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Abstract

Excipients are included within protein biotherapeutic solution formulations to im-

prove colloidal and conformational stability, but are generally not designed for the

speci�c purpose of preventing aggregation and improving cryoprotection in solution. In

this work, we have explored the relationship between structure and anti-aggregation ac-

tivity of excipients by utilising coarse-grained molecular dynamics modelling of protein-

excipient interaction. We have studied human serum albumin as a model protein, and

report the interaction of 41 excipients (polysorbates, fatty alcohol ethoxylates, fatty

acid ethoxylates, phospholipids, glucosides, amino acids, and others) in terms of the

reduction of solvent accessible surface area of aggregation-prone regions, proposed as a

mechanism of aggregation prevention. Polyoxyethylene sorbitan had the greatest degree

of interaction with aggregation-prone regions, decreasing the solvent accessible surface

area of APRs by 20.7 nm2. Physicochemical descriptors generated by Mordred are
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employed to probe the structure-activity relationship using partial least squares regres-

sion. A leave-one-out cross-validated model had a root mean square error of prediction

of 4.1 nm2. Generally, longer molecules with a large number of alcohol-terminated PEG

units tended to interact more, with qualitatively di�erent protein interaction, wrapping

around the protein, and would have a lesser protective e�ect on stability. Shorter or less

ethoxylated compounds tend to form hemimicellar clusters at the protein surface. We

propose that an improved design would feature many short chains of �ve to ten PEG

units in many distinct branches and at least some hydrophobic content in the form of

medium-length or greater aliphatic chains (i.e., six or more carbon atoms). The combi-

nation of molecular dynamics and quantitative modelling is an important �rst step in

an all-purpose protein-independent model for the computer-aided design of stabilising

excipients.

Introduction

Protein-based biotherapeutics are a growing market, with signi�cantly more treatment op-

tions based on biologics under development and a multi-billion dollar industry revolving

around their research and manufacture; in 2021, 28% of all FDA-approved drugs were bi-

ologics.1 The majority of biotherapeutics include hormones,2 plasma proteins,3 enzymes,4

coagulation factors,5 vaccines,6 and monoclonal antibodies (mAb) and their fragments.7

mAbs are the largest fraction8 and are used primarily as immunotherapeutics, for targeted

delivery9 and cancer vaccines.10 Generally, therapeutic proteins are produced in bioreactors

using recombinant cell lines,11 and are often lyophilised or frozen for storage. One of the key

challenges facing protein biotherapeutics is their conformational and colloidal stability, as

formulation and storage conditions can induce aggregation and agglomeration12 during both

freezing and rethawing or resuspending.1 These aggregates have reduced function13 and an

increased speci�c immune response when administered;14 indeed, the association constant of

HSA to ketuprofen decreased by 42% after the formation of �brillar aggregates by HSA.15
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As folding occurs, the tertiary structure of a protein changes as hydrophobic residues are

buried within the 3D structure. The folding protein assumes transient intermediate struc-

tures of increasing stability and reaches a thermodynamic global minimum at the native

conformation, sometimes guided by molecular chaperone proteins.4,13,16 During manufacture

and storage, proteins are exposed to non-native conditions, such as non-physiological pH,

ionic strength, extremes of temperature, interactions with impurities, hydrophobic inter-

actions at interfaces with synthetic surfaces or air, which may induce partial unfolding or

misfolding and can lead to noncovalent aggregation (Figure 1). The change in structure

may expose hydrophobic residues, which form patches on the surface of the protein.17 The

energy landscape changes; it becomes more favourable to bury the hydrophobic patches by

interacting with hydrophobic surfaces, such as similar patches on other protein molecules.

This process is driven primarily by hydrophobic interaction, but electrostatics and hydrogen

bonding also contribute.13 Solvent is preferentially excluded from the protein surface as the

protein molecules interact with one another, and more molecules are recruited into the ag-

gregation nucleus in an irreversible process.18

The tendency of protein biotherapeutics to aggregate can be mitigated by the modi�ca-

Figure 1: Folding and misfolding pathway of a protein. An unfolded protein assumes more
stable intermediate folding conformations until arriving at the native con�guration. If sub-
jected to non-native conditions, the equilibrium position can change to favour the formation
of a stable, disordered conformation, which can form an aggregation nucleus while residing
within a thermodynamic energy minimum.
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tion of conditions, such as pH19 and ionic strength,20 as well as the inclusion of excipients

into biotherapeutic formulation.12,21 Excipients used to improve biotherapeutic stability in-

clude histidine,22 arginine,23 sugars,24 fatty alcohol ethoxylates,25 alkylsaccharides,26 polox-

amers27and polysorbates.28 The mechanism by which aggregation is prevented is not fully

understood. One proposal is the formation of protein-excipient complexes, which could

shield aggregation-prone regions (APRs) of the protein from solvent or other hydrophobic

surfaces.29,30 Competitive adsorption at surface interfaces, particularly by surfactants, may

prevent aggregation by reducing the exposure of the protein to another hydrophobic surface,

thereby reducing partial unfolding and aggregation nucleation.31,32 Excipients also modify

the energetics of native intermediates and increase stability, by making disordered interme-

diates less favourable and acting as a chaperone to facilitate native folding.33

Di�erences in protein structure complicate the understanding of aggregation prevention; as

proteins' structures di�er, so too will their aggregation propensity, as well as their interac-

tion with anti-aggregation agents. Hydrophobic patches of proteins are exposed to solvent to

di�erent extents and APRs will not have the same topology and charge distribution across

di�erent proteins.17 There are multiple approaches to predicting APRs using di�ering levels

of protein structure. Some, such as Aggrescan,17 work solely from the primary structure,

and determine APRs by comparing the amino acid sequence against an experimentally de-

termined aggregation propensity. Others account for the 3D structure and thus the solvent-

accessible surface area (SASA). Examples of this approach include SAP34 and Aggrescan-

3D.35 Generally, excipients are not chosen in light of e�cacy as an anti-aggregation agent,

but due to their well-established safety pro�les from other uses;36 for example, polysorbates

are popular emulsi�ers, particularly in cosmetics37 and in the food industry.38 Therefore,

there is chemical space to explore to optimise anti-aggregation excipients.

Computational techniques can provide mechanistic insight at length- and timescales that are

inaccessible to conventional wet lab methods.39 Molecular dynamics (MD) simulations have

been applied in the study of surfactant behaviour in solution;40,41 protein-surfactant interac-
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tion,29 including stability modulation42 and binding;43 protein aggregation44 and folding;45

and the modulation of protein stability by excipients such as histidine.46Atomistic or pseu-

doatomistic MD models often have a prohibitively high computational expense to be applied

in large numbers of simulations that examine microsecond-timescale events, such as many

aspects of protein dynamics.47

There are few investigations of the nonspeci�c interaction between excipients and APRs

as a mechanism of aggregation prevention that considers all areas of the protein. No quan-

titative structure-activity relationship model has been derived that probes the relationship

between excipient structure and anti-aggregation activity. In this work, we present an MD

model that investigates APR-excipient interaction to determine the stabilising e�ect on pro-

tein biotherapeutics, coupled with a quantitative model which uses physicochemical descrip-

tors in statistical analysis to reveal the impact of key features on anti-aggregation activity. In

doing so, we investigate the model of the shielding of APRs from solvent as a mechanism of

aggregation prevention, hypothesising that a smaller SASA of APRs leads to greater stabil-

ity. To produce su�cient data for a quantitative model, a CG force �eld was selected, as they

allow access to microsecond simulation timescales at reasonable computational expense and

without the need for enhanced sampling methods. Coarse-grained (CG) force �elds decrease

computational cost at the expense of resolution by representing multiple atoms as a single

interaction site; doing so can facilitate the large-scale simulation at microsecond timescales,

as there are fewer degrees of freedom to consider.

MARTINI48 is a prominent CG force �eld which maps atoms to beads at an approximately

4:1 ratio in a building-block approach. It has been applied to many di�erent biomolecu-

lar systems, such as membrane studies, protein-ligand binding, phase behaviour, carbohy-

drates, and nucleic acids. MARTINI has also been applied speci�cally in the context of

improving protein stability by including excipients that reduce antibody self-association;

Lui et al. utilised a docking approach to screen excipients by binding with the most signif-

icant APR. The Docking Assay For Transmembrane components (DAFT) method for the
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high-throughput study of dimer/trimer association49 was applied in order to sample su�-

cient initial relative poses of antibody fragments, resulting in a CG-MD model of antibody

self-association and the e�ect of excipients on aggregation kinetics.50 Similary, insulin self-

association and its non-Arrhenius behaviour were investigated in a study of aggregation

nucleation kinetics in MARTINI,51 �nding that the insulin unfolding equilibration constant

is the single most important kinetic parameter in nucleation time.

Excipients were selected based on their prevalence in industry as solution state stability en-

hancers, their prior parameterisation by the MARTINI development team, or their utility

to a quantitative model. PEG alkyl amides (PAAs) consist of a PEG chain, amide linker

and alkyl chain. Fatty acid ethoxylates (FAEs) and fatty alcohol ethoxylates compounds are

similar, but have an ester bond or an ether bond in place of the amide linker respectively.

Polysorbates are fatty acid esters of polyoxyethylene sorbitan (PSBN). Spans are similar to

polysorbates, but are not ethoxylated.52 Other compounds include cholesteryl glucopyra-

noside, a range of phospholipids, fatty acids, arginine and n-octyl glucoside. This range of

chemically diverse compounds facilitates the extraction of useful information for quantita-

tive modelling and allows data-driven decisions to be made in the design of anti-aggregation

excipients. The application of these data could improve biotherapeutic formulation design

by lowering costs, improving therapeutic outcomes, and elucidating structure-activity rela-

tionships.

Materials and Methods

Human serum albumin (HSA) was selected as a model protein. The initial structure was

obtained from the RCSB Protein Data Bank (code 4L8U)53 and processed into the MARTINI

force �eld via the martinize2 script, from the vermouth package.54 Its APRs were highlighted

using the Aggrescan web server17 and its FASTA sequence; the APRs consisted of 25.4% of

the sequence in 18 di�erent patches.
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Parameterisation

To parameterise excipients that are not available from MARTINI, initial united-atom coor-

dinates and topologies were generated using the Automated Topology Builder55 in the GRO-

MOS 54a7 force �eld,56 and converted into a MARTINI model. The MARTINI mapping

was based on existing MARTINI beads, their use in the literature, as well as the preserva-

tion and representation of functional groups (Figure 2). Molecule parameters reported in

previous work by the MARTINI group and used here include phospholipids, ceramides, and

glycerols,57 as well as sugars,58 fatty acids,59 and sterol groups.60

The initial united-atom structure is simulated for 10 ns in water at pH 7.0 and indexed so

that each index group of atoms corresponds to a MARTINI bead. The angles and distances

between these beads are measured and used as the bonded parameters in the MARTINI

topology, a frame is extracted and used as the initial structure for a MARTINI simulation,

Figure 2: Chemical structures of studied excipients, with their MARTINI mapping superim-
posed. A: polysorbate 20. B: fatty alcohol ethoxylate (BrijTM) On. C: fatty acid ethoxylate
Ln. D: PEG alkyl amide Ln. E:L-arginine.
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and the bond lengths and angles measured. These values and their force constants are mod-

i�ed in an iterative process, until their distributions throughout both the MARTINI and

indexed simulations are approximately matched. Polyply61 was also used to generate initial

MARTINI topologies for some compounds.

Molecular dynamics

All MD simulations were carried out using GROMACS 2019 and 2021.2 in the Martini

2.3P force�eld and �ve independent simulations were performed for each system. A trun-

cated octahedral box was built around a single molecule of HSA, with the distance between

opposing hexagonal sides equalling 34.24 nm, leading in practice to a volume of 30841.5

nm3. Each simulation contained a single molecule of HSA and approximately 233,000 MAR-

TINI water molecules, for a protein concentration of 0.0538 mM or 3.61 mg/ml; therapeutic

HSA formulations are typically between 5% and 25% w/v.62 This size was a compromise

between having a su�ciently large system to model a comparatively low excipient concen-

tration, with enough excipient molecules for the system to be thermodynamically realistic,

and the prohibitive computational expense that would result from larger systems to model

concentrations approaching those found in HSA therapeutic formulations. Su�cient excipi-

ent molecules were added to bring their concentration to 0.1 % w/w, an industrially relevant

concentration,63,64 via gmx insert-molecules inserting into vacuum. In practice, this leads to

a variable molar concentration, proportional to the molecular weight of the excipient. This

is not an issue, as it maintains the quantity of Martini �beads� across all simulations and

makes comparisons between them more straightforward. The vacuum system was minimised

for 1000 steps using the steepest descent algorithm and solvated using the MARTINI polar-

isable water model.65 Sodium ions were added to neutralise the system by replacing water

molecules at random and the system was minimised again for 1000 steps. The system is re-

laxed in the NPT ensemble, with a 5 fs timestep, V-scale thermostat at 300 K, and isotropic
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pressure coupling at 1.0 bar using the Berendsen barostat.66 This relaxation phase consisted

of 100 ps. Production MD was performed in the same ensemble, with the same thermo- and

barostats, a timestep of 20 fs and a total time of 1 µs. For some compounds, particularly

those with ring structures, a timestep of 10 fs was necessary to run stable MD; the overall

time remained 1 µs. Coulombic and Lennard-Jones cut-o�s were 1.1 nm and used the reac-

tion �eld and potential shift Verlet modi�ers respectively in the Verlet cut-o� scheme. Full

parameter �les can be found at the Github repository (see Supplementary Information).

The SASA of the APRs were calculated using gmx sasa within Gromacs, indexed to calculate

the SASA of APRs alone, using lone HSA as a control. Bartlett's test67 was utilised to in-

dicate homoscedasticity between distributions for each excipient-protein simulation, and the

results directed whether the Kruskal-Wallis68 (homoscedastic) or Welch's69 (heteroscedastic)

analyses of variance were employed to determine statistical signi�cance. All analysis scripts

can be found in the GitHub repository (see Supplementary Information).

Machine learning

To probe the structure-activity relationship of anti-aggregation activity, partial least squares

(PLS)70 regression was performed, using a set of physicochemical descriptors as input. Molec-

ular descriptors were generated using the Mordred package71 in Python and �ltered based on

their utility in the context of chemical intuition, leaving a total of 106 descriptors. PLS regres-

sion was performed on the entire dataset, employing leave-one-out cross validation72(LOO-

CV) to �nd the optimal number of components to include in the model. This is achieved

by using a number of components that causes the root mean squared error of prediction to

be at a minimum, while also taking into account the principle of parsimony and avoiding

over�tting. Four components were used in the �nal PLS model. To measure the robustness

and e�cacy of the model in predicting data, the dataset was split into a partition of 0.8/0.2

training data/ test data. LOO-CV was performed on the training dataset, the model was
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applied to predict the test dataset and the Q2 was recorded as a measure of predictive ac-

curacy. This was repeated 1000 times; the Q2 reported hereafter is the median average of

these repetitions.

Results

Protein-excipient interaction

The shielding of APRs from solvent by excipient molecules is a key mechanism in the pre-

vention of aggregation and increase in stability of biotherapeutic protein formulations; this

can be quanti�ed in an MD model by the extent that the SASA of APRs reduces. HSA

without any excipients was found to have a SASA of 271.7 nm2; within that, its APRs

have an average SASA of 50.5 nm2 Polysorbate compounds have the greatest impact on the

SASA of APRs (Figure 3), and are all statistically signi�cant from the HSA-only control,

according to Kruskal-Wallis and Dunn tests. PSBN, the strongest performer, is signi�cantly

di�erent to Brij L2 (p < 0.05), Brij O2 (p < 0.05), and PS85 (p < 0.01). PS80 is signi�-

cantly di�erent to Brij O2 (p < 0.05), which is somewhat surprising, given that they contain

the same aliphatic chain content (a single oleate). Linear ethoxylated compounds were not

signi�cantly di�erent from one another, with the exception of Brij O2, which was di�erent

to every other linear ethoxylated compound. (p < 0.05). The only ethoxylated compounds

to not be signi�cantly di�erent from the control were Brij O2, Brij L2, and Span 85. Span

80 was signi�cantly di�erent to the control, but no di�erence was found between it and any

polysorbate compound. None of the other compounds under study were found to have an

impact on the SASA of the APRs of HSA that was signi�cantly di�erent from the control.

There is a signi�cant degree of heterogeneity in performance, both within a single class

and repetitions of the same excipient. This could be indicative of the nonspeci�c nature

of binding; the interaction within each individual repetition and each individual molecule

could be between many di�erent residues in a heterogeneous manner, and a weak interaction
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Figure 3: The average solvent accessible surface area (SASA) of aggregation-prone regions
(APRs), averaged for each trajectory. Polysorbates have the greatest impact on the SASA
of APRs. Of the linear, ethoxylated surfactants, there is little signi�cant di�erence between
them, across all classes, but they are all signi�cantly di�erent to the control, with the
exceptions of Brij O2 and L2 . Arginine, phospholipids, fatty acids and glucosides had an
insigni�cant e�ect on the SASA of the APRs.

might not guarantee the formation of a HSA-excipient complex within the simulation time.

The signi�cant α-helical content of HSA will have an e�ect, as the con�guration in space

will a�ect both the accessibility of speci�c residues, and the local environment in which they

reside. This is represented in MARTINI as a change in the polarity of the backbone bead

of all residues present in a helix as well as the side chains of glycine, alanine and protein,
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all represented as signi�cantly less polar beads.73 Therefore, an alanine residue within an

α-helix will have signi�cantly less hydrophobic character than one outside of a helix. As

87.5% of the APRs are found within α-helices and 39.1% of the residues within the helices

are APRs, it is likely that the interaction between helices and excipient, or helices and sol-

vent is signi�cant in aggregation prevention. Indeed, α-helices have been shown to induce

the formation of protein aggregates.74,75

Visual inspection of the trajectories can also reveal characteristics of excipient-protein in-

teraction. Qualitatively, compounds with a high PEG content, such as polysorbates or

linear compounds with 20 PEG units, have a tendency to wrap around the protein while

shorter ethoxylated compounds form localised, hemicellar clusters around a small number of

residues (Figure 4). Unsurprisingly, of the simulations that showed little to no contact (such

as phospholipids), little information can be gleaned from the nature of their interaction from

inspecting the arrangement in space. However, in the trajectories containing free arginine

as an excipient, there is little evidence of continued, sustained interaction, supporting the

notion that its interaction is transient.

Machine learning and structure-activity relationship

The �nal PLS model of two components, validated with LOOCV, has an R2 value of 0.398

and mean relative error of prediction of 0.077. To gain an understanding of the robustness

of the dataset and its validity in regression, the dataset of excipient simulations was split

0.8/0.2 training dataset/ testing dataset, and the Q2 was 0.344, with median root mean

square errors of 4.10 nm2 and 4.37 nm2 for the training and test sets respectively. These

distributions of measure of goodness of �t gives con�dence that there is su�cient variation

within the dataset for its utility in a quantitative structure-activity relationship application.

Independently, a new model was constructed, trained on all 41 instances to determine the

importance of descirptors (and not to assess the predictive accuracy). There is a distinct

divide between heavy molecules containing relatively large amount of PEG that performed
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Figure 4: Select snapshots of trajectories at the end point of simulation, with the water
removed for clarity. HSA is in grey with its APRs coloured in violet. Glu82, Ala363 and
Asp563 are labelled for orientation. Longer molecules wrap around the protein while smaller
molecules form clusters at the protein surface. A, FAE O20. B, polysorbate 20. C, PAA
L2. D, fatty alcohol ethoxylate (BrijTM) L2. Grey, protein; violet, APR; green, FAE; dark
blue, polysorbate; yellow, PAA; light blue, fatty alcohol ethoxylate.

well in shielding APRs and thus improving stability, and both smaller ethoxylated molecules

and larger ones without any PEG (Figure 5). The PLS results show a clear demarcation

between strongly interacting molecules and weak or non-interacting molecules, and reveals

physicochemical and structural di�erences between the two groups. Broadly, highly branched

molecules and those with a high PEG content are within the well-performing cluster (cluster
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1), while linear molecules and compounds with little to no PEG content are found within

the other, broader cluster of poorly performing anti-aggregation agents, with small ethoxy-

lated compounds forming their own grouping along with fatty acids and arginine (cluster 2).

The other poorly performing and/or PEG-lacking compounds make up a broadly dispersed

cluster (cluster 3). There appears to be a moderate negative correlation between component

1 and the SASA of APRs.

The coordinates of Mordred variables in latent space, and their relation to compounds'

coordinates in the same space, can indicate the physicochemical forces involved in APR

shielding. There are broadly similar, but decidedly more scattered, clusters within the vari-

able space. Descriptors with a positive score in the second component and a negative score

in the �rst component include those related to the number of oxygen atoms and the nature

of their bonds, the number of heteroatoms, 5-membered rings, bond and atom polarisability,

topological polar surface area, radius, and complexity, among others. Many of these descrip-

tors have a clear relationship between one another, such as the number of oxygen atoms

and polar surface area. This speci�c example could indicate that there is a signi�cant polar

component that drives the shielding of APRs from the solvent. The presence of the Bertz

complexity score, a measure of molecular complexity and the distribution of heteroatoms,

along with sp3 carbons bound to a single additional carbon, which in this context is either a

terminal carbon, or one within a furan ring, implies that greater APR shielding (and there-

fore enhanced stability) would be achieved by a branched compound with short aliphatic

chains, a a high degree of complexity and a broad distribution in space of a large number

of heteroatoms. This is further supported by the lower impact on decreasing the SASA of

APRs of compounds with a high alkyl chain content: phospholipids, Span 85 (three oleates)

and glycerols all had little impact on the SASA of the APRs of HSA.

The poor performance of PS85 and Span 85 in particular could indicate an �activity cli��

relationship between APR shielding and aliphatic content, re�ected in the positive coordi-
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nates in latent space of descriptors concerning hydrocarbon content for both components,

in the region of cluster 2. Atom and bond polarisability are both in�uential in the for-

mation of cluster 1 (negative value for component 1 and positive value for component 2,

but mean polarisability is within cluster 2. This apparent discrepancy can be explained by

the more highly mixed content of the well-performing ethoxylated compounds, having high

molecular weights and their structures comprising polarisable and nonpolarisable bonds and

atoms interspersed; conversely, those with a higher mean polarisability and less polarisable

bonds and atoms have more chemically compact head groups, consisting of a small number

of atoms with a high polarisability, and smaller hydrophobic tails, leading to a higher ratio

of polarisability to molecular weight. This indicates that the shielding of APRs by excipi-

ents is better achieved by structures which have larger, but less extreme, polar character,

like that which can be achieved by repeating ethoxylate units. Additionally supporting this

hypothesis is the position of E-state descriptors that describe double-bonded oxygen (SdO

and NdO) and the number of acid and base groups (nAcid and nBase). The mean van der

Waals volume can also be found in this region, which could also be explained by the presence

of bulky head groups in phospholipids, which are also found in this area, as opposed to the

lower occupational volume of PEG chains. Further evidence which supports this hypothesis

are the positions and relative importance of the topological radius, topological polar surface

area, and the number of rotatable bonds. Qualitatively, many of these qualities can be found

in compounds with high PEG content, and the data re�ect the preferential interaction to

APRs of polysorbate species and linear compounds with high PEG content.

Discussion

MD simulations have been employed to investigate the e�cacy of excipients as anti-aggregation

agents and probe the importance of APR interaction as a mechanism for the prevention of

biotherapeutic aggregation. The APRs of HSA have been identi�ed using an experimentally-
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Figure 5: Distribution of the data in the latent variable space, using Mordred descriptors
as independent variables. Compounds are sized in proportion to the percentage decrease of
APR SASA relative to the control, and are coloured according to their cluster. Cluster 1,
teal. Cluster 2, gold. Cluster 3, magenta.

derived aggregation propensity score via the Aggrescan web server, and the propensity of an

excipient molecule to interact with both the APR and the entirety of HSA has been utilised

as an e�ective demonstration of the APR-shielding mechanism of the arrest of aggregation.

Generally, molecules with a high degree of PEG content reduced the SASA of APRs, with

little impact from any di�erences in hydrophobic content within ethoxylated compounds

and almost no change between HSA and compounds with high hydrophobic content that

lack PEG. This suggests that the interaction between the protein and the polar PEG chains

that constitute the head group is driving the overall increase in interaction, a �nding that is

supported by the literature.76�78 As protein aggregation is driven primarily by hydrophobic

interactions with contributions from polar interactions,13 this could indicate that the increase

in polar interaction is contributing to the overall stability of the protein by tipping the scales

in the direction of polar interaction, and making the hydrophobic destabilising interactions

less signi�cant overall. This notion is further supported by the near total lack of interaction
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between HSA and the naturally-ocurring phospholipids under study; compounds with the

largest hydrophobic tails and comparatively small head groups have little interaction. Sim-

ilarly, Spans (in essence polysorbates lacking PEG) and polysorbates with more than one

fatty acid ester, such as PS85 and PS25, perform worse in terms of APR SASA shielding

than PSBN, a branched compound with little nonpolar content and a high proportion of

PEG content. This also implies that an increase in molecular weight is not su�cient to

increase anti-aggregation activity, further supported by the absence of impact of molecular

weight as a descriptor or as a factor within a descriptor within PLS. Together with the ob-

servation that larger molecules have a tendency to wrap around HSA, this could imply that

the head group initiates the interaction before recruiting the tail in wrapping around more

hydrophobic areas of the protein. It can also be seen that longer interacting compounds are

making end-to-end contact with each other within a shallow channel on the protein surface

(Figure 4E). This is reminiscent of binding behaviour observed in crystallographic binding

studies with short- and medium-chain fatty acids.79 Polysorbate 20 and 80 speci�cally have

also been found to interact with HSA, albeit weakly,80 which has also been reproduced in

this study. The use of Aggrescan, which calculates the average aggregation propensity of

sequences based on experimentally derived values for each amino acid in the context of the

formation of amyloid plaques,81 as the sole indication of APRs could be improved by the

inclusion of other methods in a comparative way. One such method would be spatial ag-

gregation propensity (SAP),34 which considers whether residues are either exposed to the

solvent or buried. Using additional methods to �ag APRs would ensure a comprehensive

approach in �nding areas of the protein that are signi�cant in the aggregation process, and

therefore improve the robustness of the model.

The lack of interaction between HSA and every phospholipid under study is surprising,

given HSA's role in transporting fatty acids82 and cholesterols83 in circulation, and studies

of its interaction with phospholipid membranes.84,85 However, the concentrations of lipid
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used in the membrane studies are typically signi�cantly greater than those of excipients in

the present study; typically, these are millimolar as opposed to 0.1 % w/w, which results in

concentrations in the range of 0.10 to 0.18 mM. For all phospholipids with at least 12 car-

bons in their fat chains, this concentration range is above the critical micellar concentration

(CMC);86 the lack of di�erentiation along the CMC of the compounds under study implies

that it is not of critical importance in this context; heavy phospholipids above the CMC

perform equally poorly to lighter phospholipids below it, and so other factors are more sig-

ni�cant in determining the extent of interaction. This concentration of 0.1% w/w was chosen

to emulate industrial conditions for primarily surfactant excipients used in biotherapeutic

stabilisation formulations; for other excipients such as those that include sugar residues and

arginine, their working concentrations are typically higher.

One limitation of this study is the modelling of polysorbates as homogeneous additives, when

in reality they are typically a heterogeneous mixture that contains byproducts with ranges of

di�erences in aliphatic and PEG chain lengths and number.87,88 This is particularly of note

as the heterogeneity of polysorbate commercial products impacts their ability to prevent

aggregation; polysorbate fractions vary in their performance in this context.89 Therefore, it

could be prudent to model polysorbate as a heterogeneous mixture; to maintain concentra-

tions that are industrially relevant, this would likely require the modelling of extremely large

systems.

Validation could also be provided in the characterisation of excipient e�ects on protein sta-

bility, by monitoring changes in aggregate size, protein secondary and tertiary structure

and biological activity assays. However, the stability of HSA and its own use as an anti-

aggregation agent90would make reliably inducing (and measurably arresting or preventing)

aggregation challenging. This points to a need for a protein-independent model, which would

be most easily developed by modelling one or more di�erent therapeutically relevant pro-

teins, ideally with their own stability issues, such as insulin or the binding fragment of an

antibody. Additionally, validation of the PLS model can be increased by the introduction
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of more simulation data, which can either be included in the predictive model or excluded

from it and used as a validation test set.

By using techniques to explore latent variable space and probe the physicochemical prop-

erties of each excipient and how they correlate with anti-aggregation activity, hypotheses on

the design of novel excipients with greater APR SASA shielding, and therefore improved per-

formance as anti-aggregation agents, can be postulated. Particularly, variable importance in

projection (VIP) plots are used in feature selection in drug design91 and are a useful tool in

investigating the structure-activity relationship within a PLS model by indicating the critical

descriptors that explain the maximal variance in both dependent and independent variables.

An optimised excipient would be a large, branched compound which is highly polar (i.e.,

with several oxygen atoms) and also some hydrophobic character. Practically, this could be

achieved by the incorporation of multiple PEG chains into the excipient design, around a

central sca�old and at least one aliphatic chain. This is broadly descriptive of a polysor-

bate compound, and this is perhaps unsurprising considering their performance, but is also

indicative that there is chemical space that is underutilised by the current anti-aggregation

excipient design paradigm. It implies that the exact degree of hydrophobic content is not

signi�cant, provided that there is some present in a localised area in order to provide am-

phiphilic character to the excipient. The �ndings suggest that perhaps a lighter compound

with a higher number of short branches would be more e�ective in APR shielding than

heavier compounds with a small number of large chains.

Conclusion

The coarse-grained modelling of HSA with a series of co-solutes has revealed structural and

physicochemical features that are highly in�uential to the prevention of aggregation via APR

shielding. Broadly, ethoxylated compounds had the greatest performance as APR-shielding

anti-aggregation agents, and polysorbate species speci�cally were the highest performing
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class. Branched compounds tended to make greater contact to APRs, particularly those

with PEG chains, while phospholipids and fatty acids performed very poorly in shielding

APRs from solvent and thereby preventing aggregation. The use of dimensionality reduc-

tion coupled with physicochemical descriptors has revealed structural features that are key to

optimising protein-excipient interaction. The overall weight of aliphatic chains does not ap-

pear to in�uence the performance of anti-aggregation agents, provided that some is present.

The signi�cance of polarity, polarisability and polar heteroatom content in predicting HSA

interaction also suggests that the interaction between APRs and excipients is driven by po-

lar interactions to a signi�cant degree. The quantitative model would be well-supported by

future endeavours that elucidate free energy di�erences, provide validation via wet-lab work

or atomistic MD, and move away from a singular protein to develop a more widely applica-

ble, predictive model to aid in computational excipient design and improve the stability of

biotherapeutic formulations.

Data and software availability

SASA data can be found at the GitHub repository, as can the descriptor data and the

compounds' SMILES. Gromacs is a freely-available software package for molecular dynamics,

and details on its installation can be found on their website: www.gromacs.org. The following

packages in R were used in the extraction of data, development of the model, and generation

of �gures: Peptides, scico, tidyverse, ggpubr, pls, webchem, rcdk and vip. All are freely

available from the CRAN repository. Mordred, a Python package, was used to extract

QSAR information from SMILES structures, in conjunction with rdkit, numpy and pandas,

and can all be retrieved freely. Some molecular dynamics graphics were created with VMD,

freely available from http://www.ks.uiuc.edu/Research/vmd.
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