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Abstract

In this work, the feasibility of implementing a process analytical technology (PAT) 
platform consisting of Near Infrared Spectroscopy (NIR) and particle size distribution (PSD) 
analysis was evaluated for the prediction of granule downstream processability. A Design of 
Experiments-based calibration set was prepared using a fluid bed melt granulation process by 
varying the binder content, granulation time, and granulation temperature. The granule samples 
were characterized using PAT tools and a compaction simulator in the 100-500kg load range. 
Comparing the systematic variability in NIR and PSD data, their complementarity was 
demonstrated by identifying joint and unique sources of variation. These particularities of the 
data explained some differences in the performance of individual models. Regarding the fusion 
of data sources, the input data structure for partial least squares (PLS) based models did not 
significantly impact the predictive performance, as the root mean squared error of prediction 
(RMSEP) values were similar. Comparing PLS and artificial neural network (ANN) models, it 
was observed that the ANNs systematically provided superior model performance. For 
example, the best tensile strength, ejection stress, and detachment stress prediction with ANN 
resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the 0.180, 0.395, and 0.430 
RMSEPs of the PLS models, respectively. Finally, the robustness of the developed models was 
assessed.

Highlights 

● NIR and granule size distribution data were fused to predict tableting properties.

● ANN-based modeling offered an improved performance compared to PLS.

● Tabletability and stress values during tablet detachment/ejection were predicted.

Keywords

Near Infra-red spectroscopy, Data fusion, Artificial neural networks, Granules, Tabletability, 
PAT
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1. Introduction 

The applied quality management strategies have evolved over time to compensate for 
the multivariate nature of drug manufacturing. The highest level of quality management that is 
considered to revolutionize industrial manufacturing of medicine relies on the use of soft 
sensors that can enable the future of smart manufacturing in a Quality by Control (QbC) 
environment (Jelsch et al., 2021; Mathe et al., 2020). In this respect, Process Analytical 
Technology (PAT) is of central importance to achieving model predictive control, by 
continuously measuring critical quality attributes (CQAs) (Casian et al., 2019b).

Tableting is an important production process in the pharmaceutical industry due to its 
high output, cost-effectiveness, and economic benefits. However, the process highly depends 
on the product properties and the manufacturing conditions (Kalies et al., 2020). Despite being 
the most common pharmaceutical dosage form, the appearance of tablet quality variations 
during the product's life cycle is typical and can be linked to multiple factors, e.g., variable 
critical material attributes and processing conditions, supplier changes, equipment wear (Mazel 
et al., 2019, 2015; Paul and Sun, 2017). Thus, proper control of the tableting step should also 
consider implementing process analytical tools capable of evaluating the tableting properties of 
intermediate products. Such tools could be used efficiently for the implementation of a feed-
forward or feed-back process control strategy, especially in the context of a continuous 
manufacturing setup (Domokos et al., 2021; Madarász et al., 2022, 2020; Záhonyi et al., 2023).

Pharmaceutical granulation is an essential step in manufacturing solid oral dosage forms 
that is applied to increase the tableting properties and flowability of the powder blend (Casian 
et al., 2022a; Gavan et al., 2020; Mathe et al., 2020). Considering this step's multivariate nature 
and complexity, appropriate control of critical material attributes (CMAs), external factors, and 
critical process parameters (CPPs) is required to avoid CQA variations and downstream 
processing issues. In a previous work, we demonstrated how these factors' slight but combined 
variation could impact product performance at the industrial scale (Mathe et al., 2020). To 
ensure improved knowledge, individual PAT tools have been implemented to provide 
understanding of flowing (Alam et al., 2017) and lubrication properties (Blanco et al., 2021), 
that can have an impact on mass variation (Mathe et al., 2020) or the sticking tendency of tablets 
(Saddik and Dave, 2021); heat transfer during drying (Domokos et al., 2021) as the drying 
profile impact downstream processability(Mathe et al., 2020); respectively particle size and size 
distribution (Porfire et al., 2012) as it can impact compressibility and compactibility during 
tableting (Wünsch et al., 2021). Although these approaches have well-demonstrated utility, a 
more comprehensive approach is required for improved and more robust quality control.

Predicting tabletability is a critical step in tablet manufacturing because it allows for 
adjustments before issues arise during large-scale production, such as capping, lamination, 
friability, etc. (Mazel and Tchoreloff, 2022). The combination of analytical techniques, physical 
testing, computational models (Hattori et al., 2020), and advanced data analytics (De Bisshop 
and Klinken, 2023; Jin et al., 2022) contributes to accurate tabletability prediction, ultimately 
leading to the production of high-quality tablets. 

Hattori et al. have developed a robust feed-forward control model that predicts process 
parameters of tablet compression by leveraging the chemical (NIR spectra) and physical 
characteristics ( particle size distribution - PSD, bulk and tapped density, flowability) of the 
granules (Hattori et al., 2020). Non-destructive spectrometric techniques can provide real-time 
information about the chemical and physical properties of granules or powder blends used in 
tablet production, which are critical for predicting tabletability. PSD has been extensively 
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studied in various technological processes, and it stands as one of the most crucial factors 
impacting tablet Critical Quality Attributes (CQAs) (Pauli et al., 2019). For instance, as shown 
by Skelbæk-Pedersen et al., insufficient particle size control can lead to undesired tablet 
fragmentation, resulting in suboptimal tablet compression. They measured the extent of 
fragmentation in various deforming materials with differing initial particle sizes, relying on the 
PSD of compressed particles and employing NIR spectroscopy as a substitute technique for 
examining fragmentation. NIR spectroscopy has demonstrated its potential as a valuable tool 
for examining subtle variations in particle size within limited PSDs and for evaluating the 
deformation characteristics of compacted particles. Hence, NIR spectroscopy could potentially 
serve as an alternative and complementary approach for exploring deformation characteristics 
and tablet density throughout the tablet compression process (Skelbæk-Pedersen et al., 2020). 
Peeters et al. have shown the advantages of using NIR and Raman spectroscopy complemented 
with traditional analysis methods (PSD, bulk and tapped density) can be effectively applied for 
a better understanding of granulation parameters that might affect tabletability (Peeters et al., 
2016). 

Recent advancements are not limited to real-time monitoring of various stages in the 
manufacturing process. They also emphasize the diverse characteristics of material behavior 
that can impact various compressibility indicators. Furthermore, there is a growing emphasis 
on employing multivariate analysis to address and understand batch-to-batch variations, 
particularly concerning issues like capping and lamination that can arise during the compression 
process (Mathe et al., 2023). Berkenkemper et al. have investigated material properties (PSD, 
Hausner factor, water content), tablet properties, tableting parameters and data from 
compression analysis. Principal component analysis (PCA) enabled the successful grouping of 
different materials based on these properties (Berkenkemper et al., 2023).

The complementarity of granule in-process control and different spectroscopic 
techniques in pharmaceutical manufacturing is a valuable approach that combines real-time 
monitoring of physical and chemical granule properties with advanced analytical techniques. 
This synergy provides a more comprehensive understanding of the manufacturing process, 
facilitates process optimization, and enhances and helps to maintain product quality.

The tableting properties of pharmaceutical products can be described through the 
compactibility and manufacturability parameters, as described by Osamura et al. (Osamura et 
al., 2016). Compactibility refers to the ability of a material to produce a mechanically strong 
tablet, being considered a critical quality attribute of this dosage form. Also, controlling stress 
values associated with tablet ejection is important during production, as an increased friction 
coefficient with the die wall can aggravate tablet failure and reduce manufacturability (Sun, 
2015). Tablet failure can manifest as binding, capping, or lamination (Casian et al., 2019a; 
Djuris et al., 2019). Detachment stress is another valuable parameter for the control of the 
tableting process. The sticking tendency of the formulations can be detected by evaluating the 
detachment stress variations, as this parameter accounts for the friction between the lower 
punch and tablet during tablet detachment (Casian et al., 2019a).

This work proposed the development of a multi-instrumented PAT platform for the 
simultaneous prediction of granule downstream processability in terms of tabletability, 
detachment, and ejection stress. Predicting these attributes by fusing data derived from NIR 
spectra and particle size distributions is expected to provide better control of the tablet 
manufacturing process. 
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The novelty of this work stands in the development and evaluation of process analytical 
platforms that could accelerate the implementation of the QbC environment, with the ultimate 
objective of having continuously monitored and well-controlled processes that deliver 
consistent quality. Another relevant addition to the current state of knowledge is the use of data 
fusion strategies and artificial neural networks (ANN) based modeling for this purpose. 

2. Materials and methods

2.1 Materials

Clopidogrel hydrogen sulphate, form II (MSN Laboratories Ltd, Telangana, India), 
Mannitol 35 (Pearlitol 50C) (Roquette Frères, Lestrem, France), Macrogol 8000 (Dow 
Chemical Company, Hahnville, LA, USA), Cellulose, microcrystalline M103D+ (Mingtai 
Chemical Co., Ltd., Taoyuan City, Taiwan), Low-substituted hydroxypropyl-cellulose (L-HPC, 
LH-11) (Shin-Etsu Chemical Co., Ltd., Tokyo, Japan). All the materials used in this study were 
of pharmaceutical grade.

2.2 Sample preparation 

The calibration set formulations were prepared according to a full factorial experimental 
design (DoE) with three factors and two levels of variation. The granulation temperature, 
granulation time, and binder content were varied according to the matrix presented in Table 1. 
Factors were chosen based on a risk assessment approach. The identified critical process 
parameters (granulation temperature and time) were varied, taking into account the melting 
temperature of the binder, Macrogol 8000, as provided by the manufacturer (55 – 62°C), and 
literature data for granulation time, which falls within the range of 10 – 15 minutes (Kraciuk 
and Sznitowska, 2011). The testing limits for these critical process parameters were selected to 
encompass experiments inside and outside these specified intervals to capture as much 
variability in the process as possible. In completion, the binder content was varied based on 
literature data, which suggests using higher viscosity Macrogol types typically in the range of 
10-15% w/w of the tablet weight for thermoplastic granulation (Rowe et al., 2009).

The active pharmaceutical ingredient (API) and selected excipients were granulated in 
a Bosch Solidlab 1 fluid-bed granulator and dryer (Bosch, Germany). The fluid-bed hot-melt 
granulation process consisted of three steps: 1. heating of the fluidized bed, 2. hot-melt 
granulation according to the predefined parameter setpoints in the experimental design, and 3. 
cooling. The qualitative and quantitative composition of the formulations are presented in Table 
2. 

Table 1. DoE matrix presenting factor variation during granule preparation

Exp 
Name

Granulation time 
(min)

Temperature of fluidized bed  
(⁰C)

Macrogol ( w/w 
%)
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N1 5 50 8.109

N2 30 50 8.109

N3 5 65 8.109

N4 30 65 8.109

N5 5 50 13.886

N6 30 50 13.886

N7 5 65 13.886

N8 30 65 13.886

N9 5 50 18.244

N10 30 50 18.244

N11 5 65 18.244

N12 30 65 18.244

N13 17.5 57.5 13.886

N14 17.5 57.5 13.886

N15 17.5 57.5 13.886

N – formulation code
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Table 2. Qualitative and quantitative ( w/w %) composition of formulations with different 
binder content included in the granulator

Ingredients N1 N5 N10

Clopidogrel hydrogen sulphate 39.996 39.996 39.996

Mannitol 31.056 28.178 25.988

Macrogol 8000 8.109 13.886 18.244

Cellulose, microcrystalline 15.569 12.670 10.501

Low-substituted hydroxypropyl-cellulose 5.271 5.271 5.271

2.3 Sample selection for calibration and external validation

Each formulation was unloaded from the granulator, and for all the 15 factorial design 
points, 6 (S1-S6), 2-gram sized samples were taken in separate holders, resulting in a total of 
90 granule samples. The samples were characterized using the proposed PAT tools and dynamic 
compaction analysis, ensuring an actual correspondence between process analytical data and 
tableting performance. Samples S2 and S5 from each formulation were used as external 
prediction sets (33.3%), whereas the other samples were used to train the models (66.6%). 

2.4 NIR spectroscopy 

Transmittance NIR spectra were recorded using an MPA NIR spectrometer (Bruker 
Optics, Germany) by selecting a rotating sample configuration. Each spectrum was recorded 
through OPUS 6.5 software using a resolution of 8 cm−1 over the 12 497.2–6173.39 cm−1 
spectral range and by integrating 32 scans.

Reflectance NIR spectra were recorded through a fiber optic probe (Solvias Reflector 
HT2, USA) using an MPA NIR spectrometer (Bruker Optics, Germany). Spectra were recorded 
in the 11 550 – 3950 cm-1 range with a resolution of 8 cm-1 and through the accumulation of 16 
scans. Each sample was characterized using both the transmittance and reflectance 
configurations, with 10 spectra per sample recorded by each method. That is, a total of 1800 
spectra were recorded. 

2.5 Particle Size Analysis 

Particle size measurement of granule samples was done using a laser diffraction method 
with a Malvern Mastersizer 2000 (Malvern Instruments, Worcestershire, UK) equipped with a 
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Malvern Scirocco 2000 dry dispersion unit. The measurement was performed in dry dispersion 
mode, using approx. 1 g sample per measurement, with a measurement time of 6 s and using 1 
bar dispersive air pressure. The Malvern Mastersizer 2000 uses the Mie scattering theory to 
calculate the particle size distribution, for which the particle refractive index and absorption 
value of 1.520 and 0.1 were assumed, respectively. These values provided weighted residuals 
of approx. 0.3% between the calculated data and the measurement, indicating a good value of 
the refractive index and absorption value. The obtained particle size distributions and the 
calculated d10, d50, d90, and span values were used for data analysis.

2.6 Dynamic compaction analysis 

Dynamic compaction analysis was performed using a single punch Gamlen GTP, series 
D tablet Press (Gamlen Tableting Ltd., Biocity Nottingham, Nottingham, UK). 100 mg-sized 
tablets were compacted using 6 mm punches at a 10 mm/min speed over the 100 kg–200 kg–
300 kg–400 kg–500 kg load range. The obtained force-displacement curves were used to 
calculate stress values during detachment (DS) and ejection (ES). Tensile strength (TS) was 
calculated using crushing force, diameter, and thickness (Eq.1).

𝜎 =
2 ∗ 𝐹

𝐷 ∗ 𝑡 ∗ 𝜋

F-crushing force (N); D-diameter; t-thickness                         Eq. 1

DS (MPa)  was calculated as the ratio between the maximum detachment force and the 
compact surface area (Eq.2) 

𝐷𝑆 =
𝐹𝑑

𝜋 ∗ 𝑟2

Fd-maximum detachment force (N); r-compact radius                         Eq. 2

ES  (MPa) was calculated  as the peak ejection force divided by the compact diameter 
multiplied by the in-die thickness and constant π

𝐸𝑆 =
𝐹𝑒

𝜋 ∗ 𝐷 ∗ 𝑡

Fe- peak ejection force (N); D-diameter; t-thickness                         Eq. 3

The crushing force was measured using a hardness tester (Pharma-Test, Germany), 
while the compact diameter and thickness were measured using an electronic caliper (Yato 
tools, China).

2.7 Multivariate data analysis

2.7.1 Exploratory Data Analysis 

Exploratory data analysis of NIR and PSD data was performed with PCA/OPLS to 
identify common and unique sources of variability. In this respect, the total variability in each 
data set was decomposed into predictive and orthogonal components and further investigated 
by generating pq column plots. The p and q loadings reflect the covariances between the 
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predictive score vector t and X variables and the covariances between the predictive score 
vector u and Y variables. The plot was used to identify variables that strongly contribute to the 
model and evaluate the relationship between X (NIR data) and Y (PSD data) variables. 

2.7.2 PLS-based modeling 

PLS models were developed considering individual and fused data sources to predict 
TS/ES/DS over the tested load range. The X variables were centered for individual data sources, 
whereas for fused data sources, the extracted latent variables were scaled to unit variance. The 
response variables were scaled to unit variance. The performance of calibration models was 
evaluated by considering the value of explained variability (R2), predictive capacity (Q2), the 
number of PLS factors, the root mean square error of cross-validation (RMSECV) and the root 
mean squared error of prediction (RMSEP). The optimal number of principal components was 
determined through 7-fold cross-validation and by comparing the prediction error sum of 
squares for different dimensions. 

Mid-Level Data Fusion (MLDF) strategies were implemented by fusing features 
extracted from NIR and PSD. Feature extraction was performed by PCA through the calculation 
of latent variables. An optimal number of PCs was computed and considered for each data set 
based on the associated eigenvalue (>2). For PSD data, feature extraction was also tested by 
calculating the d10-d50-d90 parameters.

Considering input data structure, three types of fused models were developed. MLDF-
1 models combined latent variables extracted from NIR and PSD data, MLDF-2 models 
combined NIR latent variables with d10-d50-d90 values from PSD and MLDF-3 type models 
also included process conditions and binder content with respect to MLDF-2. These models 
were developed by separately considering transmittance NIR and reflectance NIR spectra and 
their combination. The predictive ability of the models was tested on external samples. The 
influence of input data structure on the predictive performance of the models was evaluated 
more extensively on PLS-based models due to a more time-efficient model development 
compared to ANN. PLS-based data analysis was performed with SIMCA 17 (Sartorius Stedim, 
Sweden).

2.7.3 Artificial neural network based modeling

Artificial neural networks (ANNs) were built in MATLAB 9.12. (MathWorks, USA) 
using Statistics and Machine Learning Toolbox 12.3 and Deep Learning Toolbox 14.4. Feed-
forward, fully-connected neural networks with one input, one hidden, and one output layers 
were developed to predict the TS/ES/DS. Different combinations of the following variables 
were tested as inputs: scores of the first two PCA variables obtained from the reflection and 
transmission NIR spectra, granulation process parameters, PSD data (scores of the first three 
OPLS variables or the d10-d50-span values), and the predicted macrogol concentration 
obtained by a PLS model. The output layer consisted of 5 neurons, corresponding to the 
TS/ES/ES values at the 5 different compaction loads. The optimal neuron number in the hidden 
layer was determined by systematically building ANNs with 1 – 10, 15, 20, and 30 neuron 
numbers with 50 repetitions at each number. The neuron number providing the lowest RMSE 
values for validation was used in the final model. Tangent sigmoid and linear transfer functions 
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were utilized in the hidden and the output neurons, respectively. The ANNs were trained by 
error backpropagation, using the Nguyen-Widrow layer initialization function for the 
initialization of the weights and biases, Bayesian regularization as the training algorithm, and 
the mean squared error (MSE) between the outputs and targets as the cost function. Due to the 
stochastic nature of the ANN training, bootstrap resampling was utilized with 200 sampling 
and, correspondingly 200 ANN model training for each model. In this way, the result of the 
ANN model refers to the average outcome of the 200 bootstrapped submodels, and the 95% 
confidence interval of the model prediction is estimated as the 2.5 and 97.5 percentiles of the 
200 repetitions.

2.8 Prediction error analysis

The predictive performance was evaluated in relation to the independent variables 
considered for granule preparation (granulation temperature, granulation time, macrogol 
content) and the compaction load. The influence of these factors on the RMSEP values was 
investigated using a DoE approach by blocking the DoE matrix presented in Table 1 with the 
variation levels of the compaction load. 

RMSEP variation was modeled using multiple linear regression (MLR), and the 
obtained models were evaluated considering the R2, Q2, Reproducibility, Validity parameters, 
and ANOVA-based model significance tests. 

Thus, the robustness of predictions to these factors was easily evaluated through the 
significance of the models and the interpretation of the corresponding coefficient plots. The 
MLDF models were considered robust when the ANOVA test revealed a non-statistically 
significant difference between the modeled variation and the un-modeled variation of RMSEP 
(p>0.05), meaning that the prediction errors were not influenced by the factors varied during 
granule preparation and compaction.

3. Results and discussions 

3.1 Tableting properties of the granulated formulations 

The distribution of tableting properties within the applied load range revealed that with 
increasing compression load, the differences between formulations became more visible (the 
interquartile range became wider). Thus, the varied factors during granule manufacturing 
impacted their downstream processability, and discriminating between batches with good and 
poor tableting properties could be beneficial from a tableting throughput point of view. The 
properties of the granules are presented in Tables S1 and S2.  

The effectiveness of the applied compression load in rising tablet hardness is represented 
in the tabletability plot (Fig 1a). The tabletability profile of the calibration set formulations 
revealed a linear increase, being controlled by the pressure-induced inter-particulate contact 
area. For some formulations, a plateau was reached for the TS after a linear increase, suggesting 
that a finite contact area was reached before the maximum applied load (Alderborn, 2003; 
Persson et al., 2022; Tye et al., 2005). 

The detachment and ejection stress of the calibration set granules increased with 
increasing compaction load, indicating increasing friction at the tablet and die wall interface. 
At lower loads, the ejection stress presented a lower variation interval, and with increasing load, 
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the formulations became more differentiated (Fig 1b,c). The obtained variation domain was 
considered significant for an appropriate calibration. 

Figure 1. 

3.2 Development of regression models using individual PAT tools

Vibrational spectroscopic tools play a key role in implementing the PAT concept for 
monitoring critical quality and performance attributes of drug products. The analytical data 
recorded through these instruments contain multiple sources of variability, which could be 
related to the sample's chemical or physical properties, sample presentation, and environmental 
factors. Thus, pre-processing tools can come in handy by ensuring better control of undesired 
sources of variability. 

The models developed for the prediction of tableting properties enabled the comparison 
of the selected instruments. Optimal models would combine a large R2X (predictive variability 
of input data), large Q2 (predictive performance), and low RMSECV/ RMSEP values. An 
increased predictive variability is desirable as it ensures an improved robustness of method 
performance. 

In the case of tablet TS, the predictive variability found in raw transmittance NIR spectra 
was the largest out of the instruments (93%) and was negatively influenced by the use of 
spectral filters. Thus, applying pre-processing tools reduced the spectral variation correlated 
with granule tabletability. Applying the first derivative with a smoothing algorithm for 
reflectance NIR spectra increased the predictive variability, although the best predictive 
performance (lowest RMSEP) was also obtained from raw spectral data (Table S3). 

Granule tabletability could also be predicted from particle size distribution data but with 
slightly larger RMSEP than NIR methods. As the surface area of the material that contributes 
to the formation of inter-particulate bonds is particle size dependent, model performance results 
suggest that the particle size distribution is also a good predictor. 

The prediction of stress values associated with the ejection and detachment process 
worked better from particle size distribution type predictors, while the NIR tools presented a 
similar performance (Table 3). The higher complexity of PSD-based models could be attributed 
to the higher diversity of profile shapes and the independent variation of variable groups with 
respect to each other.

Table 3. Performance parameters of individual models fitted by PLS

Instrument Data Spectral range   
(cm-1)

PCs R2X-
pred

Q2 RMSECV RMSEP

Tensile strength

NIR-t raw spectra
12493.3 – 
6202.31 5 0.93 0.818 0.178 0.196
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NIR-r raw spectra 11544 – 3952 4 0.465 0.815 0.181 0.188

Malvern PSD 5 0.62 0.796 0.187 0.214

Detachment stress

NIR-t raw spectra
12493.3 – 
6202.31 5 0.794 0.457 0.546 0.491

NIR-r raw spectra 11544 – 3952 4 0.512 0.351 0.609 0.539

Malvern PSD 10 0.314 0.672 0.389 0.394

Ejection stress

NIR-t raw spectra
12493.3 – 
6202.31 4 0.827 0.366 0.657 0.668

NIR-r raw spectra 11544 – 3952 4 0.680 0.386 0.648 0.652

Malvern PSD 10 0.702 0.858 0.320 0.300

3.3 Evaluation of dataset complementarity 

Using relevant input variables is essential for obtaining an optimal model performance. 
Therefore, the fusion of multiple data sources should be performed after applying a preliminary 
investigation of information complementarity. This procedure can justify using various feature 
extraction procedures and the optimal fusion strategy without relying only on a trial-and-error 
approach (Casian et al., 2022b). 

The influence of independent variables on the recorded analytical data was evaluated by 
observing the clustering/ grouping of observations in score plots (Fig. 2) generated from models 
presented in section 3.2. In the case of transmittance NIR spectra, observations were clearly 
delimited with respect to the macrogol content variations and granulation temperature. The 
lower and upper levels of variation were clearly separated for granulation temperature, whereas 
the intermediate level was overlaid with the low temperature. The granulation time did not 
contribute to the systematic variability in the spectral data. Similar results were obtained for 
NIR reflectance data, although the cluster separation in the score plot is less clear (Fig. 2b.d). 
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The evaluation of experimental data revealed that the macrogol content and granulation 
temperature positively influenced the granules' growth during granulation (not shown). The 
PSD of the product influenced the TS, with larger granules offering an improved tabletability 
(Fig. 3c). Also, for the NIR instruments, the tabletability of the granules was well correlated 
with the baseline shift of the spectra (Fig.3a,b). Therefore, for the implementation of fusion 
strategies, raw NIR data was used for feature extraction. 

Figure 2. 

Figure 3.

OPLS models were developed to assess the complementarity between instruments, 
allowing the decomposition of the total variability into joint and unique sources (Table 4; Table 
S4). Thus, the NIR data was used as the X dataset, and PSD data was set as the Y dataset.

A similar correlation structure was identified with PSD for both transmittance and 
reflectance NIR spectra, implying two predictive components in the joint sources of variation. 
Approximately 70% of spectral variability (NIR-t: 69.7%; NIR-r: 74.3%) was correlated with 
50% of particle size variation from the PSD profiles. The remaining part of data variability was 
summarised in orthogonal components. These results suggest that a large part of the information 
is overlapped, but each data source contains unique information that can bring additional value 
to the data fusion application. Although NIR data approximates well the PSD of the samples, 
the remaining fraction of orthogonal PSD variability is high and should be considered relevant. 

Table 4. OPLS model results for complementarity evaluation  

NIR t vs PSD

Component Nr. of components R2X (cum) R2Y(cum)

Model 2+5+3 0.99 0.998

Predictive 2 0.697 0.505

Orthogonal-NIRt 5 0.293

Orthogonal-PSD 3 0.493

NIR r vs PSD

Component R2X R2X (cum) R2Y(cum)

Model 2+2+2 0.999 0.993
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Predictive 2 0.743 0.509

Orthogonal-NIRr 2 0.257

Orthogonal-PSD 2 0.484

The pq loadings of the OPLS models revealed that the NIR spectra capture the increase 
in particle size of the granules as a decrease in the baseline shift (negative p loadings) for 
transmittance data and as an increase (positive p loadings) for reflectance data (Fig. 4). These 
baseline shift variations were well correlated with a shift of particles from smaller size fractions 
towards larger ones. 

Figure 4.

In the case of PSD data, the orthogonal variability relates to changes in particle size that 
were not captured well by spectral data. However, the orthogonal spectral variability can 
originate from various sources due to the multivariate nature of the NIR method. To further 
evaluate these effects, the decomposed spectral variability in the form of predictive and 
orthogonal latent variables was regressed against factors varied during granule preparation. 

The generated loadings revealed that the predictive components (t1,t2) were well 
correlated with factors that influenced the particle size of the granules, namely the macrogol 
content and the granulation temperature (Fig. 5). Additionally, for both NIR methods, some of 
the orthogonal latent variables (to1-to5) contained information related to the composition of the 
granules. The correlation of these scores (to2-to5 for NIR-t; to1-to2 for NIR-r) with the samples' 
binder content confirmed this factor's unique contribution to the spectral variability. All the 
previously mentioned coefficients were significant, as the corresponding 95% confidence 
intervals suggested. 

Although the binder content influenced particle growth during granulation, the extent of 
particle growth also depended on the granulation temperature and granulation time. Therefore, 
some formulations – despite the high content of Macrogol – did not granulate entirely due to 
the lower granulation temperature and time. 

Figure 5.

By decomposing the total variability into common/joint and unique sources, it was 
highlighted that NIR data captured a significant part of particle size variation. However, both 
methods also contained relevant unique information. These sources were related to sample 
composition for NIR data and to particle size variations in the PSD profiles. Thus, a data fusion 
approach was justified for this application. 

3.4 Data fusion strategies 

The structure and the particularities of the datasets should drive the identification of an 
appropriate data fusion method. In this respect, MLDF is preferred when first-order data is 
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combined with a zero-order or another first-order dataset (Casian et al., 2022b). The available 
datasets in this study have a first-order structure, each sample being characterized by multiple 
variables. Moreover, considering the difference in the number of variables, an MLDF approach 
will ensure a more appropriate balance and avoid the domination of NIR over the PSD variables. 

The faster computation of PLS compared to ANN models allowed the comparison of 
various input combinations, as presented in Figure 6.  

Figure 6.

Based on the obtained performance parameters, the predictive ability of the models dropped in 
the following order: tensile strength, ejection stress, and detachment stress (Table 5). 

Table 5. Performance parameters of MLDF models fitted by PLS method

Y
Model 
name

MLDF 
Nr

NIR 
Instrument PCs

R2X-
pred Q2 RMSECV RMSEP

TS
PLS-DF-
M1 1 NIR-t 7 0.823 0.805 0.184 0.200

 
PLS-DF-
M2 2 NIR-t 2 0.903 0.829 0.173 0.184

 
PLS-DF-
M3 3 NIR-t 3 0.86 0.845 0.163 0.181

 
PLS-DF-
M4 1 NIR-r 3 0.773 0.763 0.202 0.205

 
PLS-DF-
M5 2 NIR-r 2 0.843 0.824 0.174 0.184

 
PLS-DF-
M6 3 NIR-r 3 0.819 0.844 0.165 0.181

 
PLS-DF-
M7 1 NIR-t&NIR-r 5 0.732 0.826 0.174 0.188

 
PLS-DF-
M8 2 NIR-t&NIR-r 2 0.802 0.834 0.170 0.183
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PLS-DF-
M9 3 NIR-t&NIR-r 3 0.793 0.849 0.161 0.180

ES
PLS-DF-
M10 1 NIR-t 4 0.658 0.642 0.451 0.446

 
PLS-DF-
M11 2 NIR-t 6 0.676 0.531 0.571 0.554

 
PLS-DF-
M12 3 NIR-t 6 0.652 0.535 0.552 0.555

 
PLS-DF-
M13 1 NIR-r 4 0.665 0.701 0.414 0.395

 
PLS-DF-
M14 2 NIR-r 3 0.862 0.435 0.613 0.599

 
PLS-DF-
M15 3 NIR-r 8 0.66 0.546 0.548 0.557

 
PLS-DF-
M16 1 NIR-t&NIR-r 5 0.594 0.701 0.422 0.413

 
PLS-DF-
M17 2 NIR-t&NIR-r 5 0.681 0.492 0.585 0.573

 
PLS-DF-
M18 3 NIR-t&NIR-r 7 0.611 0.546 0.555 0.558

DS
PLS-DF-
M19 1 NIR-t 3 0.889 0.486 0.546 0.493

 
PLS-DF-
M20 2 NIR-t 6 0.859 0.533 0.508 0.450

 
PLS-DF-
M21 3 NIR-t 4 0.909 0.484 0.516 0.457
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PLS-DF-
M22 1 NIR-r 4 0.689 0.486 0.548 0.505

 
PLS-DF-
M23 2 NIR-r 6 0.795 0.518 0.520 0.454

 
PLS-DF-
M24 3 NIR-r 9 0.597 0.57 0.469 0.430

 
PLS-DF-
M25 1 NIR-t&NIR-r 4 0.683 0.51 0.516 0.476

 
PLS-DF-
M26 2 NIR-t&NIR-r 4 0.871 0.448 0.545 0.491

 
PLS-DF-
M27 3 NIR-t&NIR-r 5 0.806 0.498 0.503 0.449

During the application of MLDF, the feature extraction procedure should efficiently 
capture the data structure and avoid the loss of predictive information. Comparing the effect of 
feature extraction and the selected input variables, the use of d10-50-90 parameters was more 
beneficial than PCA scores of the PSD, and the addition of process data had only a slight 
positive effect on the prediction of TS and DS. In the case of ES, PCA scores calculated from 
PSD data worked better, and the addition of process data was redundant and slightly increased 
the prediction errors. Using PLS-based modeling, the prediction errors of the investigated 
responses were comparable to the individual methods.

Comparing the prediction errors between models using as input d10-50-90 or PCA 
scores of full PSD highlighted that predictions for some samples with a non-ideal distribution 
were superior to latent variable type predictors. However, these bi-modal or skewed-shaped 
PSD profiles were also present in samples where the d10-50-90 type feature extraction was 
similar or performed better than the calculation of latent variables. Based on the experimental 
results, the criteria for selecting the feature extraction method for PSD data can not be defined 
based on the shape of the distribution.     

ANN modeling was also evaluated as a data fusion method, providing different 
combinations of the PAT measurements as model inputs. The results of the build models are 
summarized in Table 6. For TS, ES, and DS, a model (M1) was built with all the possible input 
variables (i.e., NIR-r, NIR-t, d10-d50-d90, PSD scores, granulation parameters, and predicted 
macrogol concentration), as well as using only the NIR-t, NIR-r data (M2). Furthermore, some 
more random combinations of the inputs were also tested (M3-M6/4). Comparing the R2 and 
RMSE values of the PLS and ANN models, it was observed that the ANNs systematically 
provided superior model performance; for example, the best TS, ES, and DS prediction with 
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ANN resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the 0.180, 0.395 and 
0.430 RMSEPs of the PLS models, respectively. The impact of different input combinations on 
the ANNs performance could also be analyzed. The ANNs resulted in the highest errors for all 
response variables when only the NIR spectra (i.e., their PCA scores) were provided as inputs. 
Including the PSD of the granules (either as a PCA score or as the d10-d50-d90-span values) 
was found to be essential to improve the model accuracy, which corresponds to the results of 
the OPLS, i.e., that the NIR approximates well the PSD of the samples. However, the remaining 
fraction of the orthogonal PSD variability is also relevant. Apart from this, the different 
combinations of inputs, including all the possible features in the model, resulted in only 
marginal differences. This indicates that the ANN could successfully assess the importance of 
the inputs during the training process, and therefore, ANNs can be a powerful tool for data 
fusion. A possible reason for the superior performance of the ANN data fusion method 
compared to the PLS approach is that ANN can account for the potential non-linear 
relationships in the datasets.

Furthermore, ANNs can efficiently select relevant information by appropriately 
weighting the inputs during training. Although PLS modeling also aims to retain only the most 
substantial information during the projection to latent variables, this process still considers all 
the original variables. This could improve the model's results if an appropriate variable selection 
method is used.

Table 6. Performance parameters of MLDF models fitted by ANN method

Response
DF Input Neuron 

number
R2

(train)
R2 

(test) RMSEC RMSEP

TS
ANN-
TS-M1 All data 7 0.971 0.922 0.075 0.123

ANN-
TS-M2 NIR-r, NIR-t 7 0.914 0.864 0.125 0.159

 

ANN-
TS-M3

d10-d50-d90-span, 
Process conditions, 
Pred. macrogol

8 0.962 0.918 0.086 0.127

ANN-
TS-M4

NIR-r, NIR-t, d10-
d50-d90-span, 
Process conditions, 
Pred. macrogol

8 0.972 0.925 0.074 0.121
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ANN-
TS-M5

NIR-r, NIR-t, d10-
d50-d90-span, 
Process conditions

8 0.968 0.926 0.078 0.119

 

ANN-
TS-M6

NIR-r, NIR-t, PSD 
scores, Process 
conditions

8 0.968 0.924 0.079 0.121

ES
ANN-
ES-M1 All data 6 0.921 0.897 0.199 0.259

ANN-
ES-M2 NIR-r, NIR-t 6 0.600 0.527 0.363 0.406

 

ANN-
ES-M3

d10-d50-d90-span, 
Process conditions, 
PSD scores,

Pred. macrogol

7 0.913 0.901 0.218 0.256

 

ANN-
ES-M4

NIR-r, NIR-t,

PSD scores
8 0.917 0.898 0.205 0.261

DS
ANN-

DS-M1 All data 3 0.709 0.683 0.250 0.307

 
ANN-

DS-M2 NIR-r, NIR-t 1 0.421 0.437 0.369 0.337

 

ANN-
DS-M3

Process conditions, 
d10-d50-d90-span,

PSD scores,

Pred. macrogol

3 0.706 0.684 0.253 0.307

 

ANN-
DS-M4

NIR-r,

d10-d50-d90-span,

Process conditions, 
Pred. macrogol

3 0.685 0.690 0.251 0.293
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* All data: NIR-r, NIR-t, d10-d50-d90-span, PSD scores, Process conditions, Pred. macrogol

Figure 7.

3.5 Prediction error analysis 

Reaching a robust model performance would assume an independent variation of 
prediction errors with respect to the factors varied during granule preparation and compression, 
meaning that the accuracy of predictions is similar within the entire experimental region/ 
calibration space. To this respect, an RMSEP value was computed separately for each 
formulation and introduced in the worksheet of the DoE matrix. 

3.5.1 Tensile strength 

The distribution of RMSEP values for TS was similar for the individual instruments and 
PLS-based DF models, with a slightly wider interquartile range for PSD-type predictors (Fig. 
8a). In this case, the variation of prediction errors was linked to the applied compression load 
(Fig. 9). Considering the increase of response variation with increasing load, depicted in figure 
1, this is an expected outcome. The coefficient corresponding to the compression force was 
statistically significant for all the PLS-based models, with some differences in the size of the 
effect (Fig 9). The structure of the input data for PLS-based DF models did not significantly 
affect the prediction robustness. 

Figure 8. 

According to the ANOVA results for model significance, all ANN-based DF models 
presented a p>0.05 (M1-0.890; M2-0.861; M3-0.774; M4-0.929; M5-0.903; M6-0.133) and 
offered robust predictions independent of the input factor combination. Moreover, the 
coefficient plots of these models showed a non-significant effect from the compression load on 
the size of RMSEP values (Fig.9). 

Figure 9.

3.5.2 Ejection and detachment stress 

In the case of the stress parameters, the RMSEP distribution was better for models 
relying on PSD as predictors (Fig.8, b,c). An increase of compression load from 100 kg to 500 
kg, while having all the other factors at an intermediate level, produced an increase of RMSEP 
value for ES/DS between 0.25-0.35 MPa for NIR-based models and only 0.15 MPa for PSD-
based models ( Figures S1 and S2). Thus, predictions were more robust from PSD due to the 
lower impact of compression force variation.   

For ES, the MLDF1 method (M10-M13-M16), relying on the use of PCA for feature 
extraction of NIR and PSD data, presented a smaller interquartile range compared to MLDF2 
and 3 approaches (Fig.8b). In the case of DS, the distribution of RMSEP values for MLDF 
models fitted by PLS revealed no significant differences with respect to the feature extraction 
method and the structure of the input data (Fig.8c). 

For these tableting parameters, the ANOVA values for model significance revealed that 
the input settings are linked to the predictive performance of these models, mainly through the 
significant effect of compression load. However, the magnitude of the effect was the smallest 
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for ANN-based models. Thus, selecting a modeling approach was important to ensure lower 
prediction errors in the calibration space.

Overall, the magnitude of prediction errors was reduced, having an average RMSEP±SD 
across all models of 0.158±0.110 MPa for TS, 0.400±0.284 MPa for DS, and 0.426±0.330 MPa 
for ES. Considering that for optimal tableting properties, the TS should be above 2MPa, and 
the stress values during detachment/ejection should be below 5MPa, the developed tool can be 
efficiently applied for improved control of the tableting process. Despite the off-line 
development, the PAT tool can already be used for the at-line prediction of tableting properties 
and the discrimination of batches with optimal and poor downstream processability. Knowing 
the tableting properties of the upstream materials will enable the operator to adjust the tableting 
speed, pre-compression force, compression force, and dwell time to ensure the preparation of 
tablets with reproducible quality.    

4. Conclusions

This work proposed the development of a PAT platform for the simultaneous prediction 
of granule downstream processability by fusing transmittance NIR, reflectance NIR spectra, 
and particle size distribution type data. 

Comparing the systematic variability in the two data types, it was highlighted that 
approximately 70% of spectral variability was correlated with 50% of particle size variation 
from the PSD profiles. Despite the large information overlap, each data source contained unique 
and relevant information for the fusion application. Using the OPLS method for variability 
decomposition confirmed that the unique spectral features were linked to compositional 
differences, mainly related to the varied binder content. 

These particularities of the data sources could explain the differences in the performance 
of individual models. Granule tabletability was more accurately predicted from spectral data, 
meaning that the unique features in the NIR data presented a larger contribution. Although the 
binder content influenced particle growth during granulation, the extent of particle growth also 
depended on the granulation temperature and granulation time. Therefore, some formulations 
did not granulate completely despite the high binder content due to the lower granulation 
temperature and time. In such cases, the binder content of the formulation, relevant for granule 
tabletability, was more reliably captured by the NIR data compared to PSD. Stress values 
associated with tablet ejection and detachment were predicted more efficiently from PSD data. 
Thus, the more accurate description of particle size differences through PSD profiles (50% 
unique variability) proved relevant for estimating the product's manufacturability. 

The faster PLS-based model development allowed the comparison of various input 
combinations and feature extraction methods for the MLDF models. The structure of the input 
data for PLS-based DF models did not significantly affect the predictive performance, as the 
RMSEP values were similar. Comparing PLS and ANN models, it was observed that the ANNs 
systematically provided superior model performance. For example, the best TS, ES, and DS 
prediction with ANN resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the PLS 
models' 0.180, 0.395, and 0.430 RMSEPs, respectively. For all response variables, the ANNs 
provided the highest errors when only features extracted from NIR data were used as predictors. 
In contrast, including features extracted from PSD profiles was important for increasing the 
predictive power. 



22

Finally, the robustness of the developed models was assessed by evaluating the 
dependence of RMSEP values on the factors that varied during granule preparation and 
compression. For granule tabletability, all ANN-based models offered robust predictions, as the 
RMSEP values varied independently from the input factors. In the case of the individual and 
PLS-based MLDF models, the size of prediction errors depended on the applied compression 
load. In the case of the stress values, the RMSEP was influenced by the applied compression 
load, with a lower effect for ANN-based models. Thus, selecting a modeling approach was 
important to ensure lower prediction errors in the calibration space. 

The results of this work demonstrate the advantages of fusing complementary sources 
of data for the control of complex quality attributes relevant to the tableting process.
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Fig. 2 Score scatter plots revealing the grouping of spectral data for NIR t (left) and NIR r 
(right)

Fig. 3 Raw NIR-t, NIR-r and PSD data colour coded according to tablet TS

Fig. 4 Pq column plot of OPLS models developed for exploratory analysis purposes between 
NIR t and PSD (a), respectively NIR r and PSD (b).

Fig. 5 The correlation between predictive/orthogonal components of spectral variability and 
factors varied during granule manufacturing. a)NIR-t, Macrogol %; b) NIR-t, granulation 
temperature; c) NIR-r, Macrogol %; d) NIR-r, granulation temperature; 

t1,t2 – predictive components capturing spectral variability correlated with changes in PSD;

to1-to5 – orthogonal components capturing spectral variability not correlated with changes in 
PSD;

Fig. 6 MLDF options considered for the prediction of granule tableting properties

Fig. 7 Tabletability (a), ejection (b) and detachment stress (c) profiles predicted by PLS and 
ANN methods

Fig. 8 Distribution of RMSEP values for individual and DF models built to predict TS (a), ES 
(b), DS (c)

Fig. 9 Coefficient loading plots revealing the influence of factors varied during granule 
preparation on the RMSEP values for TS
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