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Abstract: This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new
approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that
was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to
fabricate gelatin-g-poly-(acrylic acid) nanogels. Ammonium persulphate (APS) and N, N′-methylene
bisacrylamide (MBA) were used as the initiator and crosslinker, respectively. Developed gelatin-
g-poly-(acrylic acid) nanogels were evaluated for the swelling study (pH 1.2, 5, 7.4), DEE, particle
size, FTIR, thermal stability (TGA, DSC), XRD, SEM, DEE, and in vitro drug release study to obtain
optimized nanogels. Optimized nanogels were incorporated into 1% HPMC gel and then evaluated
in comparison with Lamisil cream 1% for TBH stratum corneum retention, skin irritation, and in vitro
and in vivo antifungal activity studies. Optimized nanogels (AAG 7) demonstrated a 255 nm particle
size, 82.37% DEE, pH-dependent swelling, 92.15% of drug release (pH) 7.4 within 12 h, and a larger
zone of inhibition compared to Lamisil cream. HPMC-loaded nanogels significantly improved
the TBH skin retention percentage, as revealed by an ex vivo skin retention study, indicating the
usefulness of nanogels for topical use. In vivo studies conducted on animal models infected with
a fungal infection have further confirmed the effectiveness of nanogels compared with the Lamisil
cream. Hence, Gelatin-g-poly-(acrylic acid) nanogels carrying poorly soluble TBH can be a promising
approach for treating superficial fungal infections.

Keywords: dermatophytosis; nanogels; terbinafine HCL; acrylic acid; gelatin

1. Introduction

It is believed that about a billion individuals worldwide suffer from dermatophytosis,
or fungal infections of the keratin in skin, hair, and nails, making it one of the most prevalent
illnesses of the skin. According to the most prominent international fungal education (LIFE)
portal, over 80% of people are susceptible to developing fungal infections [1,2]. Worldwide,
dermatophytes are the prevailing causes of fungal infections, and they are most prevalent
in hot and moist environments of tropical and subtropical regions such as Pakistan [3,4].
The prevalence and incidence of dermatophytosis fluctuate according to socioeconomic
and geographic factors. The economic burden of dermatophytosis can be measured using
disability-adjusted life years (DALYs: the sum of the years of potential life lost due to an
illness and the years spent living with some disability caused by the disease). Skin diseases
caused by fungi are the most common type of skin problem and are accountable for a
significant portion of the total DALYs. Compared with various other diseases, incidences
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of fungal skin infections are the fourth highest among all diseases [5,6]. In addition,
dermatophytosis imposes a substantial financial burden on affected communities.

Topical antifungal products are frequently favored to treat epidermal fungal infections
over oral medication because of the advantages of self-administration, avoiding first-pass
metabolism, better patient compliance, safety, and ease of medication termination. If
optimal drug release and penetration are guaranteed, the needed amount for fungicidal
action at the skin target area may be more easily attained following topical administra-
tion. A higher oral dose is usually required to achieve the same local drug levels, raising
the likelihood of unwanted effects. In most cases, when a drug is applied topically, the
resulting systemic levels are so low that they are undetected, lowering the drug’s potential
toxicity [7]. Nanogels have emerged as the nanoparticle drug delivery system with the
most potential among the different dosage forms investigated over the previous twenty
years. Nanogels are hydrogel systems made of nanoscale particles synthesized by physical
or chemical crosslinked polymer networks that can absorb significant quantities of water
or physiological fluids without disturbing the gel network structure. As nanogels are the
nanoscale counterparts of hydrogels, they have the characteristics of both hydrogels and
nanoparticles. The size of nanogels can vary from 1 to 200 nm. Due to their nanometric di-
mensions, biocompatibility, biodegradability, tunable size, enormous surface area, stability,
high drug encapsulation capacity, viscoelasticity, easy preparation, excellent penetration
properties, and stimuli responsiveness, they have gained widespread recognition as a smart
drug delivery systems [8,9]. Gelatin is derived from collagen and is an excellent candidate
for natural polymer-based nanogels due to its porous structure, solubility, transparency,
and biocompatibility. As with many biopolymers, it has limitations, such as weak me-
chanical characteristics, and requires significant crosslinking (physical or chemical) to be
beneficial [10]. Hydrogels with a high water absorbing capacity can be made from AA by
crosslinking the monomer in a one- or multi-component system. The carboxylic acid group
of AA, also named as propenoic acid, is attached to a vinyl group. The carboxylic acid
group, due to its ability to ionize, can assist in augmenting hydrogel ionic strength and
pH sensitiveness. Various types of hydrogels can be made by combining AA monomers
with other polymers [11]. TBH is an antifungal drug with activity against Trichophyton
mentagrophytes and Trichophyton rubrum, the primary causative agents for superficial fungal
infection. TBH outperforms other classes of antifungals in every measurable way (high
mycological cure rates, quick treatment times, low recurrence rates, etc.) because it is
effective against a far more comprehensive range of fungus species and has a lower mini-
mum inhibitory concentration (MIC) for each species. TBH’s low penetration rate and low
aqueous solubility lengthen the treatment duration. Both oral and topical forms of TBH are
marketed commercially for treating dermatophytosis. The adverse effects of TBH include
liver toxicity, gastrointestinal problems, and cholestatic dysfunction, and they have been
linked to oral administration. For drugs administered topically, insufficient absorption
causes treatment times to be stretched out, raising healthcare costs and reducing patient
adherence [12,13].

This study aimed to develop pH-responsive gelatin and AA crosslinked nanogels,
physically and chemically characterize them, and investigate them for their DEE, release
studies, skin deposition study, and in vitro and in vivo antifungal activity to be suitable to
treat Dermatophytosis.

2. Results and Discussion
2.1. Particle Size Analysis

The particle size of the developed nanogels was assessed using a particle size analyzer
(Malvern Zeta Sizer Nano ZS, Malvern, UK). Figure 1 depicts the single zeta sizer curve. The
particle diameter was 231.7 nm, and PDI was calculated as 0.245. A low PDI value indicated
that fabricated nanogels were homogenous, implying that clusters are less likely to form.
Previously gelatin-based nanogels were reported to have a particle size of 255 nm [14].
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Figure 1. Particle size of developed nanogels.

2.2. FTIR

IR spectra of gelatin, AA, placebo nanogels, TBH, and TBH-loaded nanogels are
presented in Figure 2a–e and were taken in the range of 4000–500 cm−1. The spectrum of the
gelatin polymer is shown in Figure 2a. Sharp absorption peaks at 2910 cm−1 were assigned
to C-H stretching, while two characteristic absorption bands at 1665 cm−1 and 1541 cm−1

appeared for amide I and II, respectively. The IR spectra of AA Figure 2b reported a peak
at 2973 cm−1 because of the methylene group stretching vibrations. The existence of the
COOH group was proved through a peak at 1706 cm−1. The peak at 1635 cm−1 confirmed
the presence of the C=O group, while the peak at 1296 cm−1 was assigned to the C-C
group. The characteristics absorption band observed at 1173 cm−1 verified the stretching
vibrations of the COOH group [15,16]. The IR spectra of the developed placebo nanogels in
Figure 2c suggest crosslinking between gelatin and AA, as all peaks of gelatin and AA were
present with a minor displacement of their frequencies. The peak at 2910 cm−1 was due
to the C-H stretching vibrations of gelatin, and the peak of AA at 2973 cm−1 was overlaid
and weakened in the placebo nanogel spectrum. The absorption peaks of amide 1 and II
at 1665 cm−1 and 1540 cm−1 were also shifted to 1675 cm−1 and 1547 cm−1, respectively.
This shifting and weakening of the absorption peaks indicates the chemical interaction
between AA and gelatin. Figure 2d shows the IR spectrum of TBH. Some key peaks were
observed in the spectrum of TBH at 1408 cm−1, 1384 cm−1, 2983 cm−1, and 3043 cm−1,
exhibiting the C–N group, CH3 group, aliphatic C–H group, and aromatic C–H groups,
respectively [17,18]. In Figure 2e, the IR spectrum of drug-loaded nanogels revealed peaks
at 1420 cm−1, indicating the existence of the C-N group, while the peak at 1405 cm−1

represented the CH3 group, and C–H stretching at 2990 cm−1 was almost unaffected. It
showed that TBH is compatible with the monomer and the polymer.
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Figure 2. FTIR spectra of (a) gelatin, (b) AA, (c) drug-free nanogel, (d) TBH, and (e) TBH-
loaded nanogel.

2.3. TGA

TGA scan of gelatin in Figure 3a demonstrated three stages of gelatin’s weight re-
duction. The first stage ranged between 50 and 150 ◦C and showed about 16% loss in
weight. It could be a result of the loss of adsorbed and bound water. In the 150–600 ◦C
temperature range, 70% of the residual polymer decomposed. In the third stage, the leftover
polymeric waste was decomposed at 600 to 800 ◦C [19,20]. In Figure 3b, TBH showed initial
degradation in the TGA curve at 195 ◦C, representing the removal of the drug’s surface
assimilated water. Significant degradation occurred between 200 ◦C and 400 ◦C, and up to
654 ◦C, where more than 80% of drug degradation occurred [21]. Figure 3c presents the
TGA curve of the naïve nanogels which showed an early mass deprivation of 17% due to
water evaporation at 50–350 ◦C, revealing the higher strength of the formed crosslinked
network over the higher temperature value than the individual ingredient. About 22%
of weight loss occurred at around 350 ◦C to 490 ◦C. The further deterioration of the fab-
ricated nanogels took place in a temperature range of 490 ◦C to 580 ◦C. The remaining
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nanogel weight loss commenced at around 580 ◦C and continued until complete decay.
The TBH-loaded nanogel, depicted in Figure 3d, showed overall good thermal stability
and only 17% weight loss until 250 ◦C, which is due to the strong bonding between the
formulation components. The further degradation of the fabricated nanogels took place in
the temperature range of 250 to 500 ◦C.
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2.4. DSC

The DSC of gelatin, TBH, and blank and drug-loaded nanogels are presented in
Figure 4a–d. Gelatin, presented in Figure 4a, shows two endothermic peaks at 98 ◦C
(transition from a glass to a rubber state) and 341 ◦C, and one exothermic peak at 399 ◦C
(Brownian motion of the main backbone chain) [22,23]. TBH, in Figure 4b, shows an
exothermic peak at 211 ◦C, corresponding to the drug’s melting point [24,25]. The blank
nanogel in Figure 4c displays an endothermic peak at 210 ◦C, indicating the peak of gelatin
and other excipients used in the formulation (the interaction of gelatin with acrylic acid).
The TBH-loaded nanogels in Figure 4d show only one exothermic peak at 312 ◦C; the peak
of the TBH is not shown, indicating the amorphous nature and uniform distribution of the
drug in the developed nanogels.
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2.5. XRD

The amorphous or crystalline nature of the fundamental ingredients, like pure gelatin,
TBH, and both loaded and unloaded nanogels, was determined using an X-ray diffrac-
togram, as shown in Figure 5a–d. The pure gelatin X-ray diffraction patterns in Figure 5a
demonstrate that the structure is mainly amorphous with a more noticeable peak at about
20◦ 2θ [26]. The XRD of TBH in Figure 5b exhibits sharp and prominent peaks at 7◦, 18◦,
20◦, 22◦, and 24◦, representing its crystalline nature [27,28]. Diffuse peaks rather than sharp
ones are seen in the XRD spectra of the unloaded nanogels in Figure 5c. In contrast, in drug-
loaded nanogels, Figure 5d shows that the amorphous nature of the carrier sharply reduced
the intensity of the drug peaks, proving that the interaction is not the outcome of simple
blending, but rather the consequence of chemical bonding between the ingredients and
the development of a complex. The resultant fabricated nanogels, due to their amorphous
nature, successfully encapsulated TBH inside the formed interconnected network, and the
crystalline form of the drug was entirely altered due to crosslinking without showing a
drug–excipient interaction.
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2.6. Scanning Electron Microscopy (SEM)

The shape of nanogels is crucial as it determines the loading and distribution of
drug molecules. SEM photographs were taken to observe the morphological features of
fabricated nanogels, as illustrated in Figure 6. The surface of the developed nanogels
showed a porous and fluffy appearance. The presence of multiple pores in the nanogels
causes them to be more responsive toward the solvent upon interaction. This, in turn,
leads to improved drug trapping and the release of the drug from the nanogels. Previously,
H. Shaukat et al. found similar outcomes when preparing polymeric nanocomposites for
the solubility improvement of rosuvastatin [29].
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Figure 6. SEM micrographs of gelatin-g-poly-(acrylic acid) nanogels at different magnifications.

2.7. Swelling Studies

The swelling capacity of nanogels with different compositions was investigated in
phosphate buffers at pH 1.2, 5, and 7.4. Fabricated nanogels showed an increase in the
swelling index when the buffer pH was increased from 1.2 to 5 and 7.4, as depicted in
Figure 7a. The pH and pKa value of the polymer are two crucial factors that influence
the swelling action of nanogels. The pKa value of AA is about 4.28, and the ionization of
its carboxylic acid groups changes with the pH of the buffer. The AA chains collapsed in
a phosphate buffer of pH 1.2 because the pH of the medium being higher than the pKa
value of AA is necessary for the protonation of their carboxylic group, thus exhibiting no
significant swelling. However, in a buffer with pH 5 and 7.4 (more than the pKa value of
AA), nanogels start swelling because the carboxylic groups of AA get ionized, resulting in
electrostatic repulsion between protonated carboxylic groups in the polymer chain. Ionic
osmotic pressure developed inside the polymeric network by counter ions to charged ions
also played a vital role in the increase of the swelling index of nanogels. The swelling
index of nanogels in buffer with pH 7.4 was slightly higher than in buffer with pH 5
due to the availability of more ionized carboxylic acid groups in the buffer medium. The
swelling index of the prepared nanogels decreased as the amount of gelatin increased, as
depicted in Figure 7b. Gelatin chains stay protonated below the PI (isoelectric pH) value.
As an outcome, the chains contain NH3+ ions, and the cationic repulsion among them may
explain their decreased swelling.
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However, increasing the gelatin concentration had no definite effect on the swelling of
the nanogel [30–32]. The swelling index of the nanogels was also affected by the dosage
amount of the crosslinking agent. The study results revealed that the swelling of nanogels
increased with the increasing amount of AA in both buffer mediums, as shown in Figure 7c.
This could be due to increased carboxylic groups of AA for ionization [33–35]. The swelling
index of nanogels at different concentrations of MBA is shown in Figure 7d. It was observed
that as the amount of MBA was increased, the swelling index of nanogels decreased. This
decrease in the swelling index can be explained by the reduction of the mesh size of
nanogels and the formation of a more compact, highly crosslinked structure. Inside this
compact structure, carboxylate groups hide, and the ionization process decreases, which is
responsible for nanogels swelling less [36,37].

2.8. DEE

The influence of Gelatin, AA, and MBA concentrations on TBH loading in various
Gelatin-g-(poly)-Acrylic acid nanogels (AAG1-AAG9) is shown in Figure 8a–c. Swelling
behavior and crosslink density are two factors that significantly affect DEE. Nanogels
(AAG2 and AAG3) with Gelatin 2 wt% and 3 wt%, respectively, showed an insignificant dif-
ference from AAG1 (Gelatin 1 wt%) for DEE with an increasing gelatin content (Figure 8a).
However, AAG5 and AAG6, i.e., acrylic acid wt% 30 and 40, respectively, showed a sig-
nificant increase in DEE compared to AAG4, i.e., acrylic acid 20 wt% (Figure 8b) [38,39].
This enhanced DEE within the polymeric matrix is attributed to the higher swelling of the
nanogels. Therefore, DEE and dynamic swelling are directly correlated, i.e., the higher the
nanogels’ swelling, the higher their DEE will be. Similarly, a significant decrease in DEE
was observed with the increasing concentration of MBA, i.e., 2%, 4%, and 6% (Figure 8c).
An increased MBA concentration in nanogels caused an increased crosslinking density
between polymeric networks and a decreased water uptake by the nanogel, which resulted
in a poor swelling index and lower DEE [36].
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2.9. Drug Release Studies and Kinetics

TBH release studies for prepared nanogels (from AAG 1 to AAG 9) and commercial
product Lamisil cream 1% were carried out in phosphate buffer solution at pH 5 and 7.4, as
shown in Figure 9a,b. The percentage of drug release was higher in the buffer media of
pH 7.4 for all developed nanogels. The drug release at pH 7.4 from the developed nanogels
ranged from 66.71% to 92.15%. The maximal drug release was exhibited by AAG 7 nanogels
which was 92.15%. At pH 7.4, a higher swelling rate of nanogels due to the deprotonation
of carboxylic groups of AA to carboxylate ion occurred (pKa of AA = ∼4), resulting in
the repulsion and then relaxation of polymer chains; consequently, a greater amount of
TBH released from nanogels was observed. The effect of the AA concentration on TBH
release from nanogels is shown in Figure 9d. The percentage drug release was higher in the
developed nanogels with higher amounts of AA due to the increased drug loading and
swelling of the nanogels [30,40,41]. The impact of the amount of gelatin on the percentage
drug release from the nanogels (from AAG 1 to AAG 3) is shown in Figure 9c. Although
all nanogels had different amounts of gelatin, the percent drug release from the nanogels
showed no definite trend with the increasing gelatin concentration. Contrary to AA, the
percentage drug release was reduced as the amount of crosslinker (MBA) was enhanced
(from AAG 7 to AAG 9) in the nanogels, as shown in Figure 9e. As the feed amount of
MBA increased in the nanogel composition, the developed nanogel structure became highly
crosslinked; this highly crosslinked compact structure inhibited solvent penetration inside
the nanogels, thus reducing both swelling and the percentage of the drug liberated from
nanogels. The percentage of the drug release from commercial products compared to our
developed nanogels was lesser throughout the study period [42].

The pattern of drug release from the loaded nanogels was investigated by apply-
ing various kinetic models, i.e., zero-order, first-order, Higuchi, and Korsmeyer–Peppas
models, to in vitro drug dissolution data. The results presented in Table 1 indicate that
all formulations (F1–F9) displayed a first-order release of drugs with higher R2 values
when compared with zero-order kinetics at both pH 5 and pH 7.4. Further, a drug release
mechanism was assessed by Higuchi and Korsmeyer–Peppas models. From Table 1, it
is clear that Korsmeyer–Peppas showed good fitting as all formulations have R2 values
ranging from 0.9618 to 0.9977 and 0.9713 to 0.928 at pH 5 and pH 7.4, respectively. The
Korsmeyer–Peppas model describes the release of drugs from the gels, where “n” is the
release exponent that describes the drug release mechanism. When 0.43 ≥ n, this corre-
sponds to Fickian diffusion and anomalous release (i.e., non-Fickian diffusion) occurs when
0.43 < n < 0.85. For values n > 0.85, the release is governed by a super-case-II transport
mechanism. The release exponent values for all formulations (F1–F9) ranged from 0.581 to
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0.860, concluding that all formulations exhibited anomalous release, i.e., both diffusion and
swelling/polymer relaxation.
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Table 1. Release kinetic modeling.

Formulation
Code

pH Zero Order First Order Higuchi Model Korsmeyer–Peppas Model

R2 R2 R2 R2 n

F1
5 0.9656 0.9849 0.8862 0.9955 0.808

7.4 0.8753 0.9954 0.9267 0.9802 0.691

F2
5 0.9599 0.9944 0.8853 0.9917 0.802

7.4 0.9138 0.9953 0.9117 0.9843 0.731

F3
5 0.9694 0.9556 0.8535 0.9794 0.860

7.4 0.9436 0.9908 0.8908 0.9848 0.779

F4
5 0.9736 0.9850 0.8803 0.9977 0.825

7.4 0.9313 0.9946 0.9083 0.9906 0.750

F5
5 0.7687 0.9938 0.9524 0.9732 0.615

7.4 0.7050 0.9980 0.9693 0.9800 0.581

F6
5 0.7683 0.9868 0.9618 0.9833 0.611

7.4 0.6756 0.9862 0.9776 0.9852 0.567

F7
5 0.7341 0.9834 0.9668 0.9819 0.594

7.4 0.7284 0.9802 0.9582 0.9713 0.594

F8
5 0.7910 0.9903 0.9364 0.9618 0.634

7.4 0.8646 0.9865 0.9451 0.9928 0.671

F9
5 0.9782 0.9849 0.8722 0.9973 0.841

7.4 0.9277 0.9915 0.9101 0.9898 0.745

2.10. TBH Skin Penetration and Retention Studies

Ex vivo skin penetration and retention tests using excised rat skin were performed to
estimate if TBH would deposit in the epidermis or permeate transdermally through the
skin. TBH-loaded nanogels and Lamisil cream delivered 7.13% and 15.29% of TBH to the
receptor compartment, respectively, as shown in Figure 10. Drug–skin permeation from the
developed nanogel was less than that of Lamisil cream. It might be due to the lipophilic
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nature of conventional cream, which penetrates more through the lipophilic structure of
corneocytes, resulting in the higher permeation of TBH through the skin [43,44]. After 12 h,
40.57% of the drug from loaded nanogels containing gel was retained in the skin compared
to Lamisil cream, which retained only 29.43%. Enhanced drug retention from developed
nanogels could be attributed to multiple reasons. One factor for the improved uptake
of TBH by skin might result from nanogels’ good spreading and adherence properties
at the application site. Smaller size, softness, and deformability properties of nanogels
are other vital factors that may contribute to their ability to come into proximity with the
SC, enhancing the concentration of drugs that can penetrate the skin. So, it can be said
that the carrier (nanogels), its small size, and enormous elastic and deformable particle
properties were the main reasons for the excessive TBH retention in the epidermal layers
of skin [45–47]. By formulating polymeric nanogels, TBH can be delivered at the infection
site with lesser systemic access, resulting in minimal complications. Consequently, we
can conclude that the topical management of skin infections may greatly benefit from the
nanogel drug delivery system.
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2.11. Antifungal Activity Study

The antifungal activity of synthesized optimized AAG 6 nanogel and the marketed
product Lamisil cream was tested against C. albicans using the cup–plate method. The
zone of inhibition, an indicator of antifungal activity, was measured. A zone of inhibition
evaluates an antimicrobial agent’s capacity to stop the growth of microorganisms by
observing a clear area around a well containing the antimicrobial substance on the surface
of the growth medium. The size of the inhibition zone represents the antimicrobial agent’s
strength. TBH-carrying nanogels appeared to be more impactful in killing C. albicans
compared to Lamisil cream. As shown in Figure 11, the inhibition zone diameter of the
drug-loaded nanogel was 32 mm, while the inhibition zone diameter of Lamisil cream
was 16 mm. The larger inhibition zone diameter in the case of nanogels might be due to a
higher drug release from nanogels and the nanoscale particle size of synthesized nanogels
that enhance TBH entry into fungal cells; TBH decreases the concentration of ergosterol by
inhibiting fungal enzyme squalene epoxidase and decreased ergosterol synthesis which
results in fungal cell death [46,48]. Our antifungal study results are comparable to Y.S.R.
Elnaggar et al.’s results, who prepared lecithin-integrated liquid crystalline nanogel loaded
with terconazole to treat skin candidiasis [49].
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2.12. Skin Irritancy Studies

Patient acceptability and convenience of topically applied products are limited when
the product shows any sign of irritation and erythema on application. Therefore, topically
applied dosage forms should be evaluated for their potential for skin irritation and toxico-
logical reactions. The test was performed on rats; Group 2 and Group 3 received formalin
and TBH-loaded nanogel-containing gel, respectively. After applying the formulation, the
skin was monitored for signs of erythema and edema [50]. Mean erythema and edema
scores in the range of 0–4 were recorded, as shown in Table 2, to assess their skin irritation
potential. The optimized TBH-loaded nanogel-containing gel scored less than 2 with no
severe erythema and edema over 24 h. Products with a score of less than two are considered
non-irritant. Therefore, the study’s results disclosed that synthesized nanogels were safe
for external application [51].

Table 2. Skin irritancy study outcomes.

Groups Score ± SD

Group 1 (No application)
Erythema 0.00 ± 0.00

Edema 0.00 ± 0.00

Group 2 (Formalin)
Erythema 2.66 ± 0.57

Edema 2.33 ± 0.57

Group 3 (nanogels)
Erythema 0.66 ± 0.57

Edema 0.33 ± 0.57
Erythema grade set as 0 no erythema, 1 slight, 2 well-defined, 3 moderate, and 4 scar formation. Edema grade set
as 0 no edema, 1 slight, 2 well-defined, 3 moderate, and 4 severe.

2.13. In Vivo Antifungal Study

Fungal skin infection heals when a large amount of drug penetrates inside skin layers
and stays on infected skin for longer. An in vivo antifungal cure rate study of drug-loaded
nanogels containing bioadhesive HPMC gel compared to commercially available Lamisil
cream 1% against a C. albicans-induced fungal infection was performed. Before inoculation
with C. albicans, all four groups of rats presented normal skin without any indication of
fungal skin infection, e.g., rashes, redness, swelling, or skin breakout, as shown in Figure 12.
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Group 1 served as the negative control, while Groups 2, 3, and 4 showed morphological
signs of fungal infection, such as yellowish or purple growing skin rashes after inoculation.
Group 2 animals received no treatment (positive control) and showed signs of fungal
infection throughout the in vivo antifungal study. The animals in Group 3 were treated
with commercialized Lamisil cream 1% which relieved skin rashes and cracks, but some
yellowish scars did not heal.
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In contrast, in animals treated with TBH-loaded nanogels containing bioadhesive gel
(Group 4), the manifestation of the fungal infection completely disappeared, and animals
recovered normal skin without redness or yellowish marks [52–54]. The results revealed
that Group 4 rats, which received TBH-loaded nanogel-containing gel, exhibited superior
therapeutic outcomes to Group 3 rats which received Lamisil cream 1%. These results
could be attributed to a higher penetration of TBH into skin layers when loaded into
nanogel-containing gel compared to conventional Lamisil cream.

3. Conclusions

Current trends show that fungal diseases are rising, affecting over a billion people
annually, either topically or in systemic fungal infections. Nanocarriers like nanogels
allow drugs to penetrate the SC following their topical application. The study aimed to
investigate the potential of gelatin-g-poly-(acrylic acid) nanogels to serve as carriers for
TBH administration through topical routes to enhance its concentration within skin layers.
Using a monomer, i.e., AA, and polymer gelatin, pH-responsive nanogels gelatin-g-poly-
(acrylic acid) were successfully fabricated using free radical polymerization. Nanogels
were fabricated using varying amounts of monomers, polymers, and crosslinkers (MBA).
Fabricated nanogels were characterized in terms of their swelling at pH (1.2 and 7.4),
particle size, determined interaction between TBH and nanogel components (FTIR), thermal
analysis (TGA, DSC), crystalline and amorphous nature of the drug and fabricated nanogels
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(XRD), and surface morphology (SEM). Following that, nanogels were investigated for their
DEE and release studies. In vitro, the antifungal activity on the C. albicans strain showed
that developed nanogels have a larger zone of inhibition when compared with the Lamisil
cream. Ex vivo penetration and retention studies demonstrated that drug-loaded nanogels
containing bioadhesive gel could deposit TBH into the skin’s SC layers, which is necessary
to treat topical fungal diseases. Skin irritation studies of fabricated nanogel demonstrated
that nanogels were non-irritating to the skin. In vivo, antifungal studies in albino rats
infected with C. albicans revealed that fabricated nanogels better cure the infection than the
marketed cream Lamisil.

4. Materials and Methods
4.1. Materials

AA, MBA, HPMC, and APS were procured from Sigma-Aldrich GmbH, Darmstadt,
Germany. Gelatin was purchased from Daejung Chemicals and Metals Co., Ltd., Gyeonggi,
Republic of Korea. Sabouraud dextrose agar (SDA) was purchased from Thermofisher
Scientific, Waltham, MA, USA. TBH was generously donated by Saffron Pharmaceuticals
(Pvt) Ltd., Faisalabad, Pakistan. All other reagents used were analytical grade preparation.

4.2. Synthesis of Gelatin-g-Poly-(Acrylic Acid) Nanogels

The present work fabricated a series of nanogels (AAG1-AAG9) with different feed
compositions using the free radical polymerization technique (Table 3). An aqueous gelatin
solution was prepared at room temperature and labeled as solution. (1) A pre-weighted
APS (initiator) was dissolved in another beaker in a small amount of water. The initiator
solution was added dropwise to accurately weigh AA (monomer), stirred using a magnetic
stirrer, and marked as solution. (2) Solution 2 was poured dropwise into solution 1 with
continuous stirring at 500 rpm. MBA (crosslinker) solution was prepared in a mixture of
water and ethanol at 50 ◦C using a magnetic stirrer and was added drop by drop to the
above reaction mixture while stirring. Nitrogen was continuously supplied to the reaction
mixture along with continuous mixing on the hot plate for 45 min to liberate entrapped
oxygen. The resultant mixture was homogenized and refluxed at 80 ◦C to begin the gelation
process. The obtained mixture was then washed using a water–ethanol mixture to remove
unreacted monomer, sieved, and freeze-dried to obtain nanogels [55,56]. Figure 13 depicts
the proposed nanogel structure.

Table 3. Ingredients of Gelatin-g-poly-(acrylic acid) nanogels.

Code Gelatin
(%w/w)

A.A
(%w/w)

APS
(%w/w)

MBA
(%w/w)

AAG 1 1 20 0.40 2

AAG 2 2 20 0.40 2

AAG 3 3 20 0.40 2

AAG 4 2 20 0.40 2

AAG 5 2 30 0.40 2

AAG 6 2 40 0.40 2

AAG 7 2 40 0.40 2

AAG 8 2 40 0.40 4

AAG 9 2 40 0.40 6
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4.3. Characterization
4.3.1. Particle Size Analysis

The particle size and particle size distribution of suspension of optimized nanogels in
ultrapure-filtered water were evaluated by the Dynamic Laser Scattering method using a
particle size analyzer (Malvern Zetasizer Nano ZS, Worcestershire, UK) [43].

4.3.2. FTIR

FTIR analysis was performed for pure drug TBH, gelatin, naïve nanogels, and TBH-
loaded nanogels to confirm functional groups of individual ingredients and interactions
among the TBH and formulation ingredients. All specimens were spectral scanned over
the 4000–500 cm−1 scanning range using NICOLET 380 FTIR [57].

4.3.3. Thermal Stability

To determine the thermal stability of components in nanogels, TGA and DSC were
conducted on individual components (gelatin and TBH) and developed formulations. A
specific amount of sample, ranging from 3 to 5 mg, was placed onto a platinum pan and
gradually warmed at 10 ◦C/min up to 800 ◦C under the nitrogen environment [46].

4.3.4. XRD

XRD analysis of gelatin, TBH, unloaded, and loaded nanogels was performed to find
the crystallinity and amorphicity of samples and results were compared. Diffraction angle
2 (θ) varied from 0 to 50 [50].
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4.3.5. SEM

The surface morphology of naïve nanogels was observed using SEM. SEM images
were captured at various resolutions after nanogels were affixed on a clear metal stub,
sputter coated with gold, and air-dried [58].

4.3.6. Swelling Study

The swelling behavior of all fabricated nanogels was evaluated at different pH condi-
tions (1.2, 5, 7.4) using a dialysis membrane (mol. wt cut-off 14,000). A weighed sample
of nanogels was taken into a dialysis bag, submerged separately into buffer solutions of
pH 1.2 and 7.4, and nanogels were permitted to swell. The dialysis bag was removed
from the buffer solution at a predefined time interval, hung until no liquid oozed out from
the bag, and weighed again. The experiment continued until no additional weight gain
of nanogels was noticed [59]. The difference in weight represents nanogel swelling. The
swelling index of nanogels was calculated using Equation (1).

Swelling index =
W2

W1
(1)

W1 denotes the dry weight of the nanogels, and W2 represents the swollen weight of
the nanogel at a particular time (t).

4.3.7. Drug Loading and DEE

TBH loading into the fabricated nanogels was done using the swelling diffusion
process. Weighed naïve nanogel was added to the calculated volume of the drug solution
prepared by dissolving TBH into the ethanol–water mixture, sonication for 15 min, and then
leaving the beaker for 72 h on a magnetic stirrer at 500 rpm. TBH-containing nanogels were
air-dried at 25 ◦C and then subject to lyophilization to remove any solvent [60]. The swelling
and extraction method determined the DEE of fabricated nanogels [61]. A weighed amount
of TBH-loaded nanogels was transferred to the known amount of hydro-alcoholic mixture
and stirred for an hour to get out the entrapped drug from the nanogels. The mixture
was centrifuged, and the supernatant layer was collected and filtered through a 0.45 µm
membrane filter. In the end, obtained filtrate was evaluated by UV spectrophotometer at
λmax 283 nm. To find out the DEE, the following equation was used;

Drug entrapment e f f iciency =
Actual drug in nanogels

Theoretical drug in nanogels
× 100 (2)

4.3.8. Drug Release Studies and Kinetics

In vitro drug release studies for fabricated nanogels compared to the marketed product
were carried out using a Franz diffusion cell, consisting of an open-ended cylindrical glass
tube, in phosphate buffers (pH 5, 7.4). Previously, phosphate buffer-soaked cellophane
membrane was tied to one end of the tube, and the sample of TBH-loaded nanogels was
uniformly disseminated on the membrane surface. The whole assembly was left in a beaker
containing buffer so that the part of the tube containing nanogels was 1–2 mm below the
surface of the buffer. Beaker was placed on a thermostatic hot plate keeping the temperature
at 32 ± 0.5 ◦C and agitation speed at 50 rpm. Suitable samples were withdrawn from the
beaker at defined time intervals, and an equivalent quantity of fresh buffer was replaced
for each of them. A spectrophotometer was used to determine the drug release at a specific
wavelength of 283 nm [62,63]. DSolver Excel add-in program was used to evaluate the
release data by zero order, first order, Higuchi, and Korsmeyer–Peppas models.

4.3.9. Preparation of HPMC Gel-Containing TBH-Loaded Nanogels

HPMC gel 1% was prepared for ease of spreadability of solid nanogel particles to rat
skin. HPMC, a semisynthetic, inert viscoelastic polymer, was chosen as the gelling agent
due to its ability to produce a gel with larger permeability for drug release. Briefly, HPMC
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was dissolved in distilled water by continuous stirring at 1000 rpm for an hour. Then,
accurately weighed TBH-loaded nanogels were mixed thoroughly into the HPMC gel. The
pH of the prepared gel was brought up to 5.5 using tri-ethanolamine (TEA) [64].

4.3.10. TBH Skin Penetration and Retention Studies

The ex vivo skin delivery of optimized drug-loaded nanogel-containing gel compared
with Lamisil cream 1% onto and across rat skin was carried out using a Franz diffusion cell.
Albino rats of either sex, weighing 150–180 g, were utilized for the experiment. Rats were
anesthetized and then sacrificed. Rat abdomen skin was excised and washed with pH 7.4
phosphate buffer, cut into appropriate sizes, and hair-free using VEET cream. Subcutaneous
tissues and fat were removed without damaging epidermal skin.

The skin in the Franz diffusion cell was put between the donor and receptor com-
partment so that the skin stratum corneum faced the air and the dermal side of the skin
had contact with the receptor compartment fluid. The receptor compartment was filled
with phosphate buffer (pH 7.4) and ethanol and continuously mixed during the study
period using a magnet at 32 ± 0.5 ◦C. TBH-loaded nanogel-containing gel and Lamisil
cream (equivalent to 3 mg) was added inside the receptor compartment in direct contact
with the skin. Samples were periodically removed from the receptor compartment of the
Franz diffusion cell and replaced with fresh medium to maintain a constant volume of fluid.
Aliquots withdrawn were evaluated for TBH using a UV spectrophotometer preset at λmax
283 nm [65].

Ultimately, the skin was removed from the Franz diffusion cell and wiped with a
solvent-moistened cotton swab. The cotton swab was extracted and assayed for TBH using
a UV spectrophotometer. TBH deposited within skin epidermal layers was determined
by chopping the skin. Methanol (i.e., used as a drug extraction solvent) was added to
the chopped skin and sonicated to extract TBH into methanol, filtered through a 0.45 µm
pore-size membrane filter, and evaluated at 283 nm using a spectrophotometer [66]. The
protocol for the study was reviewed and approved by the Ethics Review Committee of
Government College University Faisalabad, Faisalabad, Pakistan (GCUF/ERC/268).

4.3.11. Antifungal Activity Studies

The Well method was used to evaluate the antifungal activity of fabricated nanogels
against Candida. Albicans (C. albicans). C. albicans strain, identified by examining colony
morphology, culture characteristics, and VITEK-2 system (Biomerieux, Craponne, France),
was provided by the Islamabad Diagnostic Center, Faisalabad, Pakistan. The fungus
was maintained on an SDA medium at 4 ◦C until used in the study. The inoculum was
prepared from C. albicans and was standardized using 0.5 McFarland standard employing
a hemocytometer keeping the final concentration (106 CFU/mL) before the experiment.
In total, 1 mL of inoculum was spread onto solidified SDA medium, and two wells were
drilled into the media plates. The wells in the plates were filled with Lamisil cream 1%
(dissolved into DMSO) and TBH-loaded nanogels (suspended in water) equivalent to
75 µg/mL and incubated plates at 30 ◦C for 5 days. The zone of inhibition produced was
calculated and compared. The experiment was carried out in a clean setting [67,68].

4.3.12. Skin Irritation Studies

The skin irritation tendency of the drug-loaded nanogel-containing gel was evaluated
using the Draize test [69]. Albino rats that range in weight from 150 to 180 g were randomly
assigned to three groups, each with three rats (n = 3). The day before the study, the rats’
dorsal sides were shaved with an electric clipper. Group 1 served as the control group.
Group 2 rats received a standard irritant (formalin 1%) solution as the positive control,
while drug-loaded nanogels containing gel were topically applied to Group 3 rats. After
24 h, the rats’ used sites were examined for erythema and edema and given a score between
0 and 4 based on the severity of their symptoms [70].
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4.3.13. In Vivo Studies

The TBH-loaded nanogel-containing gel’s antifungal activity against C. albican’s skin
infection was evaluated in albino rats [71]. The weight of the rats was between 150 and
180 g. Rats had easy access to healthy food and water ad libitum and were given a week to
adjust to laboratory conditions before the beginning of the study. To establish a C. albicans
skin infection, rats’ immune systems were suppressed by giving them an intravenous dose
of methylprednisolone for three days. To prepare fungal inoculum, C. albicans clinical
isolates were cultivated on an SDA growth medium and kept in an incubator at 30 ◦C
for five days. A fungal suspension was obtained by adding 3–5 colonies in sterile saline
and mixed using a mixer. Using a hemocytometer counter, the fungal concentration was
adjusted with sterile saline to 107 CFU/mL. Before inoculation, hairs were removed from
the back of animals, the skin was gently scrubbed with ethyl alcohol, and a suspension
containing 107 CFU/mL of C. albicans in saline was administered intradermally to rats in the
middle of exposed skin. After the injection, the swelled area was massaged till the minor
edema vanished. A fungal infection on the skin was established after five days. Four rat
groups were formed, each with six rats. Group 1 rats served as the negative control group
(healthy rats). Group 2 rats received no treatment after contracting a fungal infection and
were kept as a positive control. Group 3 and 4 rats were topically applied Lamisil cream 1%
and TBH-loaded nanogel-containing gel for 10 days, respectively. All rats in Groups 3 and
4 were treated once per day. Macroscopic examination of fungal infection was employed
to assess Lamisil cream 1% treatment efficiency and drug-loaded nanogel-containing gel.
The Ethics Review Committee of Government College University Faisalabad, Faisalabad,
Pakistan (GCUF/ERC/268), examined and approved all rats experiment in the study.
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