Accelerating Topical Drug Development Through Initial Excipient Selection

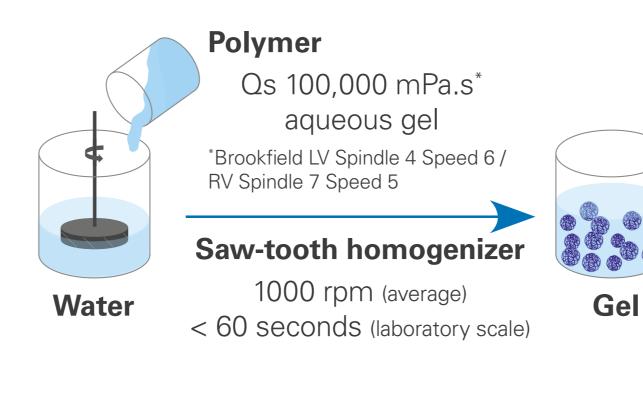
Benjamin GAVINET^{1*}, Benoît SOUYRI¹, Emilie TONGLET¹, Maïté CAVAILLÈS¹, Alice DANESHVAR²

¹ Seppic Research & Innovation, 127 chemin de la Poudrerie 81105 Castres FRANCE
² Seppic S.A., 50 boulevard National 92257 La Garenne Colombes FRANCE
* Corresponding Author: benjamin.gavinet@airliquide.com

I Introduction

Novel topical drug development will require multiple formulation adjustments from the initial formulation studies to the registration phase [1].

Common issues encountered are API chemical instability, API lack of solubility, dosage form instability, optimization of the skin delivery, mitigation of side-effects...


pH adjustment and change of nature or concentration of solvents, penetration enhancers and emollients can be relevant adjustments [2]. However, each adjustment is at risk of disrupting polymeric and surfactant systems, causing further delay in formulation and drug development [3].

There is a need for stabilizing excipients able to provide the same performance independently from formulation changes.

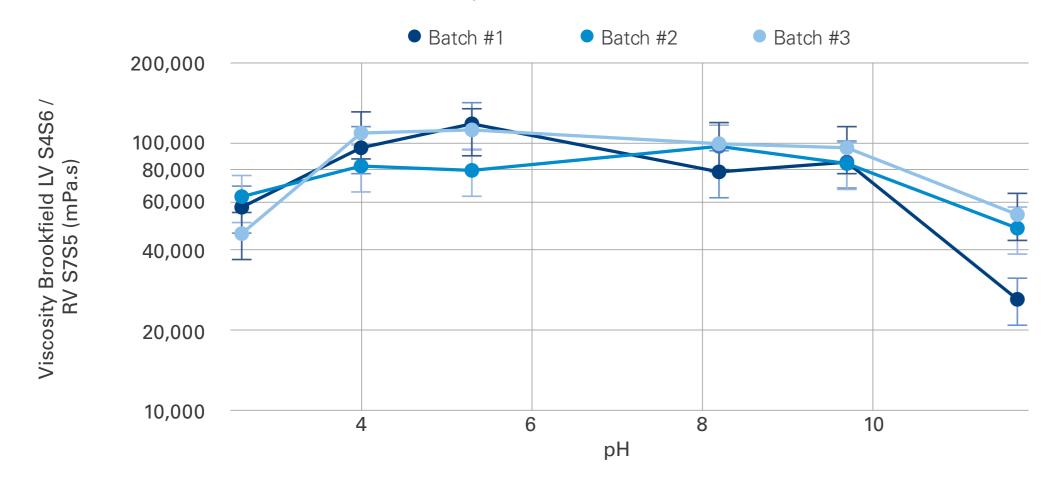
Material & Method

Thickening / Stabilizing Polymer

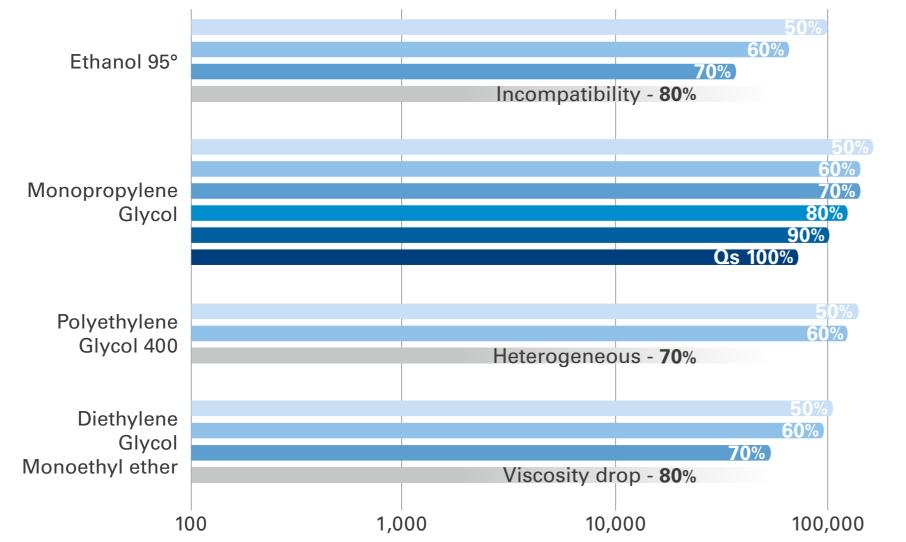
Acrylamide / Sodium Acryloyldimethyl Taurate Copolymer in inverse emulsion

pH adjustment

Lactic Acid ______ Qs pH 2 - 4 Triethanolamine _____ Qs pH 8-10-12 pH/effect response: viscosity and stability (7 days, RT).

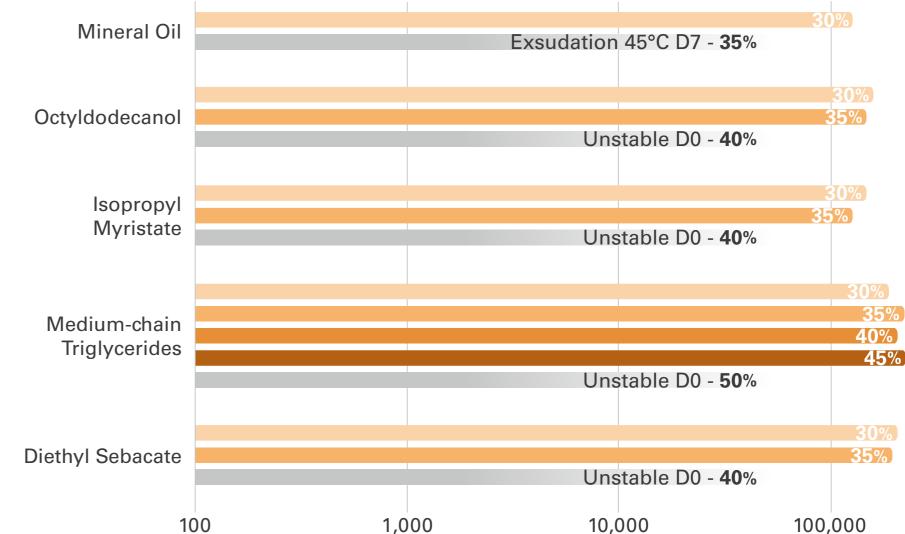

Solvent addition Dose/effect response: viscosity, pH and stability (1 month, RT).

Emollient addition


Dose/effect response: viscosity, pH and stability (1 year, RT and 3 months, 45°C).

I Stability to formulation adjustments

Impact of pH adjustment on the polymer network


Solvent concentration stabilized

From pH 4 to 10, the gels obtained have comparable viscosities with no impact even with pH adjustment. The Acrylamide / Sodium Acryloyldimethyl Taurate Copolymer shows a good batch-to-batch reproducibility.

Extreme acid or basic pH tend to decrease the gels viscosity. An increase of polymer concentration can compensate for this viscosity loss.

Emolient concentration stabilized

Viscosity Brookfield LV S4S6 / RV S7S5 (mPa.s)

The gels of Acrylamide / Sodium Acryloyldimethyl Taurate Copolymer can stabilize at least 60% of tested solvents with close resulting viscosities.

At higher solvent concentration, Ethanol shows the most viscosity impact, while PEG-400 from 70% concentration causes phase segregation.

Viscosity Brookfield LV S4S6 / RV S7S5 (mPa.s)

Acrylamide / Sodium Acryloyldimethyl Taurate Copolymer gels can stabilize at least 30% of tested emollient with comparable resulting viscosities.

Change of oil nature have limited impact on the dosage form stability, though higher emollient concentrations can be reached with medium-chain triglycerides.

REFERENCES

[1] Brown, M. B., Turner, R., & Lim, S. T. (2011). Topical Product Formulation Development. In Topical and Transdermal Drug Delivery (p. 255-286). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118140505.ch14

[2] Lamba, S., & Lebwohl, M. (2001). Combination therapy with vitamin D analogues. British Journal of Dermatology, 144(s58), 27-32. https://doi.org/10.1046/j.1365-2133.2001.144s58027.x

[3] Modi, D., Sharma, H., & Campbell, G. (2020). Accelerate development of topical cream drug product using a common platform base formulation. Pharmaceutical Development and Technology, 25(6), 767-778. https://doi.org /10.1080/10837450.2020.1741617

| Conclusion

- Acrylamide / Sodium Acryloyldimethyl Taurate Copolymer in inverse emulsion exhibits a strong and reproducible thickening and stabilizing performance over a wide range of pH, nature and concentration of solvents and emollients.
- Significant formulation time gain is expected in drug development, not having to switch or adapt the polymeric and surfactant systems for each formulation adjustment.
- Viscosity loss with extreme pH or high solvent concentration can be compensated by higher polymer dose.

A company **Air Liquide** HEALTHCARE