
International Journal of Pharmaceutics: X 5 (2023) 100181

Available online 17 April 2023
2590-1567/© 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Predicting pharmaceutical inkjet printing outcomes using machine learning 

Paola Carou-Senra a,1, Jun Jie Ong b,1, Brais Muñiz Castro c, Iria Seoane-Viaño b, 
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A B S T R A C T   

Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low 
cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug 
implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, 
surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and 
drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data 
on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be 
developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support 
vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, 
consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models 
predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints 
with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to 
inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.   

1. Introduction 

Inkjet printing is a manufacturing technology based on material 
jetting, wherein droplets of ink are deposited onto a substrate. Inkjet 
printing has garnered considerable attention amongst pharmaceutical 
scientist for its versatility in producing personalised medicines and 
unique dosage forms (Alomari et al., 2015; Scoutaris et al., 2016a). 
Notably, inkjet printing has been used to load drugs onto orodispersible 
films (Alomari et al., 2018; Arshad et al., 2020; Jachowicz, 2017; Kiefer 
et al., 2021; Vuddanda et al., 2018), bioadhesive films for cervical 
administration (Varan et al., 2017), transdermal microneedles (Boehm 
et al., 2014; Uddin et al., 2015), coronary metal stents (Scoutaris et al., 
2016b), contact lenses (Pollard et al., 2023; Tetyczka et al., 2022), and 
even nails (Pollard et al., 2022). Inkjet printing has also been used to 

dispense drug-loaded micro- and nanoparticles dispersed in the ink 
liquid (Akagi et al., 2014; Boehm et al., 2013; Chou et al., 2021; Lee 
et al., 2012; Yeo et al., 2004). Inkjet printing may also be combined with 
other additive manufacturing technologies to impart special features 
that would otherwise be unattainable with conventional manufacturing 
technologies. For instance, inkjet printing was used in conjunction with 
fused deposition modelling (FDM™) 3D printing to produce drug-loaded 
tablets with quick response (QR) codes printed on them (Trenfield et al., 
2019). These QR codes were designed to encode patient-related infor-
mation that could be read using a smartphone, and to serve as an anti- 
counterfeit strategy. A similar concept was also applied for the fabri-
cation of orodispersible substrates and capsules with printed QR codes 
(Chao et al., 2021; Edinger et al., 2018; You et al., 2016). Potent drugs or 
drugs with low dose requirements are conventionally explored for inkjet 
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printing due to the technology's suitability for printing low dose drug 
products. However, inkjet printing has also been used to fabricate the 
entire 3D drug-loaded tablets (Acosta-Vélez et al., 2018; Kyobula et al., 
2017; Sen et al., 2020) and implants (Ruiz-Cantu et al., 2021). The 
affordability, precise control of droplet deposition, and versatility of 
inkjet printing has supported the continued expansion of research in its 
pharmaceutical applications, resulting in a wealth of publicly available 
data on printing parameters and outcomes (Evans et al., 2021). 

In inkjet printing, droplets are deposited either continuously 
(continuous inkjet) or with a drop-on-demand (DoD) mechanism. DoD 
inkjet printing can be further categorised based on the mechanism by 
which droplets are generated: thermal and piezoelectric inkjet printing 
(Daly et al., 2015; Hoath, 2016; Singh et al., 2010). In thermal inkjet 
printing, a thermal resistor present in the printhead heats the ink, 
inducing rapid vaporisation and consequently the formation of a vapour 
bubble that forces a droplet out of the nozzle. In piezoelectric inkjet 
printing, an electric current is applied to a piezoelectric material in the 
printhead, inducing mechanical deformation of the material which in 
turn exerts a pressure within the printhead, thereby ejecting a droplet. 
Due to the absence of heat application, piezoelectric inkjet printing has 
been popularly explored for the fabrication of personalised medicines 
loaded with thermally labile drugs (Eleftheriadis et al., 2020a; Elef-
theriadis et al., 2020b). Interestingly, while it might be instinctive to 
assume that thermal inkjet printing is not amenable to heat-sensitive 
drugs, there is insufficient evidence demonstrating that thermal degra-
dation of drug occurs during the printing process. This is because the 
application of heat in the thermal inkjet printing process last for only a 
few milliseconds (Scoutaris et al., 2016a). 

Regardless of the deposition mechanism, the optimization of ink 
characteristics and consequent printing outcomes have been the focus of 
pharmaceutical inkjet printing research (Evans et al., 2021). Ink prop-
erties, such as the viscosity, density, and surface tension, and printing 
parameters, such as printing speed and nozzle diameter, influence 
printing outcomes to different arbitrary degrees (Azizi Machekposhti 
et al., 2020). Undesirable printing results may include clogging, tailing 
of droplets, and the production of satellite droplets (tiny droplets 
splattered around the main droplet) (Azizi Machekposhti et al., 2019). 
Due to the plethora of variables, ink formulation development is often an 
empirical process that is time-, material-, and cost-consuming. 
Conventionally, the Ohnesorge number, which is a dimensionless 
number that describes the tendency of a droplet to stay intact, is used to 
predict if the ink will be jettable. An Ohnesorge number ranging be-
tween 0.1 and 1, which is equivalent to a Z value (where Z is the 
reciprocal of the Ohnesorge number) of 1–10, is often considered to be 
printable (Derby, 2015). However, there have been numerous excep-
tions, with inks with Z values above 10 found to be printable (Liu and 
Derby, 2019). Therefore, a predictive tool to better determine the 
printability of inks prior to the actual preparation and testing would 
allow pharmaceutical researchers to redirect their time and focus to 
devising more unique dosage forms to solve unmet clinical challenges. 

Machine learning (ML) is a branch of artificial intelligence (AI) that 
studies how to provide machines with learning capacity, based on al-
gorithms capable of identifying and learning from patterns in large and 
complex datasets. ML is one of the key enabling technologies of Industry 
4.0, and has already transformed numerous industries by providing 
actionable insights that previous approaches strategies fail to provide 
(Rai et al., 2021). The additive manufacturing and personalised medi-
cines community within the pharmaceutical sector has also begun 
exploring ways in which ML may be used to re-invent traditionally time- 
consuming processes (Elbadawi et al., 2021a; Elbadawi et al., 2021b; 
Jing et al., 2018). For example, ML has been used to predict printing 
outcomes and dissolution behaviours of FDM™-printed dosage forms 
(Elbadawi et al., 2020; Muñiz Castro et al., 2021; Obeid et al., 2021; Ong 
et al., 2022) and digital light processing (DLP)-printed tablets (Tagami 
et al., 2021), and to predict the design and fabrication of microneedle 
arrays (Rezapour Sarabi et al., 2022). However, ML-enabled predictive 

tools for inkjet printing outcomes have yet to be developed despite the 
pool of publicly available data in the literature. 

Therefore, the present study aims to develop and evaluate the per-
formance of ML models, using data mined from published literature, for 
predicting inkjet printing printability and the total drug dose in the final 
printed dosage form. This study will evaluate the multifactorial depen-
dence of inkjet printing outcomes, and how ML may be used to analyse 
nuance differences and provide more reliable predictions as opposed to 
the conventional guidance on jettability based on Z values. 

2. Materials & methods 

2.1. Data collection 

Google Scholar, PubMed, and Web of Science were used to extract 
articles published in English using the terms “inkjet printing” or “ink jet 
printing” or “ink-jet printing”, and “drug” or “drug device”, published 
between May 2000 and February 2022. For articles to be included in the 
dataset, they must meet the following criteria:  

• Articles must include information about the composition of the ink 
formulation.  

• Articles must include information that will allow the Z value to be 
calculated or information about the printer/nozzle/nozzle diameter.  

• Articles must be reporting about drug printing, e.g. articles on cell 
printing were excluded.  

• Articles reporting binder jetting were excluded. 

Additionally, information of several in-house formulations was also 
included. The data collected can be divided into four groups: (1) 
formulation composition and properties, (2) individual material properties, 
(3) process-related parameters, and (4) target variables. These are further 
elaborated on in the following subsections. 

2.1.1. Formulation composition and properties 
The composition of the excipients and drug in each formulation 

(ratio of the weight of each component to the total weight) were 
recorded. Attention was given in ensuring that for every formulation, 
the cumulative total ratio surmised to 1. Information on the physical 
properties of each formulation were also recorded in the dataset. These 
data are described in Table 1. 

2.1.2. Individual material properties 
The physicochemical properties of individual components of each 

formulation were also collected through PubChem and the Handbook of 
Pharmaceutical Excipients (9th ed.) (Sheskey et al., 2020). These were 
namely the material's molecular weight, melting point, and boiling 
point. If the material is a drug, its solubility in water was also recorded. 
Each component was also labelled with their material type, which are 
groups based on the materials' chemical structure. For example, the 
enteric polymers Eudragit E-100 and Eudragit RLPO are labelled with as 
“acrylic” material type, while rasagiline mesylate and terbinafine 

Table 1 
Summary of formulation-related properties.  

Variable Description 

Viscosity (mPa⋅s) Resistance of the ink formulation to deformation at a given 
rate. 

Surface tension 
(mN/m) 

Energy required to remove the surface layer of ink in a unit 
area. 

Density (g/mL) Measure of the ink's mass per unit of volume. 
Ohnesorge (Oh) 

number 
Dimensionless value that describes the tendency for a droplet 
to stay intact. It represents the ratio of internal viscosity forces 
to the surface tension and inertial energy. The lower the Oh 
number, the more likely a droplet will be formed, vice versa. 

Z value Inverse of the Ohnesorge number.  
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hydrochloride are labelled as “amine”. There was a total of 84 material 
types. 

2.1.3. Process-related parameters 
Information on the parameters associated with the inkjet printing 

process were included in the dataset. These variables are described in 
Table 2. 

2.1.4. Target variables 
Target variables are the variables that the ML models are built to 

predict. In this study, these were whether the ink formulation was 
printable, if the ink were printable whether they would produce satellite 
droplets, and the total drug dose in the final printed dosage form 
(Table 3). 

2.2. Feature set generation 

Based on the formulation composition (as described in Section 2.1.1) 
and/or individual material properties (as described in Section 2.1.2), 
five feature sets were generated: material with company name, material 
name, material type, weighted physical properties, and physical prop-
erties by material type. These feature sets differ in how information 
about the formulation composition is represented. These were created as 
previously reported, except for the weighted physical properties and 
physical properties by material type feature set (Ong et al., 2022). 
Briefly, in the material with company name feature set, both the 
tradename of the material and the company from which it is supplied are 
treated as unique identifiers (e.g., PLGA from Birmingham Polymers is 
regarded as different from PLGA from KITECH). On the other hand, the 
material name feature set regards the same material from different 
companies as the same. Using the same example, PLGA from Birming-
ham Polymers and that from KITECH will both be regarded as “PLGA”. 
The material type feature set also groups materials, but by their chem-
ical structure rather than their name, thereby further reducing dimen-
sionality. The weighted physical properties feature set was generated by 
calculating the weighted molecular weight, melting point, boiling point, 
and water solubility of the drugs. The values of the individual weighted 

properties were calculated by multiplying the physical property by the 
weight fraction of the material. For example, if 2.0% w/w of caffeine 
(MW = 194.19 g/mol) was used in the formulation, the weighted mo-
lecular weight of caffeine in this formulation would be 3.8838 g/mol 
(0.02 * 194.19). When a given physical property of a material is un-
known, only the weight fraction and properties of the remaining mate-
rials that make up the formulation are used to compute the weighted 
average of that physical property. The physical properties by material 
type feature set was created by combining weighted physical properties 
and material type, where the input is the weighted physical properties 
for each material type in the formulation. 

2.3. Machine Learning Techniques (MLTs) 

A computer running a macOS Monterey operating system (v12.5), 
with an Apple M1 Max chip and installed RAM memory of 32GB, was 
used for data analysis and development of ML models described herein. 
All scripts reported herein were developed using python (v3.9.7) with 
the scikit-learn package (scikit-learn, v0.24.2). 

2.3.1. Data pre-processing 
Any formulation with missing data was removed. To improve ma-

chine learning performance, quantile transformation was applied to 
numerical variables for them to have Gaussian distribution. Categorical 
variables were label encoded. 

2.3.2. Selecting best set of MLT, feature set, and additional input 
parameters 

To develop a suitable machine learning model for each target vari-
able, the best combination of MLT, feature set (as reported in Section 
2.2), and additional input parameters (e.g., process-related parameters 
and formulation-related properties) was investigated. Three MLTs were 
used in this study: artificial neural networks (ANN), support vector ma-
chines (SVM), and random forests (RF). Every possible permutation of 
MLT, feature set, and relevant additional input parameters were evalu-
ated for each target variable over 50 random seed values. A 75:25 split 
was used for training and testing the MLTs. Permutations that resulted in 
less than a third of the total number of formulations (i.e., 229 formu-
lations) were excluded from evaluation. The default hyperparameter 
values for each MLT is described in Table 4. 

The performance of machine learning models developed from each 
permutation was evaluated based on numerous metrics depending on 
the type of analyses being conducted. For classification analyses, the 
Cohen's kappa, precision, recall, and F1 was used. For regression anal-
ysis, the mean absolute error (MAE) and the coefficient of determination 

Table 2 
Summary of process-related variables.  

Variable Description 

Object printed Type of device that was being printed (e.g. film, 
particles, microneedles, tablets) 

Printer Model of inkjet printer that was used. 
Nozzle Model of nozzle that was used. 
Nozzle Diameter Size of the orifice through which droplets were 

ejected from. 
Print frequency Vibration frequency of the piezoelectric material 

in a piezoelectric inkjet printer. 
Peak voltage Voltage applied to the piezoelectric material in the 

piezoelectric printer. 
Drop spacing (μm) Distance between each droplet. 
Reported droplet volume (pL) Volume of an individual droplet ejected by the 

inkjet printer. 
Area (cm2) Surface size of the desired print. 
Number of layers printed in a 

single print cycle 
Total number of layers that was printed during one 
printing process. 

Theoretical drug dose (mg) The amount of drug expected to be contained in a 
single printed dosage form.  

Table 3 
Summary of target variables.  

Target variables Values Analysis Type 

Printability Yes or No Binary Classification 
Printability (satellite) Good or Satellite Binary Classification 
Total drug dose Drug dose (mg) Regression  

Table 4 
Default hyperparameter values used for each MLT in the initial ML experiment.  

MLT Hyperparameter Value 

Random Forests Bootstrap False 
Maximum depth 40 
Maximum features Sqrt (square root) 
Minimum samples leaf 1 
Minimum samples split 2 
Number of estimators 10 

Support Vector 
Machines 

C (regularization 
parameter) 

100 

Gamma (kernel 
coefficient) 

0.1 

Kernel Rbf (radial basis function) 
Artificial Neural 

Networks 
Hidden Layer Sizes 60, 40, 10 
Learning rate Constant 
Solver Adam (stochastic gradient- 

based optimizer) 
Activation Relu (rectified linear unit 

function) 
Alpha 0.0001 
Maximum iterations 500  
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(R2) was used. For each set of MLT, feature set, and additional input 
parameters, the average metric score over 50 seeds were calculated. The 
set that performed the best for each target variable was subsequently 
optimized by hyperparameter tuning. 

2.3.3. Hyperparameter tuning 
A fixed set of possible values for each hyperparameter for each MLT 

was pre-defined (see respective tables in following sections). The best 
hyperparameter values for each MLT were determined from a grid 
search with 5-fold cross-validation, performed on the training set. The 

optimized machine learning models were then applied to the testing 
dataset, and their performance were evaluated based on the metrics 
described in Section 2.3.2. 

3. Results 

3.1. Exploratory data analysis 

Using the search terms as described in Section 2.1, a total of 357 
articles were found, although only 21.0% of these articles met the 

Fig. 1. Missing matrix diagram, after populating dataset with estimated values. Blue bars indicate the availability of data, and missing data are indicated by white 
spaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Sankey diagram showing distribution of printability.  
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inclusion criteria. Consequently, a total of 687 formulations were 
extracted from 75 articles (full list enumerated in Supplementary Ma-
terial Table S1) and 2 in-house projects. Reporting of information rele-
vant to printing settings (e.g., print frequency, droplet volume) and 
formulation characteristics (e.g., viscosity, density) were very heterog-
enous. To improve the completeness of the dataset, the values of some 
parameters, namely dynamic or absolute viscosity (labelled in this study 
as viscosity), density, Z-value, and Ohnesorge number, were estimated if 
they were not reported. The density of the formulation was estimated by 
dividing the total mass of the materials used over the total volume of the 
ink formulation. Dynamic viscosity could be estimated in cases where 
the kinematic viscosity is reported by multiplying the kinematic vis-
cosity (in mm2/s) with the density of the formulation (in g/mL). As 
articles typically only reported either the Z-value or the Ohnesorge 
number, and the Ohnesorge number is the reciprocal of the Z-value, one 
was used to calculate the other. Since the Z-value and the Ohnesorge 
number share the same information, with an ideal ML algorithm, there 
would be no difference between using one or the other, and using both 
should not add any improvement as they are redundant. However, 
because they are not on the same scale, either might be more suitable for 
a given algorithm, so both values were evaluated. 

Despite efforts to populate the dataset, availability of material- and 
process-related parameters remained diverse, as illustrated in Fig. 1. As 
formulations with missing data must be removed, the inclusion of all 

parameters for machine learning analysis is not possible as the resulting 
dataset will be too small. To identify the optimal balance between the 
number of parameters included as inputs and the preservation of as 
many formulations as possible, the residual data size of all possible 
combinations of material- and process-parameters were evaluated. Any 
combination that resulted in a loss >66% of the original number of 
formulations was disregarded. 

Out of 687 formulations, 636 were printable (92.6% of all formula-
tions), of which 30 produced satellite droplets (4.72% of printable for-
mulations) (Fig. 2). This positively skewed dataset demonstrates the 
tendency for researchers to publish only positive results, as highlighted 
in our previous studies (Elbadawi et al., 2020; Muñiz Castro et al., 2021; 
Ong et al., 2022). This imbalance could be worsened when formulations 
with missing information are omitted. Therefore, when evaluating the 
best combination of MLT, feature set, material-, and process-related 
parameters, the ratio of positive to negative outcomes must also be 
considered. 

Amongst printable ink formulations, analysis of Z values and Ohne-
sorge numbers demonstrated exceptions to the conventional guidance 
that inks with 1 < Z < 10 were printable (Fig. 3). While printable for-
mulations clustered within this range, there were 68 formulations with 
Z > 10, with the upper limit of 62.2 demonstrating significant deviation 
from the rule. Rather than supporting the guidance on Z value, this 
clustering may instead indicate a routine omission of formulations with 

Fig. 3. Histogram and boxplot of (A) Z-value of printable formulations, and (B) Ohnesorge number of printable formulations.  

Fig. 4. Histogram and boxplot of measured drug dose in printed formulations.  
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Z values >10 from printing, resulting in an under-reporting of printable 
formulations with Z > 10. This supports the need for a better tool for 
predicting the printability of formulations for inkjet printing. 

The amount of drug loaded in printed formulations ranged from 1.7 
× 10− 4 to 19 mg, with most formulations loaded with <2 mg of active 
pharmaceutical ingredient (Fig. 4). Apart from the concentration of drug 
in the ink formulation, variations in the measured drug dose also arise 
from differences in the size of the printed area, and the number of layers 
printed. While formulations with higher drug loadings might appear as 
anomalies, they should be retained in the training set since these for-
mulations were intentionally loaded with larger amount of drug. 
Instead, the right-skewed distribution of drug loading demonstrates the 
need for quantile transformation to normalise the values for better 
machine learning performance. 

The choice of inkjet printer invariably influences the printability of a 
given formulation as it may impose limitations on the printing param-
eters, such as the mechanism of printing and in some cases the nozzles 
compatible with the printer. Therefore, the models of inkjet printers that 
were used to fabricate these formulations were also explored. The seven 
most used inkjet printers are shown in Fig. 5A. However, it should be 
noted that 101 formulations did not report the inkjet printer that was 
used. Since the most used printer (Pixdro LP50) was used for 116 for-
mulations, the reporting of these 101 unknown printers could influence 
this ranking and its absence could mask the popularity of less frequently 
used printers. Piezoelectric inkjet printing was also found to be 
marginally more popular than thermal inkjet printing, accounting for 
45.4% and 41.3% of the collected formulations, respectively (Fig. 5B). 

Quantifiable characteristics of the materials used in each formulation 

Fig. 5. (A) Bar chart showing the seven most frequently used printers, arranged in rank order from left to right. Colours correspond to the printer brands, and printers 
not in the top seven were grouped as “others”. (B) Nested pie-chart showing the distribution of piezoelectric, thermal, and unknown printing technology used to 
fabricate the recorded formulations. The top five nozzles used for piezoelectric and thermal inkjet printing are reflected in the outer pie-chart. 
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was crucial for generating the weighted physical properties and physical 
properties by material type feature sets. In this study, the melting point, 
boiling point, molecular weight, and water solubility (for active phar-
maceutical ingredients only) for each material was extracted from 

publicly accessible databases such as PubChem and published literature. 
As illustrated in Fig. 6, the availability of these data for the 253 materials 
used in the extracted studies was heterogenous. Materials with missing 
information on molecular weight, melting point, and boiling point were 

Fig. 6. Missing matrix of the information on materials used in the extracted studies. Red bars indicate the availability of data, and missing data are indicated by white 
spaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Histogram and boxplot of (A) molecular weight, (B) boiling point of all materials, (C) water solubility of active pharmaceutical ingredients, and (D) melting 
point of all materials. 
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largely proprietary materials, such as commercial inks and Soluplus, 
where such information were not made publicly available by the 
respective companies. While Fig. 6 might suggest sparse availability of 
information on water solubility of drugs, this is largely because most 
materials used were excipients. 

The molecular weights of materials ranged from 1.8 × 101 to 2 × 106 

g/mol, and has a right-skewed distribution with 54.9% of materials (139 
out of 253) possessing molecular weights <1000 g/mol (Fig. 7A). Ma-
terials with larger molecular weights (>105 g/mol) were biomolecules 
(proteins and polysaccharides) such as hydroxypropylcellulose and 
ribonuclease-A, and polymers such as poly(DL-lactic acid) (PDLA) and 
poly(lactic acid) (PLLA). The material with the highest molecular weight 
(2 × 106 g/mol) was Gantrez™ AN-169, which is a polymer used as a 
film base material. As materials with large molecular weights were not 
anomalies, quantile transformation was again applied to normalise the 
values for better machine learning performance. Right-skewed distri-
bution was also observed for boiling point and water solubility values, 
which ranged from 5.66 × 10− 3 to 1140.4 ◦C and 1 × 10− 3 to 350 mg/ 
mL, respectively (Fig. 7B & C). On the other hand, distribution of 
melting point values appears bimodal, ranging from − 114.1 to 430.5 ◦C 
(Fig. 7D). To prevent MLTs from assigning greater weights to values that 
are significantly numerically larger, normalization by quantile trans-
formation was also applied to all numerical variables. 

3.2. Machine learning model development & evaluation 

3.2.1. Printability (yes or no) 
Initial model evaluation over 50 seeds using pre-defined hyper-

parameters found that the best algorithm for binary prediction of 
formulation printability was random forest (Fig. 8). The best perfor-
mance was attained using the grouped by material and company feature 
set, coupled with information on object printed, printer, and number of 
printed layers per cycle. This configuration resulted in a residual dataset 
size of 486 formulations (70.7% of all formulations), 2.88% of which 
were negative outcomes (not printable). Machine learning performance 

is significantly influenced by the balance of targeted variables in the 
dataset, where an imbalanced dataset is expected to yield less reliable 
performance. Given the lower proportion of negative outcomes 
compared to the original dataset (7.42%), this configuration along with 
any that resulted in <7.42% negative printability outcomes were dis-
regarded. With this criterion, the best performance was again attained 
using random forest and the grouped by material and company feature set, 
but now coupled with information on nozzle diameter, nozzle, and printer. 
This configuration gave a dataset comprising 429 formulations (62.4% 
of all formulations), of which 9.32% were negative outcomes. Therefore, 
the machine learning model was trained on a better-balanced dataset 
and is expected to produce more reliable predictions than a model 
trained with the original dataset. A suitable predictive tool should be 
capable of forecasting printability prior to any formulation preparation, 
as the time- and resource-savings afforded would otherwise be insig-
nificant. Therefore, it is important that any input parameters must be 
quantifiable or determinable a priori. In the best performing model for 
predicting printability, all additional parameters fit this criterion. 

This model was subsequently optimized by tuning the hyper-
parameters, with the fixed set of possible values and best values for each 
hyperparameter summarised in Table 5. The optimized model had an 
accuracy of 97.22% and a Cohen's kappa coefficient of 0.854. As the 
Cohen's kappa coefficient accounts for the possibility of making a correct 

Fig. 8. Radar plot with metrics results of models predicting printability (yes or no).  

Table 5 
Optimal hyperparameters for random forest model for predicting printability 
(yes or no).  

Hyperparameter Possible values Best value 

Bootstrap True, False False 
Criterion Gini, Entropy Entropy 
Max depth 7, 15, 40, None 40 
Max features Auto, Sqrt Sqrt 
Minimum samples leaf 1, 2, 4 1 
Minimum samples split 2, 5, 10 2 
No. of estimators 5, 10, 20, 30, 60, 100 20  
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prediction by chance, the score obtained by the optimized model in-
dicates high predictive reliability despite the relatively unbalanced 
training dataset. 

3.2.2. Printability (good or satellite) 
Printable formulations, while jettable, may produce satellite droplets 

that are undesirable as they lead to messy and imprecise printing. 
Therefore, after predicting if the formulations were printable, it was 
important for our machine learning pipeline to predict if the jettable 
formulations produced satellite droplets. For training and evaluating 
these models, non-printable formulations were excluded entirely. This 
gave an original dataset comprising 636 formulations, of which 3.80% 
were satellite outcomes. Multilayer perceptron (ANN) was found to be 
the best MLT based on initial model evaluation over 50 seeds using pre- 
defined hyperparameters (Fig. 9). The best performance was attained 
using the grouped by material type feature set, coupled with information 
on nozzle diameter and printer. This configuration resulted in a residual 
dataset size of 412 formulations (64.8% of printable formulations), 
1.70% of which were negative outcomes (satellite droplets). 

As in Section 3.2.1., since this configuration gave a lower proportion 
of negative outcomes (satellite droplets) compared to the original 

dataset (4.72%), it was disregarded. Instead, amongst configurations 
that gave at least the same proportion of negative outcomes as the 
original dataset, the best performance was again attained using multi-
layer perceptron (ANN) and the grouped by material type feature set. 
However, this was now coupled with information on density, object 
printed, and nozzle. This configuration gave a dataset comprising 280 
formulations (44.3% of all formulations), of which 7.50% were negative 
outcomes. All parameters used in this configuration can be determined a 
priori, with density being estimable as described in Section 3.1. The 
optimized ANN model achieved an accuracy of 97.14%, and a Cohen's 
kappa coefficient of 0.74, using optimized hyperparameter values sum-
marised in Table 6. 

3.2.3. Measured drug dose 
Initial model evaluation over 50 seeds using pre-defined hyper-

parameters found that the best algorithm for prediction of the measured 
drug dose in the printed product was random forest, using the grouped by 
material name feature set. The additional material- and process-related 
parameters considered were the object printed, printer, area, and num-
ber of printed layers per cycle. This configuration resulted in a residual 
dataset size of 405 formulations (59.0% of all formulations, and 93.1% 
of formulations with reported measured drug dose). Notably, upon 
removing the minimum threshold required for the residual dataset size, 
the best algorithm was ANN, using the grouped by material name feature 
set with a residual dataset size of 83 (19.1% of formulations with re-
ported measured drug dose). The additional material- and process- 
related parameters were also different; they were the surface tension, 
density, Z value, Ohnesorge number, printer, number of printed layers per 
cycle, and theoretical drug dose. This model performed better than the 
initial random forest model using the larger dataset: R2 = 0.911 vs 0.769, 
and MAE = 0.184 vs 0.282. In both cases, printer and number of printed 
layers per cycle were fed into the algorithm, which agrees with conven-
tional thinking as these two parameters directly influence the amount of 
material that is being deposited, and hence the drug dose loaded into the 
printed objects. 

Interestingly, the distribution of the measured drug doses of the two 
resulting residual datasets are similar (Fig. 10). However, from the box 

Fig. 9. Radar plot with metrics results of models predicting printability (good or satellite).  

Table 6 
Optimal hyperparameters for multilayer perceptron model for predicting 
printability (good or satellite).  

Hyperparameter Possible values Best 
value 

Activation Relu, Identity, Logistic, Tanh Relu 
Alpha 0.0001, 0.001, 0.005 0.001 
Hidden layer sizes (100, 50, 10), (60, 40, 10), (80, 30, 10) 60, 40, 

10 
Learning rate Constant, Inverse scaling, adaptive Constant 
Maximum 

iterations 
500 500 

Solver Adam, Limited-memory Broyden-Fletcher- 
Goldfarb-Shanno algorithm (LBFGS), Stochastic 
Gradient Drescent 

LBFGS  
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plots, the dataset used to train the RF model possessed a relatively 
higher proportion of data ranging between 2.5 and 5.0 mg compared to 
that used to train the ANN model. Drug doses in this range are 
commonly explored in pharmaceutical inkjet printing and are not out-
liers as implied by the histogram plots. As such, the dataset used to train 
the RF model has a higher proportion of data that falls within the typical 
range of drug doses used in pharmaceutical inkjet printing. Therefore, 
while the ANN model performed slightly better than the RF model, the 
latter was deemed more suitable for optimization as it was trained on a 
larger dataset and should therefore be more robust. 

Hyperparameter tuning of this random forest-based model yielded 
values as summarised in Table 7. The optimized model had an R2 of 
0.800 and a MAE of 0.291, indicating that it could provide predictions of 
the actual drug loading within ±0.291 mg. Considering that the mean 
drug load was 0.944 mg (and the median drug load was 0.36 mg), sig-
nificant improvement to the model is necessary for practical deploy-
ment. However, this result is within expectations given the right-skewed 
distribution of drug doses. Performance could conceivably be improved 
with a more normally distributed dataset. 

Fig. 10. Histogram and boxplot of measured drug dose in dataset used to train (A) RF model and (B) ANN model.  

Table 7 
Optimal hyperparameters for random forest model for predicting total measured 
drug dose.  

Hyperparameter Possible values Best value 

Bootstrap True, False False 
Criterion MSE, MAE MAE 
Max depth 7, 15, 40, None 50 
Max features Auto, Sqrt Sqrt 
Minimum samples leaf 1, 2, 4 1 
Minimum samples split 2, 5, 10 2 
No. of estimators 10 to 60 (inclusive) 19  

Table 8 
Confusion matrix based on conventional guidance.   

Actual: Printable Actual: Not printable 

Predicted: Printable 125 24 
Predicted: Not printable 49 7  
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4. Discussion 

Formulation development and optimization is a time- and resource- 
intensive process that can be considerably accelerated by guidance from 
predictive in silico tools. The current guidance states that only inks with 
Z values <10 are printable. Following this guidance produces a false 
positive rate of 77.42%, a false negative rate of 28.16%, and an accuracy 
of 64.39%, based on the same dataset used for training and testing the 
ML model for predicting printability (excluding 224 formulations with 
no known Z values) (Table 8). In comparison, the optimized model for 
predicting printability performed significantly better, with an accuracy 
of 97.22%. This highlights the multifactorial dependence of inkjet 
printing outcomes, and the importance of considering numerous mate-
rial- and process-related parameters beyond a formulation's Z value in 
making such predictions. 

ML models were also successfully developed that provided reliable 
predictions on whether satellite droplets will be formed. These pre-
dictions were not previously possible based on the conventional guid-
ance. Interestingly, neither models for predicting printing outcomes nor 
satellite droplet formation included the formulations' Z value or Ohne-
sorge number as inputs, despite the current guidance for inkjet printing 
printability being based on these variables. Exploratory data analysis on 
the Z values of extracted formulations also demonstrated how some inks 
(31.05% of printable formulations with known Z values) remained 
jettable despite possessing a Z value >10. These findings support the 
assertion that inkjet printing outcomes cannot be determined solely 
based on a formulation's Z value or Ohnesorge number. The long-held 
guidance on Z values could have also resulted in an undertesting of 
formulations with Z > 10. Therefore, the ML models developed in this 
study could be further enhanced with more data on such formulations. 

A recent study demonstrated that for piezoelectric inkjet printing, 
alterations to the pulse shape can influence the formation of satellite 
droplets (Zettl et al., 2023). Unfortunately, as the observation was only 
reported recently, pharmaceutical inkjet printing articles that are 
available in the public domain have not reported this parameter. The 
sparse reporting of pulse shape therefore precludes its inclusion in the 
present study. However, following the findings made and reported by 
Zettl et al., frequent reporting of the parameter's value in articles hereon 
could conceivably improve the performance of the ML model for pre-
dicting droplet quality developed in the present study. 

Admittedly, the dataset consolidated in this study is considerably 
imbalanced, owing to the tendency for researchers to only publish 
positive results. A balanced dataset is critical for optimal machine 
learning performance, as it ensures that the model has sufficient training 
instances for all possible outcomes. As demonstrated in our previous 
study, even slight to moderate improvements to the balance of datasets 
can improve ML performance significantly (Ong et al., 2022). Therefore, 
the models developed in this study can be further enhanced with more 
negative data, which researchers are encouraged to report, either in the 
supplementary materials section of their article or privately amongst the 
community. 

It is worth noting that the dataset consolidated in this study is more 
than two times smaller than that of our previous study that focused on 
predicting FDM™ 3D printing outcomes (Ong et al., 2022), 687 vs 1594 
formulations respectively. This is despite inkjet printing being a more 
mature technology than FDM™ 3D printing, bearing testament to the 
underutilisation of inkjet printing as a manufacturing technology for 
personalised drug-loaded products. This is likely due to inkjet printing 
stereotypically being deemed to only be suitable for low dose but highly 
potent drugs. However, recent studies have proven its capability in 
printing entire objects, including tablets and complex implants, which 
will likely inspire more expansive research in pharmaceutical inkjet 
printing. With higher volume and better-balanced reporting of phar-
maceutical 3D printing data, a machine learning model with good 
generalizability may be developed and deployed on a web server. Akin 
to the free web-based software that was created for predicting FDM™ 

printing outcomes (M3DISEEN), this will then accelerate inkjet printing 
formulation development and consequently inkjet printing research in 
general. 

5. Conclusion 

In this study, ML models were successfully developed for predicting 
printing outcomes of inkjet printing and the drug load of the printed 
objects. Analysis of the dataset comprising 687 formulations from 
literature-mined and in-house studies revealed that positive printing 
outcomes were overwhelmingly published in favour of negative out-
comes. Despite the imbalanced dataset, the optimized ML model for 
predicting printability performed significantly better than the conven-
tional guidance based on Z values. ML models for predicting satellite 
droplet formation also provided reliable predictions, offering predictive 
insights that were previously unattainable. To further enhance ML 
performance, the publishing or sharing of negative data is highly 
encouraged. In doing so, a highly reliable in silico tool, such as a web- 
based software, may be deployed to accelerate pharmaceutical inkjet 
printing research, allowing researchers to focus on novel inkjet printing 
solutions for urgent unmet clinical needs. 
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