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Abstract: The purpose of this study was to investigate the deformation behavior of non-spherical
particles during high-load compaction using the multi-contact discrete element method (MC-DEM).
To account for non-spherical particles, the bonded multi-sphere method (BMS), which incorporates
intragranular bonds between particles, and the conventional multi-sphere (CMS), where overlaps
between particles are allowed to form a rigid body, were used. Several test cases were performed to
justify the conclusions of this study. The bonded multi-sphere method was first employed to study
the compression of a single rubber sphere. This method’s ability to naturally handle large elastic
deformations is demonstrated by its agreement with experimental data. This result was validated fur-
ther through detailed finite element simulations (multiple particle finite element method (MPFEM)).
Furthermore, the conventional multi-sphere (CMS) approach, in which overlaps between particles
are allowed to form a rigid body, was used for the same objective, and revealed the limitations of this
method in successfully capturing the compression behavior of a single rubber sphere. Finally, the
uniaxial compaction of a microcrystalline cellulose-grade material, Avicel® PH 200 (FMC BioPolymer,
Philadelphia, PA, USA), subjected to high confining conditions was studied using the BMS method.
A series of simulation results was obtained with realistic non-spherical particles and compared with
the experimental data. For a system composed of non-spherical particles, the multi-contact DEM
showed very good agreement with experimental data.

Keywords: large deformation; FEM; DEM; plastic deformation; compaction; particle shape; morphology

1. Introduction

Granular materials are unique in that they can behave as either solids or liquids. Sand,
for instance, is composed of dissipative grains that interact with one another via repulsive
and frictional contact forces. Despite their simplicity, the physics of granular materials
is still poorly understood, leaving many open questions in a variety of fields, such as
physics, process engineering, material science and geotechnical engineering. Cundall and
Strack [1] pioneered the discrete element method (DEM) to model their physical behavior.
The DEM numerically represents granular materials as a collection of particles rather than
a continuum, and the bulk behavior of granular materials is determined by collective
interactions among individual particles.

However, modeling the mechanical behavior of granular assemblies when subjected
to high loads, such as mineral processing [2], soil compaction [3], and pharmaceutical
tablets [4], is a difficult issue strongly affected by the shape of the individual particles. In
reality, and in the vast majority of applications, the particle shape is non-spherical, but it
may be reformed into a sphere by the spheronization [5] process. Due to the time required
for contact detection and resolution, particle shape consideration is a computationally
costly operation in DEM; hence, an ideal spherical particle approximation is frequently
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used as a fast alternative. Adjusting the rolling friction parameters to mimic the particle
shape effects is one way to compensate for the lack of accuracy that is caused by ideal
spherical representations [6]. However, this approach still does not allow for a thorough
investigation of the impact of particle shape.

Nonetheless, general agreement on the need for sophisticated particle shape rep-
resentations has resulted in techniques that allow for shape consideration within DEM.
Approaches that are now available include sphere clusters, superquadrics, and polyhedra.
Two distinct approaches may be found in sphere clusters: (a) the multi-sphere (hereinafter
referred to as the conventional multi-sphere) and (b) the bonded multi-sphere [7,8]. In
the conventional multi-sphere (CMS) [9,10], many particles are “linked together” by over-
lapping particles experiencing multiple contacts [11] to resemble a rigid, unbreakable
non-spherical particle. The bonded multi-sphere approach (BMS) [12], on the other hand,
uses non-overlapping particles that are “touching” each other and bonded together with
intragranular bonds to represent arbitrary particle shapes. The bonded multi-sphere model,
which was first developed to simulate fracture initiation and evolution across mineral
grains in rock [12], may also be used to approximate individual particles with complex
shapes. The main advantage of this approach is that, by adjusting the bond parameters, the
particles may behave both rigidly and deformably, and their breaking behavior can be simu-
lated [8]. In contrast, ellipsoids and other quadric shapes can be constructed by employing
superquadrics [13] and adjusting the shape parameters in the mathematical formulation.
A comparison [10] of the conventional multi-sphere approach with superquadrics shows
that using superquadrics saves computation time when simulating non-spherical particles,
particularly blocky particles. Polyhedral particle models allow for the use of sharp corners
and edges that may be used to create a variety of random particles [14]. Polyhedral particles
can be used in a variety of applications [15,16], including crushing [17]. Nevertheless, these
techniques have the problem of high computing costs, especially when compared to the use
of solely spherical particles. For example, the neighbor search and contact resolution pro-
cessing time that is necessary to investigate the interactions of thousands of non-spherical
particles may render the study impractical. This limitation may arise when large numbers
of particles need to be simulated.

The objective of this study was to investigate the impact of the particle shape on
compaction profiles using the MC-DEM method. Due to computational time constraints,
the simulations were limited to a small number of particles. The accuracy of the MC-DEM
method had previously been validated by demonstrating its ability to model the com-
pressibility properties of two pharmaceutical materials (Avicel® PH 200 (FMC BioPolymer)
and Pharmacel® 102 (DFE Pharma)), assuming that the particles were spherical [4]. This
study aimed to extend the MC-DEM method to include realistic non-spherical particles
by combining it with BMS. The outcomes of both spherical and non-spherical particle
simulations were compared to experimental data.

2. Theory

The particle simulations were performed using DEM. In this approach, Newton’s
equations of motion were used to determine the relationship between the particle motion
and forces acting on each particle. The translational and rotational motion equations of a
particle are as follows:

mi
..
ai = ∑

j

(
Fnij + Ftij

)
+ mig and Ii

.
ωi = τij (1)

where mi,
..
ai, Ii, and

.
ωi are the mass, acceleration, moment of inertia, and angular velocity

for particle i, respectively; Fnij, Ftij, and τij are the normal force, tangential force, and
torque acting on particles i and j at the contact points, respectively; g is the acceleration due
to gravity.

In order to describe the force–displacement laws at the contact points, various contact
models can be used. In general, and considering recent developments, contact laws may
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be classified into two distinct groups: (a) local contact models and (b) non-local contact
models. While the contact is resolved locally in the first group [18,19], a non-local resolution
based on the neighboring contact interaction is included in the second group [20–22].

In this study, an open-source code, LIGGGHTS [23,24], was used to perform numerical
simulations. The force and torque contributions of particles can be calculated from three
distinct contact models: normal contact, tangential sliding, and tangential rolling.

2.1. Hertz–Mindlin Contact Model

The most common contact model is the linear spring–dashpot model [1], in which the
spring stiffness is assumed to be constant, and the Hertz contact model calculated using
the Hertz theory [25] (e.g., nonlinear spring–dashpot model). For the accurate estimation
of particle deformation, we related the interaction force to the overlap of two particles. It
should be noted that the evaluation of interparticle forces based on overlap may not be
sufficient to account for the inhomogeneous stress distribution inside the particles. The
normal repulsive contact force is

Fn = knδ3/2
n + γn

.
δn (2)

where kn = 4
3 E∗
√

R∗ is the normal stiffness coefficient, R∗ =
Ri Rj

Ri+Rj
and E∗ = 1−ν2

i
Ei

+
1−ν2

j
Ej

are the effective radius and the effective Young’s modulus, and Ri, Rj, νi, νj, Ei, Ej are
the radius, Poisson’s ratio, and Young’s modulus of particle i and j, respectively. δn is the
normal overlap,

.
δn is the relative velocity in the normal direction of interacting particles,

and γn the viscoelastic damping constant for the normal contact viscosity. The tangential
force is [20]

Ft = ktδ
3/2
t + γt

.
δt (3)

where kt = 8G∗
√

R∗ and G∗ = 2−νi
Gi

+
2−νj

Gj
are the tangential stiffness coefficient and the

effective shear modulus, respectively, and Gi, Gj are the shear moduli of particles i and j. δt

is the tangential overlap,
.
δt is the relative velocity in the tangential direction of interacting

particles, and γt is the viscoelastic damping constant for tangential contact viscosity.
The tangential overlap, δt, between particles obtained by an integrating surface and

the relative tangential velocities during the elastic deformation of the contact is given as

δt =
∫ t+∆t

t
vtdt→ δt ≈ vtdt (4)

where vt is the velocity component that is tangential to the contact surface and ∆t is
the timestep.

Through Coulomb’s law, the tangential force was connected to the normal force,
Ft ≤ µFn, in the event of sliding, and the dynamic friction was Ft = µFn. The dynamic and
static friction coefficients can be assumed to be equal in this study: µ = µd = µs. Due to
the activated Coulomb friction, the static state necessitates the use of an elastic spring to
provide a restoring force, i.e., a non-zero residual tangential force in the static equilibrium.
By applying torque to the contacting surfaces, the rolling friction can be controlled. The
constant directional torque (CDT) of the rolling friction, τij, used in this investigation is
given by [4]

τij = −
ωrel
|ωrel |

µrR∗Fn (5)

where ωrel = ωi −ωj, and ωi, ωj are the angular velocities of particles i and j, while µr is
the rolling friction coefficient. The particles in these models are assumed to be spherical and
without any deformation (simply pseudo-deformation) during simulation. Furthermore,
particle forces are resolved locally because they comprise binary interactions between
interacting particles.
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2.2. Multi-Contact Adhesive Elastic–Plastic Model

Plastic deformation and particle shape changes are prominent in confined systems,
such as tableting, where the powder is compressed under high loads. As a result, ad-
vanced nonlinear contact models that take both elastic–plastic contact deformation and
adhesion into consideration are required. A multi-contact model recently developed by
Giannis et al. [4] was employed in this study. This contact model differs from others since
it employs a multi-contact technique to account for non-local contact forces.

The trace of the average stress tensor, along with Poisson’s ratio (ν), the contact area
(A) between the interacting particles, and a material-dependent prefactor (β), have been
used to account for multiple contacts acting on a particle.

The adhesive plastic force is

Fn =


F0 + k1δ3/2

n +
(

βvAij
)

Pij i f k2

(
δ3/2

n − δ3/2
0

)
≥ k1δ3/2

n

F0 + k∗2
(

δ3/2
n − δ3/2

0

)
+
(

βvAij
)

Pij i f k1δ3/2
n > k∗2

(
δ3/2

n − δ3/2
0

)
> −kcδ3/2

n

F0 − kcδ3/2
n +

(
βvAij

)
Pij i f − kcδ3/2

n ≥ k∗2
(

δ3/2
n − δ3/2

0

) (6)

where F0 is the constant pull-off force, k1 is the loading branch stiffness, k2 is the loading–
unloading branch stiffness, kc is the adhesion branch stiffness, and δ0 is the plastic overlap
(deformation). We should stress that k1, which is the loading branch stiffness, can be a
user-defined parameter or can be calculated based on the Young’s modulus k1 = 4

3 E∗
√

R∗,
and k1 is identical to the stiffness for the Hertz contact theory (Section 2.1). Additionally,
Equation (6) takes into account the effect of multiple contact points between particles, and
it includes four variables: β, ν, Aij, and Pij. β is a dimensionless empirical prefactor that
indirectly accounts for changes in particle geometry. ν is Poisson’s ratio, which reflects
a material’s tendency to deform under stress. Aij represents the contact area where two
particles are in contact with each other. The equation also involves the isotropic component
of stress, which is represented by Pij. Pij is calculated by taking the average of the diagonal
components of the stress tensors of particles i and j. Specifically, Pij is equal to one third of
the sum of the three diagonal components of the stress tensor for each particle.

The full details of the contact model, as well as how it differs from earlier elastic–
plastic contact models [26,27], are given in the study by Giannis et al. [4]. This contact
model has been validated and successfully captures the main compressibility character-
istic (stress–strain) of the compaction of two pharmaceutical materials (Avicel® PH 200
(FMC BioPolymer) and Pharmacel® 102 (DFE Pharma)). This validation was based on
the assumption that particles can be approximated by an ideal spherical shape. However,
because real particles have an irregular shape in the vast majority of applications, it is im-
portant to investigate the influence of particle shape. This study presents a straightforward
implementation of this model to address non-spherical particles.

2.3. Bonded Multi-Sphere Model (BMS)

In DEM simulations, the proper modeling of particle shape is critical to accurately
predict the particle interactions and macroscopic response of the investigated system.
The bonded multi-sphere model is one approach that accounts for particle shape. The
relationship between particle motion and the forces acting on each particle is determined
using Newton’s equations of motion in this approach. The translational and rotational
motion equations of a particle are as follows:

mi
..
ai = ∑

j

(
Fnij + Ftij

)
+ ∑

j

(
Fbij

)
+ mig and Ii

.
ωi = τij (7)

In comparison to Equation (1) in Section 2.1, the term Fbij was added, which represents
the bonding force between interacting particles. We should also emphasize that the bonding
force acts as a long-range force between interacting particles within a cutoff distance, and
no overlap is required for the bonding force to be initiated.
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With this approach, the irregular shape of particles can be approximated by a cluster
of sub-spheres that are bonded together. The bonds not only provide a holistic connection
between the sub-spheres, but also allow for relative displacements when external forces
act on them. Thus, particle deformation is the result of the relative displacement of all
sub-spheres. The contact forces were calculated in this study using two types of contact
models: the bonded model was used for intraparticle interactions (non-contacting particles),
and, for contacting particles, the Hertz–Mindlin nonlinear elastic model (Section 2.1) or the
multi-contact elastic–plastic model was used (Section 2.2).

The bonded-sphere model, based on the beam theory, was initially developed by
Potyondy and Cundall [28] to simulate fracture initiation and development across mineral
grains in the rock. Following this line of thought and based on the beam theory, this model
was further refined and found some intriguing applications in deformable pinewood
chips [29], flexible fibers [23,24], and deformable rubber spheres [7]. In general, there are
two basic types of bond models: the spring bond model and the beam bond model. A
detailed explanation of the distinctions between these approaches is beyond the scope of
this study. However, an interesting study by Chen et al. [30] evaluated and attempted to
integrate these two approaches.

2.4. Conventional Multi-Sphere Model (CMS)

As an alternative to the bonded multi-sphere model presented in Section 2.3, the
conventional multi-sphere (CMS) model can be used. In DEM simulations, the CMS
approach, as a common way to simulate complicated particle shapes, has to combine
spheres of various diameters to form a stiff body (sphere cluster). Spheres within a rigid
body are able to overlap since there are no interparticle forces [31]. The relative position of
each sphere is always fixed [32]. By summing up the forces that operate on sub-spheres
while in contact with other clusters, the total force acting on the rigid body can be calculated.
The total force acting on the rigid body is computed by adding the forces acting on the
sub-spheres while in contact with other clusters. The elastic–plastic multi-contact model
was used in this study to calculate the contact force between the contacting sub-spheres
(Section 2.2). The angular momentum of a complex particle was calculated using the total
torque on all spheres in regard to the body’s center of mass [33]. Due to the excessive
overlap between the sub-spheres, calculating the particle’s moment of inertia is one of
CMS’s challenges. One way to overcome this challenge is to calculate the mass and moment
of inertia for each complex particle analytically [34]. In order to address this issue, the
Monte Carlo method [34] was used in this study.

3. DEM Simulations of the Uniaxial Compression of a Single Rubber Sphere

In this section, several approaches to modeling the deformation behavior of a single
rubber sphere are discussed. As a baseline, we compared the result of numerical simulations
to the experimental data from Tatara [35] for a rubber sphere compressed between two
rigid plates. The rubber sphere was chosen as a relevant material due to its elastic (no
hysteretic behavior) nature and its strong Poisson’s effect (large deformation behavior with
excessive lateral expansion) to demonstrate the capabilities or limitations of the studied
numerical methods that deal with large deformations.

3.1. The Bonded Multi-Sphere Approach (BMS) and the Multiple-Particle Finite Element
Method (MPFEM)

The classical DEM based on the Hertz theory [25] assumes that only small defor-
mations may occur in a body (spherical shape), while its shape remains constant (body
rigidity). On the one hand, with MC-DEM, pseudo deformation is allowed and the large
deformation of a body can be captured [20]. However, as with classical DEM, there is
no shape alteration with this approach; because it accounts for multiple contacts occur-
ring simultaneously (sum of force contribution of neighboring particles), the overall force
experienced by a sphere is higher.
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The BMS approach can be used as an alternative to bypass the restrictions of the
classical DEM and to allow for body deformability, since connected sub-spheres that are
bonded together allow the body to perform translational and rotational motions. Another
approach for introducing deformability into a body is to use the multiple-particle finite
element method (MPFEM) [36,37], which entails meshing each individual particle with
finite elements.

To illustrate, a single rubber sphere was pressed between two rigid plates, causing
up to 40 % of its original diameter to deform ( δ

2R ). The rubber sphere had a radius of
1.0 cm, and the elastic properties are reported in the work of Giannis et al. [20]. The
input parameters are summarized in Table 1. As shown in Figure 1, the rubber sphere
was replaced by an agglomerate of the same characteristic diameter that was formed
by a number of bonded sub-spheres. In addition, a commercial finite element software
suite (ABAQUS® Simulia, Dassault Systèmes, Paris, France), was used to conduct detailed
MPFEM simulations. Along with these, MC-DEM and classical DEM were used to study
the spherical representations.

Table 1. Input parameters used for simulations.

Parameter Symbol Values Units

Young’s modulus—particle (p) E 18.5 MPa
Young’s modulus—particle (w) E 1 GPa
Particle density ρ 2000 kg/m3

Poisson’s ratio ν 0.46 -
Coefficient of restitution COR 0.7 -
Friction coefficient f 0.5 -
Bond normal stiffness kb

n 1.15× 106 N/m3

Bond tangential stiffness kb
t 1.25× 106 N/m3

Empirical prefactor β 1.71 -

Pharmaceutics 2023, 15, 909 6 of 17 
 

 

3.1. The Bonded Multi-Sphere Approach (BMS) and the Multiple-Particle Finite Element 

Method (MPFEM) 

The classical DEM based on the Hertz theory [25] assumes that only small defor-

mations may occur in a body (spherical shape), while its shape remains constant (body 

rigidity). On the one hand, with MC-DEM, pseudo deformation is allowed and the large 

deformation of a body can be captured [20]. However, as with classical DEM, there is no 

shape alteration with this approach; because it accounts for multiple contacts occurring 

simultaneously (sum of force contribution of neighboring particles), the overall force ex-

perienced by a sphere is higher. 

The BMS approach can be used as an alternative to bypass the restrictions of the clas-

sical DEM and to allow for body deformability, since connected sub-spheres that are 

bonded together allow the body to perform translational and rotational motions. Another 

approach for introducing deformability into a body is to use the multiple-particle finite 

element method (MPFEM) [36,37], which entails meshing each individual particle with 

finite elements. 

To illustrate, a single rubber sphere was pressed between two rigid plates, causing 

up to 40 % of its original diameter to deform (
𝛿

2𝑅
). The rubber sphere had a radius of 1.0 

cm, and the elastic properties are reported in the work of Giannis et al. [20]. The input 

parameters are summarized in Table 1. As shown in Figure 1, the rubber sphere was re-

placed by an agglomerate of the same characteristic diameter that was formed by a num-

ber of bonded sub-spheres. In addition, a commercial finite element software suite 

(ABAQUS®  Simulia, Dassault Systèmes, Paris, France), was used to conduct detailed 

MPFEM simulations. Along with these, MC-DEM and classical DEM were used to study 

the spherical representations. 

 

Figure 1. Uniaxial compaction of a rubber sphere. (Left): applied force and the resulting defor-

mation, the experimental data from Tatara [35] with deformation of 40%. (Right): schematic of 

spherical representation with BMS (bonded DEM) and MPFEM (FEM). 

  

Figure 1. Uniaxial compaction of a rubber sphere. (Left): applied force and the resulting deformation,
the experimental data from Tatara [35] with deformation of 40%. (Right): schematic of spherical
representation with BMS (bonded DEM) and MPFEM (FEM).

The numerical results were then compared to the experimental data provided in
Tatara’s original paper [35]. It is worth noting that Tatara’s study explored and demon-
strated that the classical Hertz theory is only capable of capturing small deformations
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(occurring locally) of up to 10% and is not applicable to materials that can endure extensive
deformation, such as spherical rubber spheres. As seen in Figure 1, BMS provides very
good agreement with experimental data up to the deformation of 40%, and the spheri-
cal shape is allowed to deform, resulting in a flat contact area and pressure points. In a
similar manner, the MPFEM approach accurately replicates the experimental data, and
the spherical shape facilitates lateral expansion; similar results were reported by Agarwal
and Gonzalez [38]. On the other hand, classical DEM (with spherical representations)
fails after a deformation of 10%. In fact, Dosta et al. [7] presented and verified that the
BMS’s upper limit for accurately predicting deformation was 50%. The MC-DEM approach,
which is essentially a classical DEM approach with an enhanced contact law, can overcome
these limitations and provide a precise description of the experiment results, as shown in
Figure 1.

3.2. Sensitivity Analysis of BMS and MPFEM Approach

A sensitivity study was conducted using fine and sparse shape approximations to
examine the solution’s stability. As can be seen in Figure 2a, the results of BMS converge as
the approximations become finer. For the fine approximations (1322 and 819 sub-spheres),
the results are identical, and when the approximations become coarser, the results begin
to deviate. This necessitates a sensitivity analysis to determine the optimum size of the
approximation that is required. As a rule of thumb, a fine approximation can ensure an
accurate solution. However, from the results shown in Figure 2a, it is evident that there is a
trade-off between the computational time and approximation size. In other words, it is too
expensive in terms of computational time to provide an exact solution and it becomes more
expensive when a system with many rubber spheres is examined. To obtain a compromise
among the efficiency (in terms of computational time) and accuracy, the representation of
545 primary particles was used for this study.

For the MPFEM approach, the material was described as a compressible neo-Hookean
material [38]. Tetrahedral elements were used to discretize the geometry. The sparse
and dense meshes are shown in Figure 2b, and the results show that altering the mesh
size has no effect on the finite element analysis. For most linear problems, an iterative
solution approach is not necessary. However, iteration procedure convergence must also
be considered in nonlinear problems [39]. It is expected that the computational time
significantly increases because a higher number of elements is needed.

The BMS method and the MPFEM approach are both numerical methods used to
simulate the mechanical behavior of materials. However, they differ in their approach to
modeling fractures and their computational requirements. One of the main advantages of
the BMS method is its ability to handle multiple cracking events and crack propagation
naturally. In contrast, the MPFEM approach does not allow for crack propagation and only
models cracks as predefined discontinuities in the material. Another difference between
the two methods is their computational requirements. This study demonstrated that in the
scenario of the uniaxial compression of a single rubber sphere, the BMS method was faster
than the MPFEM method in terms of computational time. However, it is important to note
that the computational requirements of each method may vary depending on the specific
scenario being modeled. Finally, while MPFEM models grains as continuous entities, BMS
relies on micro-mechanical parameters [40] and requires numerical calibration to obtain
a solution. This means that BMS requires additional calibration, which may increase the
complexity of its implementation.
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Figure 2. Uniaxial compression of a single rubber sphere: (a) force–deformation for BMS and MPFEM
approach; (b) the computational time depending on the number of particles or elements, respectively.

3.3. The Conventional Multi-Sphere (CMS)

The conventional multi-sphere (CMS) inscribes spherical entities into complicated
geometries; the spheres can take an arbitrary position, have a wide range of sizes, and even
overlap, resulting in multiple contacts. To illustrate the effect of shape approximation on
contact force evolution, this section examines the deformation behavior of a single rubber
sphere in a simulation model that is identical to the one discussed in Sections 3 and 3.1. The
sphere was approximated using a multi-sphere approach with various representations that
are depicted in Figure 3. The representations comprise 50, 89, 150, 750, 1500, and 3000 multi-
spheres. It should be noted that the multi-sphere approach has certain limitations, such
as bumpiness, which results in the artificial roughness of the particle [11]. To overcome
this, a depiction with a nearly smooth surface was adopted (MS_89 on the right side of
Figure 3). The resulting evolution of the contact force was compared to the results of the
experimental data (identical to Section 3.1), which acted as a calibration curve.

The results shown in Figure 3 reveal that there is a severe divergence in the resulting
force when compared to the outcomes of the various multi-sphere representations. In
brief, the results do not converge, which indicates that a different representation would
provide a different force vs. deformation curve. The associated curves have irregular
dropouts, showing that the number of contact points fluctuates during the compression,
and similar results have been reported by Höhner et al. [11]. This can be explained by the
fact that the multi-spheres are allowed to overlap and different multiple contact points
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can occur that contribute to the contact force resolution [11]. To address these limitations,
Höhner et al. [11] suggested a calculation procedure to account for the influence of multiple
contacts in contact force calculations; however, applying the suggested calculation steps
falls beyond the scope of this study.
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4. Realistic Particle Modeling with the CMS and BMS Approach

Real particles are irregular in shape. However, a typical assumption in the majority
of DEM simulations is that the particle’s real shape may be substituted with an ideal
spherical one; this is a widespread practice to avoid the additional computational time
required for contact detection and resolution when the real shape is considered. As a result,
non-spherical representations are seldom used in DEM simulations, and because contact
detection and resolution are straightforward, the vast majority of DEM models are designed
for systems with spherical particles. In this study, we attempted to investigate how the
particle shape affects the macroscopic stress–strain response of the investigated system.
The BMS and CMS were used in conjunction with the multi-contact model described in
Section 2.2 to accomplish this goal. One method to construct a realistic non-spherical
particle representation is by applying X-ray microtomography, where image processing
techniques are used to identify the particle shape [41]. Another strategy employed in this
work is the generation of random 3D particles that strive to fit the desired shape parameters,
such as the average aspect ratio, elongation, etc. The aspect ratio is defined as the ratio of
the smallest Feret diameter compared to its largest diameter [42]:

ASR =
S
L

(8)

In addition to the aspect ratio, the particle shape is characterized by the following
parameters [43,44]:

elongation =
I
L

, f latness =
S
I

(9)

where L, I and S are the longest, intermediate, and smallest sides of the box, respectively.
A schematic representation is shown in Figure 4.
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Figure 4. The dimensions of the box enclosing the particles used to define the shape parameters.

Another method for quantifying the particle shape is to utilize the closed-form Fourier
function, which mathematically characterizes any arbitrary cross-sectional 2D image. To
construct virtual complex-shaped particles and examine their packing behavior in defined
locations, an unique Fourier–Voronoi-based technique was developed by Mollon and
Zhao [44] The authors published a MATLAB algorithm that took in the required Fourier
descriptors and generated the particle linked to them. In this study, this algorithm was used
to generate non-spherical particles. The process of representing non-spherical particles is
shown in Figure 5 and includes two main steps: (a) images of raw materials were taken with
the Helios G4 CX DualBeam (Thermo Scientific, Waltham, MA, USA) scanning electron
microscope (SEM); (b) the MATLAB generator was used to generate non-spherical particles
and fill them with overlapping spheres.
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Figure 5. The process of generating realistic non-spherical particles including: SEM images of Avicel®

PH 200; MATLAB code generation and filling the multi-sphere.

The average shape characteristics of the generated four distinct non-sphercial shapes
(Figure 5) are ASR = 0.8, elongation = 0.84, f latness = 0.95. The quality of an approxima-
tion is one of the most essential challenges for this procedure. In other words, how many
overlapping spheres should the system have? A sensitivity analysis with varied numbers
of sub-spheres was performed to answer this question. Since the computational cost is
high and fine multi-sphere representation requires a large number of particles, only two
different approximations were examined, as shown in Figure 6.
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4.1. Materials

The material studied is a type of microcrystalline cellulose known as Avicel® PH 200
(FMC BioPolymer, Philadelphia, PA, USA). The powder characteristics, including particle
size distribution (PSD) and true density, are given in Table 2 and have been previously
published in the literature.

Table 2. Particle size distribution (PSD) and true density [4].

Material x10(Q3)(µm) x50(Q3)(µm) x90(Q3)(µm) Span (-) True Density
(kgm−3)

Avicel® PH
200

82.9 224.6 379.3 1.32 1541.1

4.2. Experimental Methods

In order to study how the powder behaves when compressed, in this study, the
compaction simulator called Styl’One Evolution (CS; Medel’Pharm, Beynost, France) was
used. This device is designed to precisely control the compaction process and collect data
on the force and displacement of the powder. The in-die data were analyzed using the
ANALIS software from the same manufacturer. The compaction process was carried out
using a generic profile that aimed to achieve a compression stress of approximately 30 MPa.

4.3. Numerical Example with the CMS Approach

In this section, the uniaxial compression of non-spherical particles is shown. The
system under consideration is a cube with dimensions of 1× 1× (0.5 + height) mm along
the x-y-z directions, and while the x and y axes and the bottom of the z direction were fixed
in size, the height was left open, since the filling height was investigated. The particles were
generated with a random orientation over the whole volume of the cube. Gravitational
forces led the particles to settle to the bottom of the cube. Periodic boundaries were used
along the x and y axes and the cube contained a top and a bottom plate. A monodisperse
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system with a characteristic particle diameter (max diameter) of 24 µm was examined in
this study—namely, the microcrystalline cellulose-grade Avicel® PH 200. In line with prior
simulations using spherical particles, the material and contact model input properties were
identical to those reported in the study by Giannis et al. [4] and are given in Table 3.

Table 3. The input parameters for particle–particle and particle–wall interactions.

Property Symbol Values Units

Young’s modulus—particle (p) E 2.58× 108 MPa
Young’s modulus—wall (w) E 7.62× 1010 MPa
Poisson’s ratio—particle ν 0.30 -
Poisson’s ratio—wall ν 0.31 -
Coefficient of restitution particle COR (p-p) 0.352 -
Coefficient of restitutio—wall COR (p-w) 0.352 -
Coefficient of sliding friction—(p-p) µs(pp) 0.561 -
Coefficient of sliding friction—(p-w) µs(pw) 0.707 -
Coefficient of rolling friction—(p-p) µr(pp) 0.3 -
Coefficient of rolling friction—(p-w) µr(pp) 0.01 -
Density ρ 1541.1 kg/m3

Following the initial filling, the sample was compressed uniaxially along the z axis
from the maximum initial height to the minimum compression height of 0.6 mm, and
then decompressed. From the results shown in Figure 6, it is clear that the quality of
the approximation had an impact on the results. We can draw the same conclusion as in
Section 3.3: the results do not converge on a solution; hence, the CMS was not further
employed in this study.

4.4. Modeling Compaction of Avicel® PH 200 with BMS Approach

In order to compare the outcome with the BMS approach that used non-spherical
particles, we used the compaction of Avicel® PH 200, as well as the corresponding experi-
mental and simulated data, based on spherical representations from our previous work [4].
Giannis et al. demonstrated the existence of a representative volume element in their
work by investigating a number of differently sized representative volume elements (RVEs)
and demonstrating that it could be used for DEM simulations to accurately predict the
experimental data in this investigation; because there is a great requirement to reduce the
computing cost, the smallest of these RVEs was used. In DEM simulations, it is common
to use coarse-grained particles with a large diameter to increase the simulation speed [45].
Another way to accelerate the simulations is to establish a minimum diameter size for the
particles [46]. In this study, the system under consideration was filled with 150 particles, as
shown in Figure 7, with a mean diameter of 225 µm. In order to reduce the computational
time of DEM simulations, particles with sizes smaller than 180 µm (a mean diameter of
≈225 µm, Table 2) were excluded. This was done because smaller particles need smaller
timesteps, and neglecting them eliminates the need for extremely small timesteps, which
would otherwise be necessary.

To account for the particle shape, a statistical analysis was conducted by dynamic
image analysis (QicPic, Sympatec GmbH, Germany).

The cumulative distribution of the aspect ratio (see Figure 7) reveals that the aspect
ratio of the particles ranged from 0.4 to 0.9, with a mean aspect ratio of S50 ≈ 0.71. Later,
and in line with this information (distribution of the aspect ratio), three non-spherical
representations of the particles were generated with the MATLAB generator with respect
to the particle size distribution. In the end, the geometries (.stl files) were filled with
sub-spheres that could be used by the BMS approach. Represented geometries were used to
construct the packing of non-spherical particles. After filling, the particles were relaxed due
to the action of gravitational forces. The initial packing density for spherical representations
was 59%; to reach this packing density for non-spherical representations, the system had to
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be compressed. The system was then compressed to a maximum target strain of 57%, before
it was decompressed. Three distinct approximations with varied aspect ratios were used
for the BMS method, as shown in Figure 7 (0.84, 0.71, 0.53), and to reduce the computational
cost, 150 coarse approximations with an average of 350 sub-spheres were used; see Figure 7.
A bond is formed between two particles, i and j, with radii ri and rj and positions xi and xj,
if the distance between the two particles meets the following condition:(

xi − xj
)
· n <

(
ri + rj

)
·mb (10)

where n =
xi−xj

|xi−xj| is the unit vector pointing from particle j to particle i, and mb is a user-

defined multiplier that controls the number of bonds that are created at a given timestep.
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At the beginning of the simulation, the particles were immediately bonded together
during the initial timestep. The multiplier (mb = 1.15) used was carefully selected to ensure
that every particle could form bonds with its adjacent particles, and no particle would
remain unbonded.

A system containing spherical particles, as previously studied by Giannis et al. [4],
was used as a reference. For the input parameters given in Table 4 of the BMS method, a
calibration strategy including a series of simulations was conducted. As seen in Figure 8,
good agreement between the simulated and experimental data was achieved. It should
also be noted that this was only possible since the loading stiffness was not dependent on
the Young’s modulus. In a future study, a contact model that takes this input as a calibrated
parameter (depending on the surface energy, yield strength, and modulus of elasticity)
should be investigated.



Pharmaceutics 2023, 15, 909 14 of 17

Table 4. The input parameters used in the BMS approach.

Property Symbol Values Units

Young’s modulus—particle(p) E 2.58× 108 MPa
Young’s modulus—wall(w) E 7.62× 1010 MPa
Poisson’s ratio—particle ν 0.30 -
Poisson’s ratio—wall ν 0.31 -
Coefficient of restitution particle COR (p-p) 0.352 -
Coefficient of restitutio—wall COR (p-w) 0.352 -
Coefficient of sliding friction—(p-p) µs(pp) 0.561 -
Coefficient of sliding friction—(p-w) µs(pw) 0.707 -
Coefficient of rolling friction—(p-p) µr(pp) 0.3 -
Coefficient of rolling friction—(p-w) µr(pp) 0.01 -
Density ρ 1541.1 kg/m3

Bond normal stiffness kb
n 8× 108 N/m3

Bond tangential stiffness kb
t 9× 108 N/m3

Empirical prefactor β 1.3 -
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At this point, the differences between the BMS method and the CMS approach should
be explained. The complex particle shape with CMS can be easily captured due to overlap-
ping spheres. However, as shown in this study and in previous studies [33,47] (Kruggel-
Emden et al. 2008; Kozhar et al. 2015), the macroscopic response of a multi-sphere particle
is determined by the quality of shape approximation. As such, different shape approxima-
tions yield different results. Alternatively, with the BMS method, the particle’s real shape
was captured by the sub-spheres; an investigation to determine the size of the sub-spheres
was needed, as they are glued together with solid bonds. With this came the necessity to
calibrate the bond input parameters, whereas the number of overlapping spheres was nec-
essary with the CMS approach. This weakness, however, was also a strength for the BMS,
since the bonds would be tuned accordingly, allowing for flexible particle behavior (Sec-
tions 3.1, 3.2 and 4.2) or, if necessary, the study of breaking or crushing events. The particle
in CMS behaves similarly to a rigid body; therefore, large deformation (Sections 3.2 and 4.1)
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is not yet achievable. Nevertheless, breaking or crushing events can be achieved by the
immediate release of the sub-spheres after an energy threshold is reached.

5. Conclusions

In this study, the compression behavior of a single rubber sphere was studied using
various numerical techniques: BMS and CMS. The results were compared to experimental
data and detailed finite element simulation (MPFEM), and it was found that BMS method
accurately reproduced the experimental data. However, the CMS method did not converge
to a solution, even when using different numbers of sub-sphere approximations. This
is because the CMS method allows several spheres to overlap, resulting in numerous
contact points that contribute to the resolution of the contact force. We also demonstrated
that the bonded multi-sphere (BMS) naturally handles large deformations and allows
the particle to alter its shape, whereas, using the conventional multi-sphere (CMS), the
particle remains rigid. As a result, the BMS method was applied using realistic particles
to investigate the compaction behavior of Avicel® PH 200 and, in conjunction with multi-
contact DEM, very good agreement with the experimental data was achieved. The results
were then compared with those from MC-DEM, which only employs spherical particles.
The comparison revealed that the assumptions made about spherical representations were
valid and could lead to precise results.

The methodologies investigated in this study have a significant drawback in terms
of high computational time, which limits the number of particles that can be simulated.
Consequently, future research should focus on utilizing surrogate models to accelerate the
simulations. This would be crucial in enabling larger-scale simulations and making the
computational modeling approach more efficient.
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