamic process model can be used for th
velopment of nonlinear MPC in a straightforward manner. The model quality signifi
ntly impacts the MPC performance: on the one hand, the model is used during MP
rameter tuning via simulation studies (acting as a replacement for the real system
d on the other hand, the MPC prediction algorithm that is part of the MPC concep
es this process model as a core component. In such an application, the MPC algorith
justs the granulation process parameters (e.g., LS) in order to keep the granule siz
g., M1) close to the reference. Furthermore, the API- and liquid content predicted v
emometric models can be utilized as controlled variables in an appropriate feedbac
25
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ntrol concept. Similarly to the granule size MPC, the granulation process paramete
n be adjusted in order to keep API- and liquid content close to the reference values
The introduced use cases would ensure an increased product quality and allo

e mitigation of process disturbances, ultimately improving the performance of th
nsiGmaTM-25 production plant.
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ppendices
ppendix A. Raman analysis of raw pre-blend materials.
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Figure A.13: Raman analysis of raw materials in the pre-blend.
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ppendix B. Raman calibration

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

alibration of the chemometric model for API con-

16 18 20 22 24 26 28 30 32

16

18

20

22

24

26

28

30

32

(b) Calibration of the chemometric model for liquid con-
tent.

Figure B.14
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