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Abstract: Modern pharmaceutical manufacturing based on Quality by Design and digitalisation is
revolutionising the pharmaceutical industry. Continuous processes are promoted as they increase
efficiency and improve quality control. Compared to batch blending, continuous blending is easier
to scale and provides advantages for achieving blend homogeneity. One potential challenge of
continuous blending is the risk of over-lubrication. In this study, blending homogeneity and lubricant
sensitivity are investigated for both batch and continuous processes. Given their distinct chemical
structures and morphologies, anhydrous lactose and granulated lactose are expected to exhibit
varying sensitivities to changes in process settings across both technologies. The findings suggest
that both lactose grades provide highly stable blends that can be safely utilised in both batch and
continuous modes. Optimisation should focus on process variables, such as the quality of loss-in-
weight feeders used for dosing low doses of ingredients. The most significant process parameter for
lubricant sensitivity was the type of lactose used. Anhydrous lactose produced harder tablets than
the more porous granulated lactose but was more sensitive to lubrication at the same settings. The
magnesium stearate content and its interaction with the type of lactose are also critical factors, with
magnesium stearate having a counterproductive impact on tabletability.

Keywords: continuous manufacturing; excipients; lubrication; lubricant sensitivity; direct
compression; lactose; content uniformity; blending

1. Introduction

Modern pharmaceutical manufacturing is revolutionising production processes in
the pharmaceutical industry, with a focus on continuous processes [1,2]. This shift has
forced the industry to redesign batch-wise processing into integrated continuous processing.
Continuous processes offer significant advantages in producing tablets, as they enhance
throughput and increase the robustness of production. Additionally, process control
tools, such as process analytical technology (PAT), enable the detailed monitoring of
processes [3–5].

Tablets are one of the most common pharmaceutical dosage forms, and their produc-
tion requires the use of many ingredients. In addition to active pharmaceutical ingredients
(APIs), excipients are used to facilitate the tableting process. Fillers enable tablet formation,
and lubricants facilitate the tableting process. To obtain a blend suitable for compres-
sion from a process perspective, APIs are mixed with appropriate excipients that provide
essential features, such as acceptable flowability and adequate compressibility.

Traditionally, pharmaceutical powder blending is performed using batch technology.
Batch blending involves loading powders into large vessels (e.g., bins) that are tumbled
for a fixed number of revolutions before the material is discharged and processed further.
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Although this technology has been extensively studied and explored, it presents some
criticalities. Batch blending provides difficulty in scaling up, limited flexibility in batch
sizes, and challenges for batch reproducibility. One of the major reasons for selecting
continuous processes is to address these issues.

Continuous processes might, however, be difficult to design, as the existing knowledge
on batch processes is not directly transferable to continuous processes. In order to transform
batch production into continuous production, different manufacturing steps need to be re-
designed. Multiple studies have compared the effect of raw material properties in batch and
continuous processes. The research on continuous processes is increasing annually, focusing
on the effects of process parameters, tablet characteristics, and formulation choices [6–9].
Additionally, research has been focused on the role of raw materials in different operating
units, like feeders [10–14] and blenders [15–22]. Several studies have demonstrated that it
is challenging to homogeneously mix materials with major differences in the particle size
distribution (PSD) in standard batch processes, potentially causing segregation [23]. Since
the scale of blending and the residence time in continuous manufacturing is significantly
shortened, other studies have shown that this has a positive effect on blend homogeneity.
So far, no studies have been identified that compare the impact of material properties in
batch and continuous blending processes on the risks of over-lubrication.

When blending in a continuous direct compression (CDC) line, there could be a
risk of over-lubricating the formulation. Excipients play a vital role in mitigating this
risk. Excipients are required to be consistent; they need to have a proper powder flow to
produce stable blends with other ingredients, and they should be compactable [24]. The
correct use of lubricants in formulations is challenging, particularly for the development of
formulations suitable for a CDC. Lubricants are required to eject tablets from dies without
defects, but the inter-particle bonds lose strength owing to the potential formation of a thin
layer of lubricant that covers APIs and excipient particles.

In this study, we investigated the role of anhydrous lactose and granulated lactose in
both continuous and batch processes. These two types of lactose are ideal for both batch
and continuous manufacturing because of their excellent powder flow and compactibility.
Granulated lactose is composed of α-lactose monohydrate, whereas anhydrous lactose
mainly consists of anhydrous β-lactose (80% w/w), with the remainder being anhydrous
α-lactose [25–28]. Therefore, it is expected that these materials will exhibit different sensitiv-
ities to changes in the process settings for both technologies. Batch blending was performed
using a tumble blender, whose design is characterised by an optimised geometry that
ensures high mixing efficiency with no dead zones. Continuous blending was performed
by a horizontal blender. The powder ingredients were continuously dosed directly into the
blender by means of three different loss-in-weight feeders (LIW).

A process can become robust as soon as the correlations between critical powder
attributes and the critical parameters of the process are well understood. The aim of this
study is to better understand the requirements for processes and material properties in
relation to lubricant sensitivity [29–32]. In a batch process, conditions such as mixing time,
lubricant quantity, and mixing speed can be adjusted easily to account for variations in
lubricant action. In a continuous process, the sensitivities to lubricants have not been deeply
investigated yet, and further research is required to understand the interaction of process
settings in combination with excipients. This is the first time that a quantitative comparison
has been made between the lubricant sensitivity in batch and continuous blending.

2. Materials and Methods
2.1. Materials

A granulated lactose (SuperTab® 30GR, DFE Pharma, Goch, Germany) and an an-
hydrous lactose (SuperTab® 22AN, DFE Pharma, Goch, Germany) were blended with
magnesium stearate (Ligamed MF-2-V, Peter Greven, Bad Muenstereifel, Germany) and
FD&C blue #2, Indigo Carmine Aluminium Lake (Colorcon, Harleysville, PA, USA), as
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a model for an API. The tablets contained 1% w/w of the model API, 1–3% w/w of the
lubricant, and the remaining 96–98% w/w was lactose.

2.2. Material Processing
2.2.1. Batch Blending

The core of the batch setup was formed by a tumble-blender Cyclops MINI coupled
with a 100 L bin (IMA S.p.A. Active, Ozzano dell’Emilia, Italy) with a diameter of 0.464 m.
A pre-blend was prepared through bag mixing the API with part of the lactose. The
pre-blend and the remaining lactose were blended at a constant speed of 15 rotations per
minute (RPM) and a blending time of 15 min. The required quantity of magnesium stearate
was added, and the second blending step was performed using the recipe parameters, as
described in Section 2.5.

2.2.2. Continuous Blending

Continuous blending was performed with the GCM450 horizontal continuous blender
(Gericke, Regensdorf, Switzerland) with a diameter of 0.077 m. To continuously dose
the powder, three different loss-in-weight feeders (LIW) were used. The largest feeder,
responsible for dosing the lactose, had a hopper volume of 15 L. Two internal impellers
ensured that the powder remained homogeneous before passing through the single screw.
The model API was dosed using a LIW feeder with an 8 L hopper and double concave
screws. The lubricant dosing LIW feeder had a 1 L hopper volume and double concave
screws. The cumulative flow rates of the feeders were set to meet the required output of
45 kg/h. Before each design of experiments (DoE) run, a 15 min pre-blending step was
conducted.

The blender had three separate inlet ports that allow the best residence time for each
ingredient to be selected (Figure 1). The feeders for lactose and the model API were
positioned at the first inlet. The lubricant inlet was positioned at the second or third inlet,
depending on the DoE requirements. At the outlet of the blender, a weir was installed to
enable the outlet to be partitioned, allowing the mean residence time of the blend to be
modified. The material was continuously transported downstream from the continuous
blender to the tablet press.
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2.2.3. In Process Analysis

A near-infrared (NIR) sensor (MicroNIR® PAT-U, Viavi Solutions Inc., Scottsdale, AZ,
USA) was installed as the process analytical technology (PAT) unit immediately before
loading the powder into the tableting die. One sensor was located on the upper part of the
lid of the bin of the batch blender, and one sensor was applied on the feed frame of the
tablet die filling. The NIR sensor utilized a linear variable filter as a dispersive element,
covering a wavelength range of 950 nm to 1650 nm. Raw spectra were pre-treated using a
Standard Normal Variate and the first derivative via a Savitsky–Golay filter (11 pt, second
polynomial order), before being analysed online using the moving block method with the F-
Test. The wavelength range was selected to cover nearly the entire spectra, except for some
lateral parts where the derivative pre-treatments create artificial noise. This qualitative
method involved collecting independent data for comparing the variances of two blocks of
data at a 95% confidence interval, enabling a real-time analysis of the material’s chemical
composition and ensuring it remains under control throughout the entire run.

2.2.4. Tableting

Tableting was performed with a Prexima 300 (Prexima 300, IMA Active, Ozzano
dell’Emilia, Italy) with 9 mm round concave EU-B punches (iHolland, Nottingham, UK).
Tablet press parameters were selected to ensure similar processes and results between the
two grades of lactose investigated. A flat paddle was used for charging at 15 RPM. A flat
paddle with increased volume was used for dosing at 40 RPM. A pre-compression force of
2 kN with a 1.5 mm upper punch penetration and a 3.5 mm pre-compression chamber was
used. The main compression was performed with a 2.5 mm upper punch penetration and
a compression chamber of 2.05 mm. The compression forces were 15.8 kN and 17 kN for
anhydrous and granulated lactose, respectively. The tablet press turret speed was set to
60 RPM to achieve a throughput of 45 kg/h.

2.3. Powder Characterization
2.3.1. Powder Density

The bulk and tapped densities (n = 2) were measured using Ph. Eur. Method 1.
Specifically, 100 g of the powder was added to a 250 mL graduated cylinder, which was
then placed on an automatic tapping device (STAV 2003 stampfvolumeter, Engelsmann,
Ludwigshafen am Rhein, Germany). The Hausner ratio (HR) was calculated by dividing
the tapped density (TD) by the bulk density (BD).

2.3.2. Powder Flowability

A ring shear tester (RST-XS, Dietmar Schulze, Wolfenbüttel, Germany) was used
to measure the flow function coefficient (ffc, n = 2). The flow function coefficient (ffc)
was calculated as the consolidation stress divided by the unconfined yield strength. The
powders were evaluated at a pre-consolidation stress of 4 kPa, whereas shear to failure was
performed using normal stresses of 1, 2, and 3 kPa.

2.3.3. Morphology

Scanning electron microscopy (SEM) images were obtained using a Phenom Pro 6
SEM (Thermo Fisher Scientific, Waltham, MA, USA). Samples were prepared by mounting
a spoon tip of a powder blend on top of an SEM stub with the aid of double-adhesive
conductive carbon tape. All samples were coated with 6 nm of gold with a LuxorAu sputter
coater (Luxor Tech, Nazareth, Belgium) prior to SEM imaging. Images were collected at an
acceleration voltage of 10 kV.

2.3.4. Particle Size Distribution

Particle size distributions (n = 3) were determined using dry powder laser diffraction
with a Helos/R instrument (Sympatec, Clausthal-Zellerfeld, Germany). The particle size
distribution was reported as the volume-equivalent sphere diameter. A dry dispersion unit
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with a feed rate of 50% and air pressure of 0.5 bar was used. The particle size distribution
was described via the cumulative undersize percentage, which is the percentage of particles
smaller than a certain size. Specifically, the 10%, 50%, and 90% cumulative undersize values
were denoted as d10, d50, and d90, respectively. Additionally, the span of the volumetric
particle size distribution was calculated using the equation: Span = (d90 − d10)/d50. The
span value indicates the width of the particle size distribution.

2.4. Tablet Analysis

During the trials, the tablets were monitored for weight, thickness, diameter, tensile
strength (Charles Ischi AG, Zuchwil, Switzerland), model API content uniformity, and their
relative standard deviations. The tablet tensile strength (n = 20, σt) was calculated from
the tablet crushing strength (TCS), the tablet diameter (D), and thickness (t) according to
Equation (1):

σt =
2·TCS
π·D·t (1)

The tablet tensile strength (σt) was normalized by dividing it by the corresponding
main compaction force (CF) to remove the natural variability in the CF from the dataset.

The content uniformity was determined by dissolving tablets (n = 10) in a borate buffer
solution at a pH of 9.2 and measuring the UV-VIS absorption at 612 nm against a calibration
line with a Spectrometer UV-6300PC (VWR®, Radnor, PA, USA). The content uniformity of
the tablets was calculated as the relative standard deviation of the model API content of
ten tablets from the same batch.

2.5. Design of Experiment

A full factorial design of the experiment (DoE) was performed. The aim was to change
the most critical mixing process parameters for both technologies to evaluate the correlation
between the process parameters and investigate the impact on tablets. The factorial designs
are set up as summarised in Table 1 (the continuous process) and Table 2 (the batch process).
The determined responses were the tablet tensile strength (σt), the tablet model API content,
the model API content uniformity of the tablet, and the powder blend.

The responses were analysed using analysis of variance (ANOVA) statistics with the
assistance of Minitab 20.3 statistical software. This approach allowed the relationships
between the factors and the individual response variables to be identified and evaluated.
Minitab 20.3 was also used to create Pareto charts, which display the standardised effects
in descending order of magnitude from largest to smallest, with these effects represented
as absolute values. The chart also includes a reference line, indicating the statistically
significant effects at a p-value threshold of 0.1. The created models were summarised using
a transfer formula that outlines the effect of individual factors on the response. Addition-
ally, the model summary table includes several goodness-of-fit parameters, including the
standard deviation of the distance between the data values and the fit (S), the percentage
of variation in the response explained by the model (R2), the adjusted R2 (R2

adj), which
adjusts for the number of predictors in the model relative to the number of observations,
and the predicted R2 (R2

pred), which estimates how well the model predicts observations.
All R2 values range from 0 to 100%, with higher values indicating a better fit.
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Table 1. Factors used in the full factorial design of the experiment (DoE) in continuous mode blending.

Code Factor Coded Factors Type

A Moment during tableting Moment Start, middle, end Attribute

B Magnesium stearate content
(% w/w) MgSt 1–3 Continuous

C Blending tool speed (RPM) Speed 60–180 Continuous

D Lactose type Lactose Anhydrous lactose,
Granulated lactose Attribute

E Weir type Weir 1, 2 Attribute

F Magnesium stearate inlet
port MgSt_Inlet Port 2, Port 3 Attribute

Table 2. Factors used in the full factorial design of experiment (DoE) in batch mode blending.

Code Factor Coded Factors Type

A Moment during tableting Moment Start, middle, end Attribute

B Magnesium stearate content
(% w/w) MgSt 1–3 Continuous

C Percentage of bin filling (%) Filling 30–70 Continuous

D Lactose type Lactose Anhydrous lactose,
Granulated lactose Attribute

E Number of tumbling
revolutions Revolutions 30–200 Continuous

3. Results and Discussion

Firstly, the physical properties of the two lactose grades were determined to under-
stand the blend behaviour during the tableting process. Secondly, the continuous process
was compared to the batch process by analysing the flow rate, blending regime, NIR re-
sults, and model API content to confirm their comparability and to investigate the process
parameters that most affect tablets’ features. Then, the sensitivity of each process to the
lubricant was evaluated by comparing the tensile strength of the tablets obtained under
different process parameters. By identifying and addressing the key factors that affect the
quality of the final product, it can be ensured that all the processes are robust, reliable, and
capable of producing tablets with consistent quality.

3.1. Powder Characterization

An overview of the particle size distribution, density, and flow parameters of the
lactose grades is summarised in Table 3. The SEM pictures are provided in Figure 2.

Table 3. Particle size, density, and flow properties of anhydrous lactose and granulated lactose.

Anhydrous Lactose Granulated Lactose

d10 (µm) 47 38

d50 (µm) 203 126

d90 (µm) 359 297

Span (-) 1.54 2.05

FFC @ 4kN (-) 17 17

Bulk density (g·cm−3) 0.68 0.55

Tapped density (g·cm−3) 0.80 0.67

Hausner ratio (-) 1.17 1.22
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The particle size distributions of the lactose grades are relatively comparable, with
anhydrous lactose being the coarsest of the two but with a tighter span than granulated
lactose. In terms of powder flow, both excipients demonstrated excellent characteristics and
are well suited for direct compression processes. Anhydrous lactose displayed a slightly
higher density than granulated lactose. This distinction is particularly relevant in the
pharmaceutical industry, where varying sizes of tableting dies are employed. The largest
difference between the two powders was observed in the morphology. Anhydrous lactose
is produced through the rapid drying of a lactose solution, followed by sieving to the
desired particle size. Consequently, the formed particles are quite solid and have a smooth
surface, with some irregularities that became visible only at higher magnifications [26].
Granulated lactose is an agglomerate of a fine-grade lactose that results in a structure
consisting of an ensemble of fine particles bound together in a raspberry-like structure [33].
This results in a very irregular surface with numerous pores and holes.

3.2. Comparison of the Batch Versus the Continuous Process

To ensure that the mixing processes can be compared across different technologies
(batch and continuous), a constant nominal flow rate value is maintained for all the trials at
the tablet press level. The recipe parameters are also kept constant, apart from differences
triggered by the difference in lactose type. This approach ensures that all the batches are
produced under the same conditions, facilitating a comparison of the upstream process
parameters. The Froude number, a dimensionless parameter that compares centrifugal and
gravitational forces, is used to quantify the flow dynamics of the particles and determine
the optimal blending regime for the specific technology being used. The Froude number
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(Fr) can be calculated from the tip speed (vtip), the equivalent radius (r), the gravitational
acceleration constant (g = 9.81 m/s2), and the rotational speed (RPM):

Fr =
v2

tip

r ∗ g
, with (2)

vtip = 2 ∗ π ∗ r ∗ RPM
60

. (3)

Froude numbers were calculated for the range of DoE settings, as described in Tables 2
and 3. The Froude numbers for the batch blending process varied from 0.05 to 0.21, all
covering the gravity regime (Fr� 1) of mixing [34]. Mixing in the gravity flow regime
is characteristic for the tumbling blending method. Froude numbers for the continuous
blending process varied from 0.3 to 2.8, covering different flow regimes. The lowest Froude
numbers indicated a gravity flow regime (Fr� 1), followed by a shear flow regime (Fr < 1)
towards the centrifugal regime (Fr � 1) [34]. This indicates that these two blending
processes are inherently different in character. The main driver for the different flow
regimes during batch and continuous blending is related to the different rotational speeds.

3.3. Process Stability

Process stability is required to obtain results that can be used to draw relevant con-
clusions. PAT control is supportive of evaluating the blend homogeneity that will be
confirmed with tablet content uniformity through a chemical analysis in order to prove
process stability.

3.3.1. Uniformity of Powder Blends by NIR

To assess the stability of the process, an NIR probe was installed within the feed frame
of the Prexima 300 tablet press, positioned just before the powder inlet. A moving block
analysis was the method applied to monitor the process stability during the production
of each batch. The trends displayed that only small deviations in the blend composition
were present, which can be considered to be random noise. The standard deviations of
the group of spectra were close to 0 (spikes of maximum 0.006%). Additionally, the mean
absorbance remained constant, with a maximum discrepancy below 0.01. Therefore, the
intra-batch homogeneity of the blends flowing through the tablet press can be considered
sufficient [35].

3.3.2. Tablet Content Uniformity

The model API content of the tablets manufactured is summarised in Figure 3, where
the values are the averages of the ten tablets taken at three time points during each run
of the whole DoE. The content uniformity (CU) was measured as the relative standard
deviation (RSD) of the content of ten tablets taken at one time point and is shown in
Figure 4.

It can be concluded that the CU is excellent in all cases, with average results of less than
2%. Although the CU is well within the requirements of a low-dose API [36], some minor
differentiation can be observed. In the batch process, the granulated lactose performed
slightly better than the anhydrous lactose. This is related to its morphology, i.e., more
cavities and pores that can hold the low-dose fine model API. In the continuous process,
in contrast, the anhydrous lactose performed slightly better than the granulated lactose,
which is explained by the higher flowability of the anhydrous lactose.

An analysis of the CU results based on the DoE indicated no significant (α = 0.1)
correlation between the CU and DoE factors. Both the lactose grades provided very stable
blends and can, therefore, be safely used in both batch and continuous modes. Further
optimisation could be performed, especially in this application where loss-in-weight feeders
are used for dosing low amounts of ingredients.
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3.4. Lubricant Sensitivity

The impact of the processing factors on the lubricant sensitivity of the tablet tensile
strength (σt) was studied for both blending modes. To analyse the DoE, only single-factor
and first-order interaction terms were considered. Insignificant factors and interactions
(p > 0.1) were eliminated from the model using a backward elimination approach. All the
individual terms were included in the model when the interaction terms were significant.
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3.4.1. Continuous Mode

The significance of the impact of the process parameters on the tablet tensile strength
is shown in the Pareto diagram in Figure 5. The transfer function of the normalised tablet
tensile strength (σt) for the continuous blender is provided in Equation (4):

σt,continuous = 0.20778 − 1.906 B − 0.000001 C − 0.05572 D − 0.003354 E − 0.01065 F
+ 0.790 B·D + 0.303 B·F + 0.000051 C·D + 0.003671 D·E + 0.002713 D·F − 0.003027 E·F (4)
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The type of lactose used was found to be the most significant process parameter, as
each material has a specific impact on the tablet tensile strength (σt). The anhydrous lactose
was shown to produce harder tablets than the granulated lactose under the same tableting
conditions. This is explained by the rough surface structure with clusters of microcrystals
for the anhydrous lactose [37], which results in a higher degree of fragmentation [38,39].
The magnesium stearate content and its interaction with the lactose type were the second
and third most crucial factors, respectively. It is well-known that magnesium stearate can
have a negative effect on the tabletability of excipients [40]. The material-specific difference
in sensitivity to magnesium stearate is responsible for the significant interaction term
between the magnesium stearate content and lactose type. Anhydrous lactose has a higher
sensitivity to magnesium stearate due to the flat morphology of this material. Blending
for an extended number of revolutions causes the magnesium stearate to smear over this
flat surface. In contrast, granulated lactose is less sensitive to over-lubrication due to its
porous morphology. Magnesium stearate can smear less efficiently over the surface of this
lactose grade, as magnesium stearate in the cavities of granulated lactose is shielded from
blending shear forces.

The inlet port of the magnesium stearate was also a significant factor. An earlier
introduction resulted in longer and more intense blending, with a negative impact on the
tablet tensile strength. This also explains the significance of the interaction terms inlet port–
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lactose type and inlet port–magnesium stearate content. The weir type and the interaction
terms weir type–lactose type and weir type–magnesium stearate were also significant. This
was explained by the shape of the weirs. Weir type 2 has a full circular gap with no holdup
of material before dropping it from the blender, while weir type 1 has a partial gap. Weir
type 1 therefore holds some material, causing an increase in residence time and increased
blending time with magnesium stearate.

The blending speed and the tableting moment during the process did not significantly
affect the tablet tensile strength. The blending speed was not a significant factor, which
was counterintuitive. An increased blending speed, however, corresponds to a reduced
residence time in the blender, keeping the total blending energy more or less constant. The
tablet production time was not significant either. The absence of a significant correlation
between these parameters confirms the robustness of the blends and the process, as well as
the stability provided by the excipients used.

3.4.2. Batch Mode

The significance of the impact of the process parameters on the tablet tensile strength
is shown in the Pareto diagram in Figure 6. The transfer function of the normalised tablet
tensile strength (σt) for the batch blender is provided in Equation (5):

σt,batch = 0.19044 − 2.4184 B + 0.000161 C − 0.02856 D − 0.000177 E
+ 0.9106 B·D− 0.000126 C·D + 0.000063 D·E (5)
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The most dominant factor for the tensile strength (σt) was the magnesium stearate
content, followed by the type of lactose, and the number of revolutions. The magnesium
stearate is a well-known factor that was shown to have a negative effect on the tabletability
of the excipients for both blending processes [40]. The difference in morphology between
the two materials also was a crucial factor. Magnesium stearate delaminates easier on
the flat surface of anhydrous lactose than on the porous surface of granulated lactose, as



Pharmaceutics 2023, 15, 2575 12 of 17

discussed in Section 3.4.1. The number of revolutions was negatively correlated with the
tablet tensile strength. The number of revolutions is a measure of the blending energy,
and a higher number of revolutions results in more stress on the magnesium stearate to
smear over the surface of the lactose. The filling degree was positively correlated with the
tensile strength, although this impact was only minor. The filling degree is a well-known
factor that can influence the mixing efficiency. This correlation is explained by the small
reduction in mixing efficiency with a high filling degree [41,42]. With a high filling degree,
the mixer has less space to accommodate bed dilation, which could have a negative impact.
The moment at which the tablets were made during the process was not a significant factor
and therefore was removed from the statistical model.

3.4.3. Comparison of Continuous and Batch Modes

Figure 7 shows contour plots of the normalised tablet tensile strength for the batch
and continuous mixing of anhydrous and granulated lactose. The normalised tablet tensile
strength (norm. TTS) refers to the tablet tensile strength normalized by the compaction
force and therefore has the unit MPa/kN. The plots indicate that tableting with anhydrous
lactose resulted in harder tablets than tableting with granulated lactose. The tablet tensile
strength of anhydrous lactose is however more sensitive to variation than the tablet tensile
strength of granulated lactose.
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The tablet tensile strength for >95% of the formulations was above 1.7 MPa. A tensile
strength greater than 1.7 MPa will usually suffice to ensure that a tablet is mechanically
strong enough to withstand commercial manufacturing and subsequent distribution. Ten-
sile strengths down to 1 MPa may suffice for small batches where the tablets are not
subjected to large mechanical stresses [43].

The formulations with the most extensive lubrication also had acceptable tablet tensile
strengths of >1.5 MPa. This can be related to the brittle nature of lactose. During compaction,
lactose particles break, which provides new surfaces for the bonding of the tablet [44]. The
bonding capability of lactose particles is therefore not limited by the outer surface, which
can be covered by the lubricant.

In order to calculate the sensitivity of the batch and continuous processes towards
lubrication, the parameter magnesium stearate sensitivity (MSS) was introduced. This factor
indicates the change in tablet tensile strength when the magnesium stearate concentration
is changed and therefore indicates the risk for over-lubrication.

The magnesium stearate sensitivity (MSS) can be described as the first derivative of
the tablet tensile strength (σt) as a function of the magnesium stearate content (MgSt), as
described in Equation (6):

MSS =
d σt

d MgSt
(6)

Using the transfer function for continuous blending (Equation (4)), this results in an
MSS for continuous blending that depends on the lactose type (D) and the magnesium
stearate inlet port (F), as shown in Equation (7):

MSScontinuous = −1.9 + 0.79·D + 0.303·F ± 0.19 (7)

Using the transfer function for batch blending (Equation (5)), this results in an MSS
for batch blending that depends only on the lactose type (Type), as shown in Equation (8):

MSSbatch = −2.42 + 0.91·D ± 0.11 (8)

Equations (7) and (8) provide the formulas that describe the sensitivity of the tablet
tensile strength to variations in lubricant levels, which were derived from the transfer
formulas from the Design of Experiments (DoEs). The MSS depends on different factors for
a batch process than for a continuous process. Over the entire design space that is tested,
the MSS depended mainly on the type of lactose grade used. The anhydrous lactose had a
higher MSS than the granulated lactose. For a continuous process, the inlet port for the
magnesium stearate was also important. A higher sensitivity for magnesium stearate was
observed when the magnesium stearate was introduced at inlet port 2 compared to inlet
port 3, which is explained by the longer blending time when inlet port 2 is used.

These formulas result in MSS values for anhydrous and granulated lactose, as dis-
played in Figure 8. The dependency of lubricant sensitivity in interaction with the type
of lactose is of the same order for both processing modes. This shows that the MSS is a
material property that is relatively independent of the equipment and blend method used.

Figure 8 shows that the magnesium stearate sensitivity of anhydrous lactose is ap-
proximately twice as big as the magnesium stearate sensitivity of granulated lactose. The
higher sensitivity of anhydrous lactose to lubrication is explained by the morphology of
the materials, as indicated in Section 3.4.1.
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Figure 8. Magnesium stearate sensitivity (MSS) for anhydrous lactose and granulated lactose when
processed with batch and continuous blending modes.

Figure 9 shows the surface of anhydrous lactose and granulated lactose after batch
blending with 3% w/w magnesium stearate for 200 revolutions. Anhydrous lactose com-
prises solid particles with flat, rough surfaces. Magnesium stearate therefore increasingly
spreads on the surface of these particles upon increased blending energy. Granulated
lactose, in contrast, has a more open structure. The small magnesium stearate particles
fill the cavities, providing protection against further spreading of magnesium stearate on
the surface.
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Figure 9. SEM images of blends with anhydrous lactose (a) and granulated lactose (b) blended with
3% w/w magnesium stearate and 200 revolutions in a batch blender at a magnification of 5000×.

Even though magnesium stearate is partly captured in the cavities of granulated
lactose, lubrication was still, as no picking or sticking was observed. This is in line with
research, e.g., by Ragnarsson et al., who showed that a poor distribution of magnesium
stearate over the blend does not necessarily hurt lubrication efficiency [45,46].

4. Conclusions

The stability and magnesium stearate sensitivity of the formulations with anhydrous
lactose and granulated lactose were investigated in both batch and continuous processes.
Both processes were found to be highly stable over time with excellent content uniformity,
with average relative standard deviations less than 2%. In the batch process, the granu-
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lated lactose performed slightly better than the anhydrous lactose. This is related to its
morphology, which has more cavities and pores. In contrast, in the continuous process, the
anhydrous lactose preformed slightly better than the granulated lactose, which is explained
by the higher flowability of anhydrous lactose.

The magnesium stearate sensitivity for the defined formulations was similar in the
batch and continuous processes. The magnesium stearate sensitivity in the continuous
process depended on the inlet port and the lactose type used, while for batch blending, the
lactose type was the only relevant factor. Anhydrous lactose showed better compactibility,
but granulated lactose had lower magnesium stearate sensitivity. A thorough understand-
ing of these interactions is crucial for optimal and robust, continuous production processes.
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