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A B S T R A C T   

This paper presents a machine learning-based image analysis method to monitor the particle size distribution of 
fluidized granules. The key components of the direct imaging system are a rigid fiber-optic endoscope, a light 
source and a high-speed camera, which allow for real-time monitoring of the granules. The system was imple-
mented into a custom-made 3D-printed device that could reproduce the particle movement characteristic in a 
fluidized-bed granulator. The suitability of the method was evaluated by determining the particle size distri-
bution (PSD) of various granule mixtures within the 100–2000 μm size range. The convolutional neural network- 
based software was able to successfully detect the granules that were in focus despite the dense flow of the 
particles. The volumetric PSDs were compared with off-line reference measurements obtained by dynamic image 
analysis and laser diffraction. Similar trends were observed across the PSDs acquired with all three methods. The 
results of this study demonstrate the feasibility of performing real-time particle size analysis using machine 
vision as an in-line process analytical technology (PAT) tool.   

1. Introduction 

Fluidized-bed granulation is a process widely used in the pharma-
ceutical industry to improve powder properties for downstream pro-
cessing. A number of processes, including homogenization, wetting, 
drying and particle size enlargement, are integrated into a single unit 
operation by using heat and mass transfer. As several processes are 
involved in this system, numerous process variables are known to in-
fluence the quality of the final product (Aulton and Summers, 2002; 
Burggraeve et al., 2013; Tan et al., 2006). Granule size and moisture 
content are considered the most critical aspects to control in the gran-
ulation process. The resulting particle size influences powder flow-
ability, blend uniformity and tabletability, therefore monitoring particle 
size during granulation processes is of major importance (Du et al., 
2014; Gabbott et al., 2016; Gao et al., 2002). The traditionally applied 
granulation control and endpoint determination tools are indirect, 
time-consuming and off-line testing methods, which do not ensure the 
consistent production of granules with the desired quality attributes 

(Fonteyne et al., 2015). This may lead to batch rejects and recalls, and 
requires continuous optimization of the granulation process. 

Recently, the US Food and Drug Administration (FDA) has encour-
aged a shift from traditional off-line analysis to real-time quality 
assurance through the implementation of Process Analytical Technology 
(PAT) tools and Quality by Design (QbD) principles (FDA, 2004). 
Improved product quality can ultimately be achieved by identifying the 
critical material attributes (CMAs) and process parameters (CPPs), and 
understanding their effect on the critical quality attributes (CQAs) (Beg 
et al., 2019). PAT enables the identification and monitoring of these 
variables through a fast, non-invasive and non-destructive analysis. 
Thus, end-product quality, safety and efficacy is ensured by avoiding 
any process deviations during the manufacturing (Haneef and Beg, 
2021). Near-infrared spectroscopy (NIR) (Findlay et al., 2005; Gavan 
et al., 2020; Nieuwmeyer et al., 2007), acoustic emission spectroscopy 
(Poutiainen et al., 2012; Tsujimoto et al., 2000), focused-beam reflec-
tance spectroscopy (FBMR) (Alshihabi et al., 2013; Heath et al., 2002; 
Kukec et al., 2014) and spatial-filter velocimetry (SFV) (Burggraeve 
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et al., 2010; Nascimento et al., 2021) have been used as in-line PAT tools 
for monitoring the fluid-bed granulation process. 

Digital imaging is an affordable tool with enormous potential in 
many areas of the pharmaceutical industry (Galata et al., 2021). A 
digital imaging system consists of a digital camera capable of capturing 
images at a sufficiently high frames per second (fps) rate, the necessary 
optical components (i. e. lens, endoscope), a light source and algorithms 
to extract useful information from the images (Misra et al., 2015). 
Literature describes numerous methods to monitor particle size during 
granulation processes using various imaging techniques. An early 
attempt to capture pictures of granules during fluidized-bed granulation 
used an on-line particle image probe system consisting of a 
charge-coupled device (CCD) camera, a telephoto lens and a stroboscope 
(Watano et al., 1996; Watano and Miyanami, 1995). The first 
endoscopy-based particle imaging system was presented by Simon et al. 
for use in the crystallization process (Simon et al., 2009).  Qian et al. 
(Qian et al., 2013) inserted a fiber-optic endoscope into a fluid-bed 
granulator to form motion images of the particles. In order to extract 
quantitative information from the captured pictures, the authors applied 
traditional image processing tools (filtering, denoising, binarization, 
segmentation). The performance of the aforementioned image analysis 
algorithms declines with dense material flow, because extensive granule 
overlap reduces the reliability of these methods. Furthermore, the 
changing image background, out-of-focus particles and rough granule 
surface often make segmentation more difficult (Larsen et al., 2006). 
The fluid bed is very dense at the bottom, especially towards the inlet 

slots (Fries et al., 2013); this presents major challenge for the traditional 
image analysis methods. 

Photometric stereo imaging is a machine vision technique which can 
be used when the dispersion of particles is difficult. In this technique, 
multiple light sources are used to obtain 3D images of granules. Due to 
the nature of the measurement, the irregularities of rough particle sur-
face could cast shades and a single particle may be regarded as multiple 
particles, consequently causing particle size underestimation (Heath 
et al., 2002; Sandler, 2011). This occurs especially in the case of irreg-
ular shaped granules and particle agglomeration (Silva et al., 2013; 
Soppela et al., 2011). 

In recent years, artificial intelligence, and in particular convolutional 
neural networks (CNN), have made a great breakthrough in image-based 
object recognition. CNNs processes data of multiple dimensions, such as 
images, by using multiple building blocks: convolution layers, pooling 
layers, and fully connected layers. Convolution is applied to extract 
useful features from locally correlated data points. CNNs are designed to 
automatically and adaptively learn a large number of filters specific to a 
training dataset so that highly specific features can be detected any-
where on input images (Khan et al., 2020; Lopez Pinaya et al., 2019; 
Rawat and Wang, 2017). In the fields of pharmaceutical sciences, CNNs 
have shown outstanding performance and accuracy in the detection and 
characterization of powders (Sachs et al., 2023), crystal forms (Chen 
et al., 2019; Gan et al., 2022; Iwata et al., 2022; Salami et al., 2021), 
pellets (Mehle et al., 2017), tablets (Ma et al., 2020) and film coating 
(Ficzere et al., 2022; Hirschberg et al., 2020). 

In the current work, a convolutional neural network-based in-line 
endoscopic system is proposed for particle size measurement. The sys-
tem provides the opportunity to record and analyze images at rapid 
speed. In contrast to traditional detection algorithms where the detec-
tion rules are arbitrarily determined by a human, CNNs achieve robust 
and accurate performance by identifying the underlying patterns in the 
training dataset. Particle size measurement during fluidized-bed gran-
ulation is difficult due to the dense granule flow and particle overlap, 
therefore this work aims to investigate the feasibility of performing real- 
time particle size analysis using CNNs. To the authors knowledge, this is 
the first in-line granule size measurement method using an artificial 
intelligence-based endoscopic system during fluidization. 

Fig. 1. Schematic drawing of the experimental setup: (1) 3D-printed mini-fluid, 
(2) fluidizing air, (3) rigid endoscope, (4) camera, (5) computer, (6) 
light source. 

Fig. 2. Particle detection with V-CNN software using images of various dextrose granule fractions captured in the mini-fluid: (a) 200–300 µm, (b) 300–500 µm, (c) 
500–710 µm, (d) 710–1000 µm, (e) 300–500 + 710–1000 μm, (f) 500–710 + 1000–2000 μm. 
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2. Materials and methods 

2.1. Materials 

Dextrose granules were prepared with α-D glucose monohydrate 
(Hungrana, Hungary). Distilled water was used as granulation liquid. 
Starch-lactose granules contained polyvinylpyrrolidone (Kollidon® 30, 
PVPK30, BASF, Ludwigshafen, Germany) as binder, which was dissolved 
in 96% ethanol (Sigma-Aldrich, Budapest, Hungary). Potato starch 
(Roquette Pharma, Lestrem, France) and α-lactose monohydrate 
(GranuLac® 230 mesh, Meggle Pharma, Wasserburg, Germany) were 
used as the solid excipients. 

2.2. Preparation of granules 

Dextrose and starch-lactose granules were prepared using a previ-
ously studied continuous granulation system by Záhonyi et al. (Záhonyi 
et al., 2022). The obtained granules were sifted through 100, 200, 300, 
500, 710, 1000 and 2000 μm sieves using a sieve shaker (CISA BA 200 N, 

Barcelona, Spain) with an amplitude of 2 mm until the mass of fractions 
no longer changed. Six fractions were obtained: 100–200 µm, 200–300 
µm, 300–500 µm, 500–710 µm, 710–1000 µm and 1000–2000 µm. From 
the obtained fractions, five mixtures were prepared by mixing 10 g of 
smaller granule fractions with 10 g of large fractions: 300–500 +
500–710 μm, 300–500 + 710–1000 μm, 500–710 + 710–1000 μm, 
500–710 + 1000–2000 μm and 710–1000 + 1000–2000 μm. 

2.3. Experimental setup 

A drawing of the experimental setup can be seen in Fig. 1. In this 
research, a custom-made 3D-printed device was used to simulate fluid 
bed granulation. The 3D model was designed in the Fusion 360 software. 
The device was printed on an Creality Ender 3 printer (Cordol Tech-
nology, Hong Kong) with polylactic acid (PLA) filament bobbin. The 
dimensions of mini-fluid were 160 mm in length and 60 mm in width. 
The device consisted of an upper and lower part connected through 
screws and separated by a filter, which allowed fluidizing airflow. The 
custom-made prototype described in this paper is available as 

Fig. 3. The PSDs of the sieved dextrose granule fractions obtained with V-CNN, DIA and laser diffraction (LD).  
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supplementary material in standard tessellation language (STL) format. 
The granules were placed into the mini-fluid, then the top of the device 
was covered with a filter. A rigid endoscope of 5 mm diameter was 
inserted through the side of the 3D-printed device. The shell of the 
endoscope is made of stainless steel metal, with high hardness, making it 
suitable for pharmaceutical manufacturing processes. The endoscope 
was coupled with a high-powered LED light source through a fiber optic 
cable. All videos were acquired with a high-speed camera at 125 frames 
per second with a shutter speed of 85 µs. Video frame dimensions were 
cropped to 900 × 900 pixels. The pixel to µm ratio of the camera was 

determined using a caliper. 
Image analysis was conducted using the CNN-based image analysis 

software (Videometry 1.2.2) software developed by QDevelopment 
(Budapest, Hungary), henceforth referred to as V-CNN. After recording 
the videos, we extracted individual video frames to create the dataset 
containing examples of the dextrose granules. For the training, we used 
1.800 images with a total of 6.621 annotations of the granules that were 
in focus. Images were manually annotated using the Makesense on-line 
image annotation tool. The training data contained images of the six 
granule fractions and two of the mixtures (300–500 + 710–1000 μm and 
500–710 + 1000–2000 μm). 10% of the images contained useless data 
(background, out-of-focus particles, partially visible granules), and 
therefore were not labelled. This ensures that the CNN will only detect 
the granules in focus, so that the particle size could be accurately 
determined. The dataset was split into 70% training and 30% testing set. 
The model was trained for 100 epochs in batch size of 15. After training, 
the model was used to perform image analysis on additional videos. 
Only dextrose granules were included in the training dataset, while 
testing was performed with both dextrose and starch-lactose granules. 
The average Feret-diameter of the granules was calculated in pixels, and 
then these values were converted to micrometers. 

2.4. Off-line particle size analysis 

The particle size of the granules was measured off-line by laser 
diffraction, using a Malvern Mastersizer 2000 (Malvern Instruments, 
Worcestershire, UK) and off-line dynamic image analysis based on the 
main principles of the Camsizer® particle size analyser, using a custom 
image analysis software previously presented by Madarász et al. The 
latter will be referred to as DIA (dynamic image analysis). 

The laser diffraction technique uses Mie theory of light scattering to 
calculate the equivalent spherical diameter for non-spherical particles 
and gives their volumetric particle size distribution (PSD). 1 g of sample 
was fed into the device using a Malvern Scirocco 2000 feeding inlet. The 
measurement time was 6 s and dispersive air pressure was set to 1 bar. 

The DIA technique determines the average Feret-diameter of the 
granules from the contours. The images of the particles were analyzed 
with a custom image analysis software developed by the authors. The 
following image processing methods have been implemented: gaussian 
blur, thresholding (binarization) and contouring (edge detection). The 
samples were fed into the measuring equipment using a vibratory feeder 
equipped with a U-shaped chute. The dispersed particles fell from the 
chute and passed between a custom panel light (Apokormat Ltd., 
Hungary) and a camera, which collected images of the sample stream. A 
Basler camera (Basler acA4112–30uc, Basler AG, Germany) was oper-
ated at 125 frames per second with a 1500 × 1050 resolution and a 
shutter speed of 200 µs. 

The camera-based measurements allowed for the retrieval of the 
samples, while the Malvern Mastersizer is a destructive technique. 
Hence the measurement order for each sample was: V-CNN → DIA → 
Malvern. The sample was recollected between the measurements, in 
such a manner that the same material could be measured with each 
method. The measurements were repeated three times for each tech-
nique. The experimental data was expressed in volume-based distribu-
tion in order to ensure comparability. 

3. Results and discussion 

The images captured in the 3D-printed device are as shown in Fig. 2. 
Granule detection can be challenging due to the irregular particle sur-
face, which casts shades on the rough surface. The V-CNN software was 
able to successfully detect the fully captured granules that were in focus 
and excluded the partially captured particles. Granules that were only 
partially in the frame or were covered by other granules, were not 
included in the training dataset as the true size of these granules could 
not be determined. This is because particle size estimation may be 

Fig. 4. Comparison between the D10, D50 and D90 values of various dextrose 
granule fractions: 100–200 µm (A), 200–300 µm (B), 300–500 µm (C), 500–710 
µm (D), 710–1000 µm (E), 1000–2000 µm (F). 
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skewed when particles are only partially visible and large particles may 
be treated as smaller particles. A partially covered large granule was still 
annotated if the small particle did not influence the size of the annota-
tion (i.e. it did not overlap with the contour of the large particle) and the 
particle size could be determined with sufficient accuracy (Fig. 2f.). 
Particles were correctly identified even though particle overlap was 
inevitable in the dense region of the fluid-bed. A video of the 500–710 
µm granule fraction is available in the supplementary material of the 
article (Supplementary Video 1.). 

Less light was reflected off of starch-lactose granules, which resulted 
in darker videos when the same camera settings were used. The gain was 
set to 3 dB for these granules to achieve similar detection rates. This 
value was enough to sufficiently amplify the apparent light sensitivity of 
the sensor with a minimal increase in noise. 

The 100–2000 μm size range was considered as the fraction of in-
terest as it corresponds with the typical range size of pharmaceutical 
granules. Granules with a similar size range were produced with 
fluidized-bed granulation in several literature works (Behzadi et al., 
2005; Boerefijn and Hounslow, 2005; Hu et al., 2008; Närvänen et al., 

2008). Granules smaller than 100 µm were not included in this study as 
it was not possible to visually determine which of these particles were in 
focus. The use of high-resolution magnifying endoscopes in combination 
with a zoom lens can improve video system magnification even further, 
allowing for the detection of smaller particles. Granules larger than 
2000 μm were also recognized by the V-CNN software as seen in the PSD 
of the 1000–2000 μm sieve fraction. For larger particles it can be 
assumed that the system can be easily expanded upwards as long as the 
particles fit in the frame. 

The surface of the endoscope remained clean even when small par-
ticles were present in the system. However, during wet granulation, 
materials may be sticky and adhesive, causing probe fouling and hin-
dering in-line process monitoring. To address this issue, methods such as 
air purging, solvent rinsing, and the use of windshield wiping devices 
have been developed to mitigate probe fouling during measurement 
(Troup and Georgakis, 2013). 

The PSDs were calculated from the size data of 5000 particles. The 
minimum number of particles required to be sampled can also be esti-
mated using the sub-sampling method described by Clarke et al. (Clarke 

Fig. 5. The PSDs of the dextrose granule mixtures obtained with the different measurement techniques.  
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et al., 2019). Since only a few particles can be observed in each frame, 
results were obtained after analyzing a few hundred to a few thousand 
frames depending on particle size. Determining the PSD of 1000–2000 
μm granules required ~ 25 s as only a few larger granules could fit in one 
frame. The PSD of 300–500 μm and smaller granules could be deter-
mined in 4 s because ~10 granules were captured every frame. This 
shows that the measurement method is capable of monitoring fluid bed 
granulation in real-time, as changes in this process occur on a scale of 
several minutes. 

Utilizing whole particle distributions can yield greater insight and 
provide deeper understanding of fundamental material properties 
(Gamble et al., 2023). The volume-based PSDs of the dextrose granule 
fractions are presented in Fig. 3. Similar trends were observed in PSDs 
across the different sizing techniques even if the absolute values varied. 
The camera-based approaches revealed a single peak of size distribution 
curve (unimodal) for sieved dextrose fractions. V-CNN measurements 
resulted in the narrowest distributions, closely followed by DIA. In 
contrast, the laser diffraction analysis was characterized by broad and 
multimodal distributions due to the increased percentage of smaller 

particles detected in the samples. 
The average diameter (D10, D50, D90) of the various dextrose granule 

fractions are represented in Fig. 4. The D10, D50, and D90 values are the 
specific particle diameters that correspond to the 10%, 50% and 90% of 
the total granules in the cumulative volume distribution. 

Evaluation of the D10 values among the three methods revealed that 
the amount of small particles was found to be smaller with the camera- 
based methods and larger in the laser diffraction results. Mastersizer 
measurements indicated the presence of small granuleseven in the large 
granule fractions . 

The mean particle size values obtained with the AI-based system 
showed good correlation with the offline DIA results, indicating that the 
developed model can perform accurate particle size measurements. The 
relative percentage difference between the D50 values measured with 
camera-based methods was less than 8% for all dextrose granule 
fractions. 

The D50 values measured with laser diffraction were always lower 
than the camera-based measurements. These differences can be 
explained in part by the measurement methodology as the various 

Fig. 6. The PSDs of the sieved starch-lactose granule fractions obtained with V-CNN, DIA and laser diffraction (LD).  
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measurement techniques handle particle shape differently. As presented 
in several papers comparing particle size measurement methods, this 
phenomenon has been observed mainly with irregularly shaped particles 
(Grubbs et al., 2021; Islam et al., 2022; Li et al., 2005; Roostaei et al., 
2020; Silva et al., 2013). 

The comparison between the PSDs of the various dextrose granule 
mixtures are depicted in Fig. 5. Three mixtures prepared with sieved 
granule fractions (300–500 + 710–1000 μm, 500–710 + 1000–2000 μm, 
710–1000 + 1000–2000 μm) showed bimodal distributions. This 
bimodality was not visible with the Mastersizer measurements, which 
may be due to instrumental corrections such as smoothing of the PSD 
profile during data processing (Blott and Pye, 2006). It should be noted 
that even though the same amount of granule fractions were mixed 
during sample preparation, mass distribution would not be completely 
comparable with the volume size distribution if the porosity and density 
of the granules varied. 

A well-trained machine learning model is able to generalize so that it 
can accurately detect similar objects in previously unseen input data. We 
assessed the suitability of the AI-based technique on fresh data by 

applying the method to starch-lactose granules. The PSDs of the assayed 
starch-lactose granule fractions and mixtures (Fig. 6. and 7.) show that 
the distributions determined with camera-based methods corresponded 
well with the size fraction ranges of the sieved granules despite the CNN 
model being trained on dextrose granules. Bimodal distribution was 
observed with camera-based methods for two mixtures prepared with 
nonadjacent sieve fractions (300–500 + 710–1000 μm and 500–710 +
1000–2000 μm), as was anticipated. The AI-based system was able to 
determine the particle size of the starch-lactose granules with similar 
accuracy as the dextrose granules. The average relative standard devi-
ation values calculated for D50 values with V-CNN, DIA and laser 
diffraction were 1.1%, 2.8% and 4.1% for dextrose granules and 1.0%, 
3.8% and 4.4% for starch-lactose granules. 

Mastersizer results indicate the presence of 100–400 µm particles in 
the 1000–2000 µm fraction, however these small particles were not 
detected with the camera-based methods. This is also reflected by the 
span values which show a wide variance between the three methods. 
Laser diffraction measurements produced the widest distributions, 
whereas the small span values measured with the AI-based system 

Fig. 7. The PSDs of the starch-lactose granule mixtures obtained with the different measurement techniques.  
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indicate a narrow PSD. The span values of the DIA method were between 
the two techniques, but much closer to that of V-CNN. 

All three particle sizing techniques showed similar tendency in the 
D50 values of the starch-lactose granules. For all granule fractions and 
mixtures within the 200–2000 μm size range the relative percentage 
difference between the mean particle size values measured with V-CNN 
and DIA was less than 8%. This difference was 17.2% in the case of the 
100–200 μm granules. 

Overall, the PSDs of the various granule fractions and mixtures 
indicate that there is a systematic difference between the camera-based 
techniques and the laser diffraction data. The most remarkable differ-
ence was observed in the smallest fraction, which was larger in the 
Mastersizer results. This effect was more prominent with large starch- 
lactose granules. The CNN model performed similarly well for both 
dextrose and starch-lactose granules, demonstrating that the AI was able 
to learn the generalized features of the granules. Additional data on the 
D10, D50, D90 and span values of the other samples are available in the 
supplementary material (Supplementary Figure 1–5.). 

4. Conclusion 

An endoscope can be easily integrated onto most fluidized-bed 
granulators with no modification of the equipment, by mounting 
within the sampling port. The AI-based imaging system can ultimately 
be used as an in-line sensor to monitor granulation process and detect 
end-point. This work evaluates the suitability of an artificial 
intelligence-based endoscopic system for measuring particle size distri-
bution during fluidization. 

The endoscopic system was tested in a laboratory setting with a 
custom-made 3D-printed device that simulated the particle movement 
during fluid bed granulation. Images of the granules were successfully 
retrieved and particles were detected despite the dense flow of the 
particles. Granules from both batches were recognized by the trained 
model even though only dextrose granules were included in the training 
dataset. The model was also able to distinguish between blurry and in- 
focus particles. The performance of the technique was evaluated by 
comparing the obtained PSDs to two off-line reference measurement 
methods (laser diffraction and off-line dynamic image analysis). The 
developed imaging system seems promising; the results of this initial 
study demonstrate a good relationship between in-line and off-line 
measurement of granule size. The result of the three methods showed 
similar trends in the PSDs, however the different measurement princi-
ples resulted in different mean particle sizes. The AI-based system em-
ploys cost-effective instrumentation; however validation costs should 
also be considered in a pharmaceutical setting. The system offers flexi-
bility by supporting various combinations of endoscopes and cameras, 
thereby enabling extensive customization. 

Our conclusion is that the developed AI-based endoscopic system is 
highly feasible as a PAT tool for monitoring particle fluidization. In 
future work, the video system magnification can be improved through 
the optimization of the optics. As a continuation of the research, the 
method should be tested in an industrial setting during fluid-bed 
granulation. 
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L., 2022. Real-time coating thickness measurement and defect recognition of film 
coated tablets with machine vision and deep learning. Int. J. Pharm. 623 https://doi. 
org/10.1016/j.ijpharm.2022.121957. 

Findlay, W.P., Peck, G.R., Morris, K.R., 2005. Determination of fluidized bed granulation 
end point using near-infrared spectroscopy and phenomenological analysis. 
J. Pharm. Sci. 94, 604–612. https://doi.org/10.1002/jps.20276. 

Fonteyne, M., Vercruysse, J., De Leersnyder, F., Van Snick, B., Vervaet, C., Remon, J.P., 
De Beer, T., 2015. Process Analytical Technology for continuous manufacturing of 
solid-dosage forms. TrAC - Trends Anal. Chem. 67, 159–166. https://doi.org/ 
10.1016/j.trac.2015.01.011. 

Fries, L., Antonyuk, S., Heinrich, S., Dopfer, D., Palzer, S., 2013. Collision dynamics in 
fluidised bed granulators: A DEM-CFD study. Chem. Eng. Sci. 86, 108–123. https:// 
doi.org/10.1016/j.ces.2012.06.026. 

Gabbott, I.P., Al Husban, F., Reynolds, G.K., 2016. The combined effect of wet 
granulation process parameters and dried granule moisture content on tablet quality 
attributes. Eur. J. Pharm. Biopharm. 106, 70–78. https://doi.org/10.1016/j. 
ejpb.2016.03.022. 
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Piché, N., Williams, R., Skomski, D., 2020. Deep Learning Convolutional Neural 
Networks for Pharmaceutical Tablet Defect Detection. Microsc. Microanal. 26, 
1606–1609. https://doi.org/10.1017/S1431927620018693. 
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Nascimento, R.F., Ávila, M.F., Taranto, O.P., Kurozawa, L.E., 2021. A new approach to 
the mechanisms of agglomeration in fluidized beds based on Spatial Filter 
Velocimetry measurements. Powd. Technol. 393, 219–228. https://doi.org/ 
10.1016/j.powtec.2021.07.076. 

Nieuwmeyer, F.J.S., Damen, M., Gerich, A., Rusmini, F., Van Der Voort Maarschalk, K., 
Vromans, H., 2007. Granule characterization during fluid bed drying by 
development of a near infrared method to determine water content and median 
granule size. Pharm. Res. 24, 1854–1861. https://doi.org/10.1007/s11095-007- 
9305-5. 
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O. Péterfi et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.ijpharm.2023.122743
https://doi.org/10.1016/j.ijpharm.2023.122743
https://doi.org/10.3390/cryst12050570
https://doi.org/10.1016/S0378-5173(01)00982-6
https://doi.org/10.1016/S0378-5173(01)00982-6
https://doi.org/10.1016/j.ajps.2019.03.003
https://doi.org/10.1016/j.ajps.2019.03.003
https://doi.org/10.1016/j.powtec.2021.06.003
https://doi.org/10.1016/j.powtec.2021.06.003
https://doi.org/10.1016/B978-0-12-820332-3.00006-6
https://doi.org/10.1002/1521-4117(200205)19:2&tnqh_x003C;84::AID-PPSC84&tnqh_x003E;3.0.CO;2-1
https://doi.org/10.1002/1521-4117(200205)19:2&tnqh_x003C;84::AID-PPSC84&tnqh_x003E;3.0.CO;2-1
https://doi.org/10.3390/pharmaceutics12090877
https://doi.org/10.1016/j.ijpharm.2007.06.043
https://doi.org/10.1016/j.ijpharm.2007.06.043
https://doi.org/10.1016/j.addlet.2022.100077
https://doi.org/10.1016/j.ijpx.2022.100135
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.3109/03639045.2013.791832
https://doi.org/10.1016/j.ces.2006.03.035
https://doi.org/10.1080/02726350590955912
https://doi.org/10.1080/02726350590955912
https://doi.org/10.1016/B978-0-12-815739-8.00010-9
https://doi.org/10.1017/S1431927620018693
https://doi.org/10.1186/s41074-017-0019-2
https://doi.org/10.1186/s41074-017-0019-2
https://doi.org/10.2174/2213385203666150219231836
https://doi.org/10.1016/j.ijpharm.2008.01.060
https://doi.org/10.1016/j.ijpharm.2008.01.060
https://doi.org/10.1016/j.powtec.2021.07.076
https://doi.org/10.1016/j.powtec.2021.07.076
https://doi.org/10.1007/s11095-007-9305-5
https://doi.org/10.1007/s11095-007-9305-5
https://doi.org/10.1016/j.powtec.2012.05.010
https://doi.org/10.1002/cjce.21915
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.2118/199335-MS
https://doi.org/10.1007/s00348-023-03574-2
https://doi.org/10.1007/s00348-023-03574-2
https://doi.org/10.1021/acs.oprd.1c00136
https://doi.org/10.1016/j.ijpharm.2010.11.007
https://doi.org/10.1016/j.ijpharm.2010.11.007
https://doi.org/10.1016/j.ejpb.2013.03.032
https://doi.org/10.1021/op900019b
https://doi.org/10.1208/s12249-011-9607-0
https://doi.org/10.1016/j.ces.2005.09.012
https://doi.org/10.1016/j.ces.2005.09.012
https://doi.org/10.1016/j.compchemeng.2012.06.014
https://doi.org/10.1016/j.compchemeng.2012.06.014
https://doi.org/10.1016/S0032-5910(00)00205-9
https://www.fda.gov/media/71012/download
https://www.fda.gov/media/71012/download
https://doi.org/10.1016/0032-5910(94)02944-J
https://doi.org/10.1248/cpb.44.1556
https://doi.org/10.1016/j.ijpharm.2022.122197
https://doi.org/10.1016/j.ijpharm.2022.122197

	In-line particle size measurement during granule fluidization using convolutional neural network-aided process imaging
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Preparation of granules
	2.3 Experimental setup
	2.4 Off-line particle size analysis

	3 Results and discussion
	4 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Supplementary materials
	References


