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Abstract

ConsiGma™-25 is a continuous production plant integrating a twin-screw granulation,
fluid bed drying, granule conditioning, and a tableting unit. The particle size distri-
bution (PSD), active pharmaceutical ingredient (API) content, and liquid content of
wet granules after twin-screw granulation affect the quality of intermediate and final
products. This paper proposes methods for real-time monitoring of these quantities and
control-oriented modeling of the granulator.

The PSD of wet granules is monitored via an in-line process analytical technology (PAT)
probe based on the spatial velocimetry principle. The algorithm for signal processing
and evaluation of PSD characteristics is developed and applied to the acquired PSD data.
A dynamic process model predicting PSD characteristics from granulation parameters
is trained via the local linear model tree (LoLiMoT) approach. The experimental data
required for the model training are collected via systematically designed excitation runs.
Finally, the performance of the identified model is examined and verified by means of a
new set of validation runs. Furthermore, an in-line PAT probe based on Raman spec-
troscopy is developed and integrated after the granulator. The API- and liquid content
of produced wet granules are evaluated from the spectral data by means of chemometric
modeling, and chemometric models are validated on a separate set of experimental data.
The solutions proposed in this research can be used as a reliable (and necessary) basis
for the development of advanced quality-by-design control concepts (e.g., PSD process
control). Such concepts would ultimately improve the ConsiGma™-25 process perfor-
mance in terms of robustness against disturbances and quality of intermediate and final
products.

Keywords: ConsiGma™-25, Twin Screw Granulation, Continuous Manufacturing,
Data Driven Process Modeling, Local Linear Model Tree (LoLiMoT), Control Oriented
Modeling, Process Analytical Technology (PAT)
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1. Introduction

The pharmaceutical industry nowadays is in transition from standard batch-based
to continuous manufacturing. The continuous manufacturing of pharmaceuticals comes
with a range of benefits, such as increased production flexibility, better quality control,
reduced energy consumption, and lower environmental footprint via waste reduction
(Lee et al., 2015).

The ConsiGma™-25 is a well-known continuous manufacturing plant integrating a twin-
screw granulator (TSG), a fluid-bed-dryer (FBD), a granule-conditioning unit (GCU),
and a tablet press (TP). The common ConsiGma™-25 operation mode, i.e., the oper-
ation with empirically determined, constant process parameters and with only limited
real-time monitoring of intermediate/final critical quality attributes (CQA), does not
fully exploit the benefits of continuous manufacturing. Potential disturbances (equip-
ment faults, material variability, or operator mistakes) lead to quality degradation of in-
termediate/final products. Thus, the process performance could be improved by means
of the pharmaceutical quality-by-design (QbD) approach (ICH, 2009, 2005, 2008, 2012),
specifically via the implementation of quality and process control concepts (Yu et al.,
2014). There are some essential requirements for the development of model based con-
trol concepts: real-time monitoring of CQAs via process analytical technology (PAT)
tools, and the process models linking the critical process parameters (CPP) to CQAs.
The performance of the ConsiGma™-25 twin-screw wet granulation unit is significantly
affecting the final product quality: Wet granulation is a size enlargement process that
improves the flowability properties of raw material, reduces the risk of segregation, and
improves content uniformity (Seem et al., 2015). The particle size distribution (PSD) of
wet granules is considered an intermediate CQA affecting the final product quality (e.g.,
tablet dissolution (Markl et al., 2020; Zaborenko et al., 2019)), and the performance
of the subsequent unit operations (e.g., filter clogging in the FBD due to formation of



fines). The active pharmaceutical ingredient (API) content of the wet granules is another
intermediate CQA. A long-term out-of-specification (OOS) API content of wet granules
due to material segregation or equipment faults would be reflected in the final product,
i.e., tablet quality. Therefore, the paper at hand focuses on the solutions required for
the real-time monitoring and control of PSD and API content (i.e., PAT equipment and
process models).

An approach for the real-time monitoring and control of the granule size after the twin-
screw granulation is proposed in (Nicolai, 2019). This study raises the issue of the
nonlinear behavior of the granulation process claiming that the granule size controller
should consider this system property when choosing the correct control action. Linear
controllers, e.g., PID controllers, therefore cannot fully exploit the potential of the gran-
ulation process. However, if the process model capturing the nonlinear behavior of the
investigated system would be available, more sophisticated, nonlinear model-based con-
trol concepts could be developed. Although several modeling approaches for twin-screw
granulation can be found in the literature (Barrasso et al., 2014, 2013; Barrasso and
Ramachandran, 2015), they are typically not directly applicable to the design of model-
based control strategies. Advanced modeling approaches, such as gPROMS (gProms,
2023), offer a possibility for in-silico process investigation via digital twin and flowsheet
modeling (Wang et al., 2022; Metta et al., 2019). Although very promising for sensitivity
analysis, these models are not yet suitable to capture the dynamic behavior of twin screw
granulation. If such a feature is available, the modeling procedure could be transferred
from the ConsiGma™-25 line to the simulation environment. However, due to compu-
tational demand, it is not possible to directly apply these models for model predictive
control design. In contrast, (Shirazian et al., 2017) proposes a modeling approach based
on an artificial neural network (ANN) algorithm for a static prediction of PSD charac-
teristics for different operating conditions based on experimental data. Although the
promising results presented in this work indicate the potential of the data-driven ANN
approach (in terms of accuracy and computation time), they do not consider further
important prerequisites, such as the dynamic behavior of the system or the real-time
measurement of critical quantities.

The paper at hand closes the existing gaps by providing a systematic framework for de-
veloping a dynamic process model for granule size prediction that is suitable for model
predictive control (MPC) concepts. It can be used as a step-by-step guide through the
development of a PAT strategy, definition of model structure (model inputs and out-
puts), systematic design of excitation runs (collecting experimental data that accurately
reflect the dynamic behavior of the system), signal processing, and model training. In
order to monitor the PSD of wet granules in real-time, an in-line PAT probe based on
the spatial filter velocimetry principle is mounted at the TSG outlet. The relevant PSD
characteristics are extracted from acquired distribution data and the respective CPPs
are identified. Furthermore, a process model describing the relation between the granu-
lation CPPs and PSD characteristics is developed by means of a local-linear model tree
(LoLiMoT) algorithm (Nelles, 1997). For control design purposes, LoLiMoT is a pow-
erful data-driven alternative to physically motivated modeling approaches suggested in



(Barrasso et al., 2014, 2013; Barrasso and Ramachandran, 2015). Although this model
identification approach is tailored to a specific pharmaceutical model formulation, the
proposed method for the design of excitation runs is generally applicable and can be
quickly adapted to different formulations. As shown in (Rehrl et al.; 2019), process
models based on the LoLiMoT approach allow a straightforward development of ad-
vanced model-based process control concepts, e.g., MPC. A nonlinear MPC integrating
the process model identified in this work would not encounter the nonlinearity issue
raised in (Nicolal, 2019). To capture the remaining CQAs of the wet granulation, this
paper proposes an in-line PAT solution based on Raman spectroscopy, as well as the ap-
propriate chemometric modeling approach for extracting API content information from
acquired spectral data. In addition to the API-, the liquid content of wet granules is
extracted from the spectral data by means of chemometric modeling. This could be
an alternative to the approach for the real-time monitoring of liquid content after the
granulation via NIR proposed in (Nicolai et al., 2018).

The performance of all the solutions developed in this study is confirmed via separate
sets of validation experiments. Finally, based on these solutions, typical applications
focusing on the quality/process control for the ConsiGma™-25 production plant are
proposed.

2. Materials and Methods

2.1. Materials

Wet granules were produced from a powder pre-blend and deionized water. The
pre-blend material consisted of Methyl 4-hydroxybenzoate (Sigma Aldrich, USA), also
known as Methylparaben, as the API surrogate material, and three excipients, i.e., VI-
VAPHARM HPMC (Demacsa, Mexico), Avicel PH101 (DuPont, Ireland), and Granulac
200 (Meggle, Germany). Table 1 shows the nominal pre-blend composition.

Table 1: Formulation of pre-blend material.

Nr. | Raw Materials | Quantity (wt. %)
Methyl 4-hydroxybenzoate
1 API surrogate 412
VIVAPHARM HPMC 5.15
Avicel PH101 21.41
4 Granulac 200 69.32

2.2. Granule size modeling

2.2.1. Technical process description

The loss-in-weight feeder K-TRON KT 20 (Coperion K-Tron, Switzerland, (Cope-
rion, 2023)) was placed at the inlet of the TSG of the ConsiGma™-25 plant (GEA,
Belgium, (GEA, 2023)). It was filled with the pre-blend material which was fed at a
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nominal solid feed rate (SFR) of 15kg/h. A liquid tank stored deionized water, which
was supplied to the TSG by means of a mass flow controlled peristaltic pump at a liquid
feed rate (LFR) of 60 g/min, resulting in the nominal liquid-to-solid ratio (LS) of 24 %.
The TSG with a screw diameter of 20mm and a length-to-diameter ratio of 20:1 was
operated with the nominal screw speed (SS) of 700 rpm. The chosen screw configura-
tion was: 1K/6 / 2x1T / 2x1,5T / 4x2T / 6K/4 60° / 1x1,5T / 6K/4 60° / 1x1,5T /
2K/6 60°, with K representing kneading- and T representing transport elements (e.g.,
2K/6 60° stands for two kneading elements shifted by 60°, with a length of 1/6 of their
diameter). The nominal barrel temperature (BT) of 30° C' was controlled by a PID con-
troller. The pre-blend material was conveyed among the granulator screws, the liquid
was distributed, and wet granules were produced. Figure 1 shows a schematic diagram
of the investigated granulation unit.

Solid feeder Liquid pump
SFR LFR
| | 5]
{ Z | i
SS Temp. control BT

- Parsum probe
Distribution data

Wet granules  -%°,
.:‘ °

Figure 1: Schematic representation of the ConsiGma™-25 granulation unit with the Parsum probe
monitoring the size of wet granules. Legend: Solid feed rate (SFR), liquid feed rate (LFR), screw speed
(SS), barrel temperature (BT).

2.2.2. PAT strategy

The size of the wet granules was captured in-line by means of an IPP 80-P inline
particle probe (Parsum GmbH, Germany, (Parsum, 2023)) mounted at the TSG outlet.
The probe uses the spatial filter velocimetry principle. In brief, in the measurement
volume a laser diode emits a beam sensed by an array of optical fibres connected to in-
dividual photo-detectors. Particles passing through the volume therefore cast a shadow
on the detectors, generating a signal on the whole array whose frequency is proportional
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to the velocity. The time of flight is determined by the time a single photo-detector is
blocked by the shadow of a moving particle. From these two signals, the chord length
distribution and subsequently the PSD is calculated by the instrument software IPP
V9.00 (Dieter et al., 2011; Silva et al., 2013).

The IPP 80-P probe was mounted directly in the product stream at the granulator outlet
with the help of a custom built mechanical interface, depicted in Figure 2. The design
consists of a 100 mm cylindrical tube intersected with a ¥80 mm tube sideways, with
welded tri-clamp flanges, and a conical shape toward the bottom. The stainless steel
interface can be opened for inspection and is easy to clean. The D12 disperser unit with
an inlet opening of ¥7.5 mm that includes a teflon coated cap for less adhesion of the
wet granules, was attached to the probe. An air unit constantly supplies the disperser
and cleans the optical windows with an air flow set to 6 and 301/min, respectively.
Additional purge air pulses are used every 8 s to remove granules if they got stuck or
block the disperser inlet. An additional valve is mounted on top of the TSG for pressure
compensation, such that the internal ConsiGma™-25 pressure sensor does not trigger
a false alarm due to the pulses.

The instrument software was set to a ring buffer of 5000 particles for fast response, using
the whole measurement range from 50 to 6000 um and an acquisition rate of 1s. The
software outputs are the number-density and volume-density distribution of the PSD, as
well as the velocity distribution, aspect ratio, and particle rate (the number of particles
per second passing the probe). In this work a volumetric density distribution gs(z),
given for a size array x of ngs = 36 size fractions, was used. All process data were cen-
trally stored and made available on the SIMATIC SIPAT 5.1.1.0 platform (Siemens AG,
Germany, (Siemens, 2023)). Methods and collectors were defined in SIPAT to interface
with the Parsum OPC-DA server (Parsum GmbH, Germany, (Parsum, 2023)) and the
iFix OPC-DA (GE Digital, USA, (iFix, 2023)) for the ConsiGma™-25 SCADA /HMI
system.

2.2.3. Particle size distribution (PSD) characteristics to be modeled

In order to use the PSD information captured via the Parsum probe for modeling or
control purposes, the relevant scalar characteristics should be extracted from measured
distribution data. These PSD characteristics should reflect the physical properties of
the produced granules and also be available in real-time (important for application in a
feedback control concept). Following that idea, the four statistic moments (M7, My, Mj
and M,) are defined as PSD characteristics (Stie, 2008; Ramsey et al., 2002). The
connotation of individual moments is explained by an example with three arbitrary
distributions depicted in Figure 3.

PSD-Moment 1. The first moment (mean/expected value) of a distribution is defined
as

M, = /OO q3(x)z dx. (1)

o0

An increase in the average size of produced granules is reflected by an increase of M;.
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Figure 2: Mechanical interface integrating the Parsum IPP 80-P inline particle measuring probe
mounted at the granulator outlet (CAPRI, 2023a).

PSD-Moment 2. The second central moment (variance) of a distribution is defined as
M, = / g3(x)(z — M;)? dz. (2)

M, captures the distribution broadness, i.e., the higher M, gets, the higher the possibility
to find the granules further away from the mean value M;.

PSD-Moment 3. The third standardized moment (skewness) of a distribution is defined

) My — /_ Z 45(2) (”“"JMijl)g da. 3)

M3 provides information on the distribution shape, i.e, the relative size of the distribution
tails. A negative value of M3 implies a longer distribution tail on the left, and a positive
value of M3 implies a longer tail on the right side of the observed distribution.

PSD-Moment 4. The fourth standardized moment (kurtosis) of a distribution is defined

) M, = /_Z g3(z) (m\;Mijly dz. (4)

Similar to M3, My also provides information on the distribution shape. It is a measure
of the overall tail extremity, without giving information on which side the effect is more
pronounced.

In addition to the statistic moments, the following deviation measures are defined.
Again, the meaning of individual measures is illustrated with the help of three dis-
tribution examples in Figure 3.




Reference Deviation. The first deviation measure represents the deviation from an ar-
bitrary reference distribution g¢s,.; and is calculated as

Ndist

Cref = (Ml - eref) Z ’qS,i - Q3Tef,i|~ (5)

i=1

This measure is a suitable choice for implementing a PSD control loop: A distribution
that yields the best final product properties and that results in a robust process per-
formance can be selected as the reference distribution. The control loop would then
aim at driving e,.; to zero. For the model development purpose, an arbitrary Gaussian
distribution with a mean value of 1555 um and a standard deviation of 900 ym is chosen
as a reference distribution (for this reference distribution, e,.; approximately equals zero
at nominal process parameters).

Normal Deviation. The second deviation measure is calculated as

e ;= % <QB,Z' - anormal,i(Mla M2)>2 (6)
norma i=1 QBnormal,i(Mly MQ)

and it represents the deviation from the Gaussian distribution with the equivalent first
and second characteristic moments. This quantity is relevant for the development of the
signal processing concept. However, it is not relevant for the modeling as it cannot be
directly correlated to the specific physical properties of the granules.

PSD signal processing. The cleaning of the Parsum PAT probe (for more details please
refer to Section 2.2.2) sometimes results in corrupted PSD measurements. The corrupted
PSD data provide no useful information and could compromise the process modeling.
The developed PSD signal processing algorithm detects and replaces the corrupted PSD
data in the following way: The current value of normal deviation e,gmae is compared
to the mean value over a time window nyy, = 20, and the respective difference is
calculated. If the calculated difference exceeds the threshold of 2.5 standard deviations
over the same time window, the measured PSD is detected as corrupted. The corrupted
PSD is replaced with the mean value over the same time window. Figure 4 depicts
the performance of this concept. Furthermore, in order to improve the signal-to-noise
ratio (SNR), all introduced PSD characteristics are low-pass filtered via the following
difference equation

Yk = 0.15yx + 0.85Y pite k-1 (7)

with y;, representing the evaluated and yy;; , representing the filtered value of the signal
at the k-th time instant. The filter coefficients are chosen as a compromise between the
achieved SNR and the time delay brought into the system by filtering.

2.2.4. Definition of model structure
The aim of modeling is to develop a simple, yet comprehensive description of the sys-
tem of interest. The process parameters that have an influence on the product quality
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Figure 3: PSD characteristics illustrated by three arbitrary distributions: A distribution shift from
left (PSD 1) to the right (PSD 3) correlates with an increase of the respective first moment M, i.e.,
with an increase in the average size of the produced granules. The low M value of the narrow second
distribution indicates the low chance of finding the granules further away from the calculated M;.
The first distribution with the long tail on the right implies an overall higher amount of agglomerates
than fines (reflected in the positive sign of M3). The opposite can be stated for the third distribution
characterized by the negative M3 value. The lowest tendency toward granule size outliers of the second
distribution is correlated with the lowest My value (compared to PSD 1 and PSD 3), and vice versa.
The second distribution is similar to a Gaussian and exhibits a low €,orma value. The first and
third distributions show higher, yet similar deviation, again reflected in the respective e€,orma; values.
To illustrate the meaning of the reference deviation, PSD 2 is chosen as the reference distribution.
Positive/negative ey values imply the production of larger/smaller granules than for the reference
distribution. The total extent of the deviation is reflected in the absolute value of the reference deviation.
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attributes are determined and considered as model inputs. In control-oriented modeling,
the model inputs can be perceived as process actuators (i.e., can be externally manip-
ulated in real-time). Real-time monitored quantities that reflect the product quality
attributes are considered as model outputs.
In order to select the model structure, a systematic investigation of the influence of
granulation process parameters on the granule size was performed. Solid feed rate,
liquid-to-solid (LS) ratio, screw speed, and barrel temperature were considered to be
potential model inputs, and the PSD characteristics introduced in Section 2.2.3 were
considered to be potential model outputs. A design of experiments (DoE) was per-
formed using the Plackett Burman screening design in Modde DoE software (Sartorius,
Germany, (Sartorius, 2023a)). This DoE is shown in Table 2 and it involved eleven
runs with simultaneous changes in granulation process parameters. The duration of
individual runs was adjusted during the experiments, such that both model inputs and
outputs reach a steady state. Obtained results indicate a strong relationship between
the granule size (more specifically its first, second, fourth moment, and the reference
deviation) and granulation LS. Influence of other process parameters was not confirmed.
Therefore, these are excluded from the modeling procedure. The proposed structure of
the granule size process model is depicted in Figure 5. Due to reproducibility issues, the
third characteristic moment is excluded from the model structure.
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Table 2: Executed DoE for capturing the effect of granulation process parameters on the
size of wet granules.

Run Nr. || LS | SFR | BT SS M, M, Ms My | eref
/] ] | (54 | °C | [rpm] || fmm] | [mm?] | [/ | /1 | /]
1 24 15 30 700 2.2 1.7 -0.07 | 1.7 | 0.07
2 18 10 35 900 1.0 0.6 0.22 | 1.7 | -0.21
3 18 20 35 900 1.2 0.6 0.04 | 1.78 | -0.11
4 30 10 35 500 3.0 2.4 0.13 | 2.2 | 0.22
) 30 20 35 500 2.9 2.0 -0.2 | 21 | 0.19
6 24 15 30 700 2.0 1.5 -0.1 1.8 | 0.06
7 18 20 25 500 1.3 0.7 -0.06 | 1.7 | -0.10
8 18 10 25 500 1.2 0.6 -0.07 | 1.7 | -0.14
9 30 20 25 900 3.0 1.6 0.176 | 2.4 | 0.21
10 30 10 25 900 3.0 2.3 0.1 2.2 1 0.21
11 24 15 30 700 2.0 1.3 -0.18 | 1.9 | 0.06

Acronyms:

Granulation process parameters: Liquid-to-solid ratio (LS), solid feed rate (SFR),
barrel temperature (BT), screw speed (SS).

Particle size distribution characteristics: Moment 1 (M), moment 2 (M), mo-
ment 3 (Ms), moment 4 (My), reference deviation (eyf).

2.2.5. Local linear model tree (LoLiMoT) approach

The process modeling is performed by means of the LoLiMoT approach (Nelles,
1997). LoLiMoT is an algorithm for the data-driven identification of nonlinear systems
by means of weighted local linear models (LLM).

General description. The standard model structure depicted in Figure 6a involves p
inputs uy,...,u,, and one output y. Each of M LLMs outputs is associated with the
respective validity function ®4, ..., ®,,. LoLiMoT is a two-step approach: The first step
involves LLM parameter identification (wjo, ..., wip, 7 € 1,..., M), with individual LLM
outputs defined as

Yi = Wip + WinUy + ...+ Wiplyp. (8)
The second step involves the input range partitioning in order to determine the tree

structure of the M LLMs. The final model output is calculated as a weighted sum of

individual LLMs
M

9= 5:Pi(u). (9)

i=1
Figure 6b illustrates the application of the LoLiMoT algorithm for the approximation
of a nonlinear static function.

Design of excitation run. Data-driven modeling implies a direct relationship between
the experimental data used for the model identification and the model quality. The

11



Granule size
process model

| > Submodel 1 ——> PSD-M;
Liquid-to-solid

ratio (LS) | 3 | Submodel 2 ——> PSD-M,
A\ [ submodel 3 > PSD-M,
\ Submodel 4 ——> PSD et

Figure 5: Proposed structure of the granule size process model.

| local linear

Validity (02
function 2 [

u2 N\ Y2

Output y

D— 0 A . A 4
\I"(Llidity funcgiuns Py ... <‘I>4

0 5 10 15 20

Input u

(b) The nonlinear static function y is approximated
via four LLMs. LLM parameters, i.e., the offset and
the slope of straight lines, and the respective validity
functions are determined. The final model output 7 is
(a) Standard LoLiMoT model structure. calculated as a weighted sum of individual LLMs.

Figure 6: LoLiMoT approach.

choice of appropriate excitation signals for modeling experiments is crucial to obtain
an accurate model. Therefore, a combination of two excitation runs was performed.
The first excitation run involved amplitude modulated pseudo random binary signal
(APRBS) LS variations. APRBS, characterized by random level amplitude (A) and
level duration (L) is a standard choice for the LoLiMoT excitation signal. The results of
the first excitation run were utilized to design the second excitation run. Again, the LS
sequence was chosen in an APRBS-like fashion, but A and L were optimized to achieve
the maximal average distance between the new and existing data points. The following
paragraph can be used as a step-by-step guide for the design of the excitation run (for
the visual representation of the introduced steps please refer to Section 3.1).

Step 1. An APRBS LS sequence was designed using the System Identification Toolbox
in MATLAB (MATLAB, 2023c) and applied to the real production plant. The PSD
of produced wet granules was captured via the Parsum probe, and the first moment
was evaluated according to Equation 1. The first part of the experiment (approximately
thirty minutes) involved slow transitions between the random amplitude levels offering an
insight into the steady-state behavior of the system. The second part of the experiment
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involved fast transitions between the random amplitude levels capturing the system
behavior in high dynamic regions.

Step 2. The designed LS- and measured M, sequences were provided as the identification
data for the LoLiMoT algorithm. Preliminary LoLiMoT training was performed and the
neuro-fuzzy-model(NFM) (Mishra, 2020) describing the relation between the LS and M,
was obtained. This NFM was used to predict the first characteristic moment M; ;0.
Also, the collected data was used to examine the coverage of input-output (IO) space.
Typically, there are a few non-covered areas remaining in the IO space (for more details
please refer to Section 3.1). To improve the model performance in these areas, the second
excitation run was designed.

Step 3. In order to avoid repeating the already available experimental data points, the
new APRBS-like LS sequence was designed in an optimal manner. The work (Heinz
and Nelles, 2018) introduces an approach for the iterative optimization of LoLiMoT
excitation signals. Level amplitude A and level duration L are considered optimiza-
tion variables in each iteration. The optimization objective is defined by means of the

following cost function
N+L

J :% Z dNN(XOld,Xk). (10)
k=N+1
The function dy calculates the smallest distance between any existing data point stored
in X4 and the newly created one xi, i.e., maximizing J is equivalent to maximizing the
distance between the existing and new data points. The proposed algorithm involves
the following steps:

e Initialization: The data matrix X4 is filled with the available data set of size N.
In the first iteration, X4 contains the identification data collected in the Step 1.

e Optimization problem is defined as

1 N+L
max. - k:z:NH dnn (Xoid, Xk)
st. 1T%H<A<32% (11)
205 < L<240s
LeZ

with x; holding the to-be-optimized LSyew = [Anew - - - Anew| signal of the length
Lew, and the respective first moment M ,,¢,, predicted via the preliminary NFM
obtained in step 2. The optimization problem is solved by means of a genetic
algorithm using the Global Optimization Toolbox in MATLAB (MATLAB, 2023a).
The genetic algorithm is chosen due to its capability to consider integer constraints
(i.e., L € Z). The optimal A,., and L,., are obtained, the new LS sequence is
appended to the existing one, and the matrix X,;; is accordingly extended. Note:
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For more details on the introduced approach (e.g., dyn, Xo, Xi definition) please
refer to (Heinz and Nelles, 2018; Universitat Siegen, 2023).

e The optimization procedure is repeated until the specified experiment duration is
reached.

Step 4. The optimal LS sequence obtained in the Step 3 was applied to the ConsiGma™-
25, the resulting PSD variations were measured (the respective M; evaluated), and the
final IO space coverage was examined.
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2.3. Granule API- and liquid content

2.8.1. Technical process description

For the creation of the chemometric model, granules of different levels of API content
need to be presented to the Raman probe. In order to generate the intentional variations
of the API concentration, a second loss-in-weight feeder was installed at the granulator
inlet. The first and second feeder were filled with the pre-blend materials with the API
concentration of 8 % and 0%, respectively. The quantity of individual excipients in the
pre-blends was adjusted to keep the same ratio as for the pre-blend depicted in Table 1.
The two feeders supplied the pre-blend powders with the nominal SFR of 7.725 kg/h, and
7.275 kg/h, resulting in the nominal API concentration of 4.12 % at the granulator inlet.
The remaining granulation parameters stayed the same as introduced in Section 2.2.1.
A schematic representation of the ConsiGma™-25 granulation unit depicted in Figure 1
remains similar with two adaptations: The setup is extended with an equivalent second
loss-in-weight feeder placed at the granulator inlet, and the Parsum measurement probe
providing size distribution data is replaced by a Raman probe providing spectral data
at the granulator outlet (please refer to Section 2.2.1 for more details).

2.8.2. PAT Strategy

The API content of the produced wet granules was captured by means of a sam-
pling device and the Raman method. The Raman method is the study of in-elastically
scattered light (i.e., photons scattered as different wave number) from a monochromatic
light source in the context of vibrational spectroscopy. A fingerprint of specific bands is
observed representing the different molecular bonds of the material and its attributes like
polymorphic form. This makes the method interesting to be utilized as a PAT tool, as
the peak heights correlate with concentration. Compared to near-infrared spectroscopy
(NIRS), only a modest influence of PSD is present (Paudel et al., 2015). However, the
in-line implementation is more complex than NIRS, as the measurement volume has to
be shielded from external light sources and the sampling device has to be built from
materials that do not show reflective or auto-fluorescence behavior. Therefore, a sam-
pling device was designed that is suitable for wet granules and dry powder handling, and
allows hosting a wide-angle illumination Raman probe. Specifically, the Rxn2™ Hybrid
Raman process spectrometer with attached PhAT (Pharmaceutical Area Testing) probe
(Kaiser Optical Systems, USA (Kaiser Optical Systems, 2023)) was used in the setup.
Because of its rapid prototyping capability and flexible design options, 3D-printing was
used to create the needed parts. They were made of matte black PLA NX2 (Extrudr,
Austria (Extrudr, 2023b)) printed on a i3 MK3S+ (Prusa, Czech Republic (Prusa,
2023)). The design consists of two rotating compartments with a volume of approx-
imately 8 ml each, in an hourglass shape with a saphire glass (Edmund optics, Germany
(Edmund Optics, 2023)) on the other side, with printed cleaning seals of Flex TPU
(Extrdr, Austria (Extrudr, 2023a)), and purging air ducts. The device is shown in Fig-
ure 7. The complete construction fits inside the @80 mm Tri-Clamp flange adapter as
used with the Parsum probe (see Section 2.2.2). Open source hardware and software
solutions were used when possible. A closed loop NEMA17 stepper motor (Bigtreetech,
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Figure 7: Sampling device used to present the granules to the Raman probe (CAPRI, 2023a).

China) with GRBL1.1 stepper motor controller board rotates the cups. Air pulses are
generated with a VPPE-3-1-1 pressure regulator valve (Festo, Germany (Festo, 2023))
and 4 — 20mA T-Click interface board (MikroE, Serbia (MIKROE, 2023)). The com-
munication and synchronization between Raman and sampling device is implemented
over OPC-UA protocol.

The OPC-UA server, using the open source python-opcua library (FreeOpcUa, 2023),
runs on the Raman station and waits for a new recorded spectrum from the iC Raman
4.1.915 software (Kaiser Optical Systems), that are pushed to subscribed clients and
starts the next sampling cycle. The sampling device control box houses a Raspberry
Pi 4 Model B (Raspberry Pi, 2023) that executes two Python scripts (using the opcua-
asyncio library): The OPC-UA client for sample device control and the chemometric
model prediction engine. After the signal for the new sample cycle is received, the purg-
ing air pulse is generated, and the step motor is instructed to rotate the cups by 180
degrees. Then the cups are filled with fresh granules and a 15 s Raman spectrum acqui-
sition takes place (until the measurement cycle starts over again). The complete cycle
time of 20 s is chosen as a compromise between signal-to-noise ratio and measurement
frequency.

2.3.83. Chemometric modeling

The Raman spectral data collected every 20s (cycle time of the sampling device)
and the respective API concentration at the granulator inlet Cj, (computed from the
pre-blend concentrations and the feeder mass flow rates) as

SFR1-8%

Cin = SFRI T SFR2

(12)

were used for the chemometric model development. The baseline of the captured Ra-
man spectra was corrected using Whittaker’s asymmetric least square (ALS) fitting
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algorithm (Eilers, 2003). Also, the standard-normal-variate (SNV) processing of the
selected part of the baseline-corrected spectra (i.e., subtraction of the mean value and
normalization by the standard deviation) was performed. For initial chemometric model
development SIMCA multivariate data analysis software (Sartorius Stedim Data Analyt-
ics AB, Sweden, (Sartorius, 2023b)) was used. A partial least squares (PLS) regression
model with three PLS components was trained on the spectral range from 445cm™=! to
1725 ecm™!, giving a root mean square error in cross validation of 0.20 wt% API. Model
coefficients were exported and used in a custom chemometric prediction engine imple-
mented in a Python script: An OPC-UA client runs using the opcua-asyncio library,
the spectra pre-processing steps and PLS calculations are performed, and the predicted
values are made available via an OPC-UA server.

Furthermore, the Raman spectral data were used to estimate the liquid content of the
granules at the granulator outlet (LS,,;). In this case, the Raman spectral data and the
respective L.S;, at the TSG inlet calculated as

LFR

L in —
5 SFR1+ SFR2

(13)

were provided as the identification data for the development of the second chemometric
model. Again, the baseline correction and SNV processing of the Raman spectra were
performed. MATLAB with the Statistics and Machine Learning Toolbox (MATLAB,
2023b) was used to train a PLS model with six components on the spectral range from
100em~! to 1600em~!. For a detailed description of DoE used for model training,
please refer to Section 3. Furthermore, the Raman analysis of pre-blend raw materials
was performed using the Raman PhAT probe with an exposure time of 15s (the same
exposure time, as for the inline measurement). The obtained raw spectra are shown in
Figure A.13 (please refer to Appendix A).

3. Results and discussion

3.1. Granule size model

Ezxperimental data for model identification. The experimental data required for model
training were collected via systematically designed excitation runs. As introduced in
Section 2.2.5, two system excitation experiments were performed, the first excitation
run with a typical LoLiMoT input sequence (APRBS), and the second excitation run
with an optimal input sequence. Figure 8 outlines the steps taken for the design of
two excitation runs (please refer to Section 2.2.5 for details). The introduced four-step
approach involves the following: In Step 1 the APRBS LS sequence was designed and
applied to the ConsiGma™-25 (first excitation run), the induced PSD variations were
captured via the PAT solution introduced in Section 2.2.2, and the first characteristic
moment of the PSD was evaluated. Step 2 involves preliminary LoLiMoT training (a
model predicting M; from LS trained on the identification data collected in Step 1)
and examination of 1O space coverage. In Step 3, the LS sequence was designed in an
optimal manner to cover the blank regions of 10 space (empty or poorly covered regions
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in the first excitation run). For that purpose, the identification data from Step 1 and
the preliminary model trained in Step 2 were used by the optimization algorithm. Step
4 basically reiterates the first two steps with the LS sequence designed in Step 3, i.e.,
the optimal LS sequence was applied to the ConsiGma™-25 (second excitation run),
the first characteristic moment of PSD was evaluated, and the final 10 space coverage
was examined. The experimental data obtained in Step 4 successfully extended the
preliminary IO space (Step 2), i.e., the initially empty ranges were filled with new data
points. Therefore, it can be stated that the collected experimental data precisely reflect
the system behavior on the operating range of interest and can be used for model iden-
tification.

Note: Although the obtained experimental data are only valid for modeling of the inves-
tigated pharmaceutical formulation, the proposed method for the design of excitation
runs is generally applicable and can be re-executed for different formulations in a timely
manner.

Model identification. The PSD data collected in the two excitation runs were merged,
the PSD signal processing was performed, and the PSD characteristics were evaluated
(according to Equations 1, 2, 4, and 6 introduced in Section 2.2.3). The combined
sequences (LS, M;, M, M,, and e,.f) were provided as the identification data set
for the LoLiMoT training. The training was performed in MATLAB using the LMN-
Toolbox LMN-Tool (2023); Hartmann et al. (2012) and repeated for each of the proposed
model outputs, i.e., a submodel per PSD characteristics was created (please see Figure
5). As a result, the final granule size process model involves four neuro-fuzzy-models.
For the M; model, the time-delayed LS and size sequences were arranged as

llT = [Ul, . ,’U,p] = [LSk_l 0o LSk—nLOL’ Ml,k—l e M17k_nLoL]7 (14)

and used as the inputs for the LoLiMoT structure proposed in Figure 6a. The time delay
nror, = 3 was chosen as a compromise between the model accuracy and complexity.
The analog approach was followed for the remaining PSD characteristics. The LoLiMoT
algorithm suggested to use the structures with 15, 12, 14, and 12 LLMs for My, My, My,
and e,.; models, respectively. These results (together with the obtained experimental
data) confirm the statements regarding the non-linear behavior of granule size introduced
in (Nicolai, 2019), and justify the choice of modeling algorithm (in contrast to LoLiMoT,
linear models like, e.g., transfer functions would not be sufficient to accurately reflect
the system behavior in the complete operating range).

Evaluation of model performance. The model performance was investigated both on the
training and validation data set. The modeling results depicted in Figures 9 and 10
indicate a good agreement between the measured and predicted PSD characteristics and
confirm the quality of the identified model. The validation experimental data set was
not chosen randomly but originates from the preliminary control concept experiments.
In these experiments, the reference value for M, is changed, and the LS is accordingly
adjusted, i.e., this data set involves gradual changes of LS over the complete operating
range, as well as the dynamic short-time deviations from the nominal point. Therefore,
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the good model performance is even more significant, as this corresponds to a realistic
application example. A discrepancy between the measurement and the model prediction
at the end of the validation experiment (please see the violet section in Figure 10)
originates from the difference between the LS set-point (SP) used as model input and its
respective actual value (AV). A fairly similar event would also occur in the case of raw
material variability (e.g., PB with different PSD) or equipment faults (e.g., inaccurate
feeding) where the model prediction would not match the measured PSD characteristics.
This indicates that the difference between the measurement and model prediction could
be used for the development of a fault detection algorithm. Furthermore, the SP and
AV of LS could be compared in real-time, and the potential deviations could be used as
correction terms, additionally improving the model performance.

20



Moment 1
[m)]
S

Moment 2
[pem?]

Moment 4
/]

Deviation
[

: €ref,meas

—€ref,LOL

0 20 40 . 60 .
Time in min

80

100

Figure 9: The granule size model trained via the LoLiMoT approach predicts PSD characteristics

accurately on the training data set (CAPRI, 2023b).

21



sof 130
n o 24+ 20
X | U U

==k | | —AV—SP

| | | | | | | 10

7
2000° 10 20 30 40 50 60 70 80 70 80
—
+~
§ = 2000 | — M meas
g2 — M, o1
z 0 | | | | | | |
0., 10 20 30 40 50 60 70 80
x10
3 T T T T T T T

[aN]
g pe 2[ i _MZ,meas
g § 10 — M 101
o=
=

Moment 4
[/]

€ref,meas

—€ref LOL

Deviation
/]

05t | | Time in min | | 5
0 10 20 30 40 50 60 70 80

Figure 10: The granule size model trained via the LoLiMoT approach predicts PSD characteristics
accurately on the validation data set (CAPRI, 2023b).

22



3.2. Granule API- and moisture content model identification and validation

The experimental data required for the chemometric model development were col-

lected by means of the DoE data depicted in Table 3. The variations of inlet API
concentration in a range of 1.33 % to 7 % were realized via SFR variations. Additionally,
in order to assure the model robustness by different amounts of granulation liquid, LS
variations in a range of 18 % to 30 % were introduced to the system via LFR variations.
Thus, the Raman spectral data at the boundary (1.33% and 7 %) and central (4.12%)
DoE points were captured at different LS levels. Each run was executed for approx-
imately six minutes in order to achieve the steady-state operation. The chemometric
models predicting the outlet API concentration and outlet LS were developed according
to the procedure described in Section 2.3.3. The model calibration results are depicted
in Figure B.14 (please refer to Appendix B).
The performance of the developed chemometric models was investigated for the training-
and the validation data set (please refer to Figures 11 and 12). In both cases, a sat-
isfactory agreement between the set inlet- and estimated outlet API concentration is
confirmed. The same can be stated for the results obtained with the second chemomet-
ric model estimating the liquid content at the TSG outlet from Raman spectral data.
The 20 s time delay between the inlet- and via models estimated outlet quantities is not
a sign of the model weakness, but a consequence of the sampling time of the sampling
device (please refer to Section 2.3.2 for more details).

Table 3: Development of chemometric models DoE.

Run Nr. | SFR1 | SFR2 | LFR | LS;, | Ci,
/] HERGEIFAERORE
1 2.5 12.5 60 24 1.33
2 2.5 12.5 45 18 1.33
3 5.6 9.4 75 30 3.0
4 773 | 7.27 75 30 | 4.12
5 773 | 7.27 60 24 | 4.12
6 773 | 7.27 45 18 | 4.12
7 9.38 | 5.62 75 30 5.0
8 13.13 | 1.87 75 30 7.0
9 13.13 | 1.87 60 24 7.0
10 13.13 | 1.87 45 18 7.0

Acronyms:

Solid feed rate of API feeder (SFR1), solid feed
rate of the excipient feeder (SFR2), liquid feed rate
(LFR), liquid-to-solid ratio at the granulator inlet
(LSin), API concentration at the granulator inlet

(Cin).
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Figure 12: Chemometric model predicting API- and liquid content of wet granules from Raman spectral
data for the validation data set.
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4. Conclusion and outlook

The solutions proposed in this work allow the development of advanced control con-
cepts for granule size, API-, and liquid content of wet granules in ConsiGma™-25. The
validation results of the dynamic model for granule size indicate very good conformity
between the measurement and model estimation and thereby confirm the model qual-
ity. The same can be stated for the results of validation experiments obtained for the
chemometric models predicting the API- and liquid content from the Raman spectral
data. As such, these solutions can be used as a reliable (and necessary) basis for the
development of the following use cases.

Fault detection and digital assistant. The granule size process model can run in parallel
with the process. The difference between the predicted (i.e., M ror, Maror, M ror,
erefror) and via PAT probe measured PSD characteristics (i.e., My, My, My, €rer)
can be used as trigger signals for the fault detection algorithm. This algorithm can
be developed to detect and distinguish between different process disturbances, such as
equipment or material faults. Furthermore, the fault detection algorithm can support
the operator of the manufacturing line via an appropriate digital assistant concept. The
digital assistant concept will generate valuable suggestions to the operator, e.g., to check
the line for potential faults and eliminate them.

Soft-sensor for granule size. The identified granule size process model can be used as
a soft-sensor, acting as a potential replacement for the Parsum probe. The soft-sensor
application will be exceptionally valuable for the ConsiGma™-25 constellations where
the mounting of the Parsum PAT probe is not feasible. The equipment setup with the
Raman probe placed at the TSG outlet would be an example of such a constellation:
this configuration does not allow the additional installation of the Parsum probe due to
space limitations. In this case, the soft-sensor application will allow the simultaneous
monitoring of all intermediate CQAs, i.e., the measurement of API- and liquid content
via Raman, and the prediction of the wet granules size via the LoLiMoT approach.

Quality control concept. Intermediate CQAs, i.e., granule size, API-, and liquid content
can be monitored in real-time either via installed PAT equipment or via a soft-sensor.
This information can be used to discard non-conforming material by means of an ad-
vanced discharge control concept.

Process control concept. The granule size dynamic process model can be used for the
development of nonlinear MPC in a straightforward manner. The model quality signifi-
cantly impacts the MPC performance: on the one hand, the model is used during MPC
parameter tuning via simulation studies (acting as a replacement for the real system),
and on the other hand, the MPC prediction algorithm that is part of the MPC concept
uses this process model as a core component. In such an application, the MPC algorithm
adjusts the granulation process parameters (e.g., LS) in order to keep the granule size
(e.g., M) close to the reference. Furthermore, the API- and liquid content predicted via
chemometric models can be utilized as controlled variables in an appropriate feedback

25



control concept. Similarly to the granule size MPC, the granulation process parameters
can be adjusted in order to keep API- and liquid content close to the reference values.

The introduced use cases would ensure an increased product quality and allow
the mitigation of process disturbances, ultimately improving the performance of the
ConsiGma™-25 production plant.
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Appendices

Appendix A. Raman analysis of raw pre-blend materials.

><105
5 ! ! !
—1—2 3—4—5

£4

3

o, 37

wn

o

& 2f

£

&

/o A ﬂ

0 1 1 1
2000 1500 1000 500 0
Raman shift in em !

(a) Methyl 4-hydroxybenzoate API surrogate

5 x10% ‘ ‘
—1—2—3—4—5—=6
s 4
+
3
8,31
n
g
S 2f
g
<
==
0 I I I
2000 1500 1000 500 0

Raman shift in em !

(c) Avicel PH101

Raman spectra

192 34— 5 6|

0 I I
2000 1500 1000 500

Raman shift in em ™!

(b) Avicel PH101

Raman spectra
N w B (6] »

—_
T

0 L L L
2000 1500 1000 500
Raman shift in em™

(d) VIVAPHARM HPMC

1

Figure A.13: Raman analysis of raw materials in the pre-blend.

27



Appendix B. Raman calibration
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