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Abstract
Febuxostat (FBX), a potent xanthine oxidase inhibitor, is widely used as a blood uric acid-reducing agent and has recently 
shown a promising repurposing outcome as an anti-cancer. FBX is known for its poor water solubility, which is the main cause 
of its weak oral bioavailability. In a previous study, we developed a binary system complex between FBX and sulfobutylether-
β-cyclodextrin (SBE7-βCD) with improved dissolution behavior. The aim of the current study was to investigate the effect of 
incorporating a water-soluble polymer with a binary system forming a ternary one, on further enhancement of FBX solubility 
and dissolution rate. In vivo oral bioavailability was also studied using LC–MS/MS chromatography. The polymer screening 
study revealed a marked increment in the solubility of FBX with SBE7-βCD in the presence of 5% w/v polyethylene glycol 
(PEG 6000). In vitro release profile showed a significant increase in the dissolution rate of FBX from FBX ternary complex 
(FTC). Oral in vivo bioavailability of prepared FTC showed more than threefold enhancement in Cmax value (17.05 ± 2.6 µg/
mL) compared to pure FBX  Cmax value (5.013 ± 0.417 µg/mL) with 257% rise in bioavailability. In conclusion, the association 
of water-soluble polymers with FBX and SBE7-βCD system could significantly improve therapeutic applications of the drug.

Keywords Ternary inclusion complex · Febuxostat · PEG6000 · Oral bioavailability · Sulfobutylether-β-cyclodextrin · LC–
MS/MS

Introduction

Febuxostat (FBX), an oral non-purine xanthine oxidase (XO) 
inhibitor, has been prescribed for the treatment of chronic 
hyperuricaemia and gout in adults since 2009 [1]. In the 
last few years, FBX has gained a lot of attention and was 
repurposed for lung cancer treatment and prevention after 
being identified for its promising cytotoxic properties [2, 3].

FBX is very well known for its limited oral bioavailabil-
ity (approximately 49%) based on its poor aqueous solu-
bility (practically insoluble) [4], its weakly acidic nature 
(pKa≈3.08), and its extensive exposure to enzymatic 

degradation [5, 6]. To combat the major challenge of FBX 
therapeutic application, which is solubility, several attempts 
have been implemented and reported in the literature [7]. 
Among these attempts, drug salt transformation, solid dis-
persion systems, and co-crystal forms have shown some 
improvement [8].

Nanocrystal of Febuxostat is a viable approach to enhance 
drug solubility and its bioavailability [9]; self-nanoemulsifying 
(SNEDS) have been widely studied for their abundant poten-
tial applications that offered greater stability when compared 
to other lipid-based drug delivery systems. Also, SNEDS 
improved the solubility and subsequently the oral bioavaila-
bility of Febuxostat [10], and nano sponge is spherical micro-
scopic particles comprising interconnecting cavities having 
the ability to encapsulate a wide range of drug substances, 
encapsulation of Febuxostat in sustained release nano sponge 
formulations have successfully been prepared [11].

Inclusion complexes using cyclodextrins have offered a safe 
and successful approach for improving the solubility of water-
insoluble drugs for the past decades. Whereas the cone shape 
of cyclodextrins can host even more than one drug forming a 
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stable pharmacologically inert complex with significant sol-
ubility-enhancing power [12–14]. Its characteristic structure 
can also improve the stability and permeability of the drug to 
the biological membranes [15–17].

Sulphobutyl ether β-cyclodextrin (SBE7-βCD) is a deriva-
tive of β-cyclodextrin that was rationally designed to reach 
maximum safety and optimum drug-binding capacity com-
pared to the parent β-CD [18]. Despite being nearly 50 times 
more soluble than its parent, SBE7-βCD exhibits neither 
nephrotoxicity nor cytotoxicity due to the ability of the kidney 
to rapidly excrete ionic compounds [19]. The replacement of 
hydroxyl in glucopyranose units by an anionic group like sul-
phate and sulphobutyl-ether also reduces the hemolytic activ-
ity of cyclodextrins to negligible values due to its lower ability 
to derange and solubilize membrane lipids. So, in vivo studies 
have shown that SBE7-βCD is pharmacologically inactive and 
well tolerated at high doses [20].

Our research team has previously investigated the effect of 
forming a binary complex between FBX and SBE7-βCD on the 
dissolution behavior of the drug. It was found that the freeze-
drying technique at a 1:5 ratio of drug to the complexing agent 
had successfully formed a binary system complex between 
FBX and SBE7-βCD with nearly double solubility [21]. For 
further improvement of inclusion efficiency and solubility, the 
objective of the current investigation is to study the effect of 
adding a hydrophilic polymer to our previously formed binary 
complex. It was reported that formulations containing drug-CD 
complexes in the presence of water-soluble polymers like pectin 
[22], methylcellulose [23], and polyethylene glycol [24] have 
proved to be capable of increasing the bioavailability of the 
formulations and reducing the amount of cyclodextrin used in 
complex, which is economically beneficial [25, 26]. The poly-
mers increase the wettability of particles, resulting in accelerated 
dissolution and an increased amount of drug delivered. The type 
and amount of hydrophilic polymer used are critical factors for 
the formulation process, as at high concentrations, the viscosity 
of the medium increases, thus impairing complexation [27–29]. 
Moreover, it was not reported before the range of ideal polymer 
concentrations for obtaining ternary complexes, which was very 
challenging for us.

Thus, the aim of the present study was to design a ternary 
complex composed of FBX/SBE7-βCD-hydrophilic polymer 
followed by exploring its physicochemical properties, in vitro 
dissolution, and in vivo oral bioavailability.

Materials and methods

Materials

Febuxostat (M. wt., 316.37 g/mol) was kindly donated as a gift 
by Eva Company for Pharmaceutical Industries, Cairo, Egypt. 
Captisol®, Sulphobutyl Ether, 7, sodium salt β-cyclodextrin 

(SBE-βCD, M. wt., 2163 g/mol, purity 99.98%) was kindly 
supplied from Cydex Inc., USA. Disodium hydrogen phos-
phate, sodium dihydrogen phosphate, and methanol in the ana-
lytical grade were purchased from EL-Gomhoria Company, 
Egypt. Hydrochloric acid (35%) was purchased from El-Nasr 
Company, Egypt. Polyethylene glycol 6000 (PEG 6000) and 
PEG 4000 were purchased from Fluka (Germany). Hydroxy-
propyl methyl cellulose (HPMC) and polyvinylpyrrolidone 
(PVP) were also purchased from Sigma Chemical Company 
(St. Louis, USA). Distilled water was used during the studies. 
All other chemicals were of HPLC grade.

Screening of polymers

To select the optimum hydrophilic polymer for the formation 
of ternary complex, screening of four different water-soluble 
polymers, namely, HPMC, PEG 6000, PEG 4000, and PVP 
was carried out to determine their solubilization effect on the 
complexation efficiency of a previously prepared FBX/SBE7-
βCD binary complex [21]. The aqueous solutions of polymers 
were prepared in distilled water over a concentration range 
(from 0.1 to 10% w/v) [30]. Accurate weights of FBX and 
SBE7-βCD were added according to the molar ratio (1:5 of 
FBX to SBE7-βCD) to the aqueous solutions of polymers. The 
solutions were shaken using a rotary shaker for 48 h at 37 °C 
and 100 rpm (thermostatic water bath shaker, RUMO, Egypt). 
After equilibrium, the solutions were filtered with a hydro-
philic cellulose acetate sterile syringe filter (pore size 0.45 µm, 
diameter 25 mm). Finally, the clear solutions obtained were 
analyzed spectrophotometrically at λmax 315 nm (UV/VIS 
spectrophotometer, Perkin Elmer Lambda EZ 201, UK) to 
determine the solubility of FBX in different concentrations 
of aqueous solutions of polymers. The obtained results were 
analyzed for FBX solubility improvement, and the selected 
polymer with a known percentage was utilized for the ternary 
inclusion complex.

Preparation of inclusion complexes by lyophilization

Our previously published study selected lyophilization for 
the preparation of binary complex formation among three 
other techniques due to its high yield, reasonable inclusion 
efficiency, and significant dissolution enhancement [21]. 
The quantities of FBX and SBE7-βCD according to the 
pre-studied molar ratio (1:5) were dissolved in an aqueous 
solution containing a certain concentration of the selected 
polymer, transferred to a conical flask, and allowed to stir 
for 48 h at 37 °C using a hot plate magnetic stirrer (Jenway 
1000, UK). The collected solution was transferred to glass 
vials and kept frozen for 24 h at − 80 °C in an ultra-cold deep 
freezer. Thereafter, the samples were freeze-dried using a 
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lyophilizer (Christ Alpha 1–2 LD, Osterode am Harz, Ger-
many) for 24 h to yield a dry powder and stored in airtight 
containers for further investigation [31].

Characterization of the ternary inclusion complex

Fourier transform infrared spectroscopy (FTIR)

The complex formation was assessed by evaluating the 
change in peak shape, position, and intensity using a spec-
trophotometer (FTIR Shimadzu 8400S, Lab Wrench). The 
spectra of FBX, SBE7-βCD, selected hydrophilic polymer, 
FBX-ternary inclusion complex, and physical mixture (PM) 
of raw materials were compared to interpret the spectra. The 
analysis was performed between 4000 and 400  cm−1 and the 
conformational changes were observed.

Differential scanning calorimetry (DSC)

The thermal behavior of FBX, SBE7-βCD, selected hydro-
philic polymer, FBX-ternary inclusion complex, and physi-
cal mixture (PM) of raw materials were examined using 
a Shimadzu differential scanning calorimeter including 
DSC-50 detector with aluminum-sealed pan cell. Samples 
(4–5 mg) were placed in hermetically sealed aluminum 
pans and heated in a temperature range of 30 to 300 °C with 
10 °C/min increment rate in a nitrogen atmosphere.

Surface morphology study

The surface morphology of the different samples of FBX, 
SBE7-βCD, selected hydrophilic polymer, PM, and FBX-ter-
nary inclusion complex was investigated using a scanning elec-
tron microscope. The study was performed using an electron 
microscope (JSM 6360A, JOEL, Tokyo, Japan). The samples 
were coated with gold and detected under the microscope at 
high resolution to reveal the change in morphology.

Powder X‑ray diffractometry (PXRD)

The crystallinity changes of samples (5 mg each) were deter-
mined by PXRD patterns that were recorded using a Diano 
X-ray diffractometer fortified with Co Kα. The tube oper-
ated at 45 kV, and XRD patterns were recorded between the 
initial and final 2θ angle 5° < 2θ < 50°.

Entrapment efficiency estimation

For the determination of drug content successfully included 
in the complex, a known amount of the prepared FBX ter-
nary inclusion complex was weighed accurately and trans-
ferred into a 50 ml volumetric flask. Thirty milliliters was 

added of ethanol mixed thoroughly and stirred for 24 h to 
extract FBX from the inclusion complex at ambient tem-
perature [32]. The volume was made up to the mark with 
ethanol, and the resulting solution was suitably filtered with 
a 0.45-µm microfilter for further analysis. The concentration 
of FBX in the solution was determined using a UV spectro-
photometer (UV-1700, Shimadzu, Japan) at λmax 315 nm, 
and drug content was calculated by the following equation:

Particle size, polydispersity index (PDI), 
and surface charge (ZP)

Particle size (PS), surface charge (ZP), and polydispersity index 
(PDI) of using the dynamic light scattering method using a 
zetasizer 300 HSA (Malvern Instruments, UK), the samples 
were measured at 25 °C in triplicate. A suitable dilution with 
distilled water and vortexed was carried out whenever it was 
necessary [33]. PDI is a measure of the uniformity of particle 
sizes present in the formulation. A value close to zero (< 0.10) 
indicates little variability in size (monodisperse), whereas val-
ues > 0.10 indicate polydisperse systems. The advantage of a 
monodisperse system is related to its ability to deliver a consist-
ent amount of compound, as compared to a mixture of polydis-
perse particles, of different loading capacities [34].

In vitro dissolution study

Simulating oral gastrointestinal conditions, in vitro release pro-
files of the prepared ternary inclusion complex and pure drug 
were carried out in 0.1N HCl (pH 1.2) and phosphate buffer (pH 
6.8) dissolution media using USP dissolution apparatus II (pad-
dle method). Dissolution in distilled water was also performed 
for comparative rationale. The studies were carried out using an 
accurately weighted amount of ternary inclusion complex equiva-
lent to 40 mg of plain FBX in 900 ml of media at 37 °C ± 0.5 °C 
at a rotation speed of 75 rpm. At preselected time intervals, 5 ml 
samples were withdrawn, filtered immediately, and replaced with 
5 ml of pre-thermo-stated fresh dissolution medium. Quantitative 
determination was performed by UV spectrophotometer at λmax 
315 nm for the released quantity of FBX. Each measurement was 
performed in triplicate, and the graph of cumulative percent drug 
release versus time was plotted [31].

In vitro release kinetics study

To understand the kinetics and mechanism of FBX release 
from the ternary inclusion complex, the results were fitted into 

% Drug content =
the practical concentration

the theoretical concentration
× 100
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different models, and the correlation coefficients were deter-
mined from regression plots representing zero-order, first-order, 
Higuchi’s, and Korsmeyer-Peppas models [35]. The following 
mathematical models were applied respectively:

The equation for zero-order kinetics:

where, Q0 = initial amount of drug, Qt = amount of drug at 
time t, and K0 = zero order release constant.

The equation for first-order kinetics:

where, Qt = the amount of drug released at time t, Q0 is the initial 
amount of drug, and K1 is the first-order release constant.

The simplified Higuchi equation:

where, Qt = the amount of drug released at time t and 
KH = Higuchi’s constant.

The Korsmeyer-Peppas model relates drug release expo-
nentially to time. It is described by the following equation:

where, Q = the amount of drug discharge in time “t.” K = rate 
constant. n = release exponent. The value of n indicates the 
drug release mechanism.

Effect of storage study

The samples were stored in a powder form in a dissector, and 
stability studies were carried out at 5 °C ± 3 °C (refrigera-
tor) and at a room temperature (RT) of 25 °C ± 2 °C, and 
relative humidity of 45 ± 5% RH for a period of 6 months. 
Periodically, samples were withdrawn to be examined for the 
physicochemical stability of the complex.

In vivo evaluation of Febuxostat ternary  
inclusion complex

To explore the efficacy of the formed FBX-ternary inclusion 
complex on boosting the drug oral bioavailability, in vivo 
pharmacokinetic parameters of orally administered complex 
were determined with respect to the plain drug (FBX). The 
study procedure was approved by the Animal Ethics Com-
mittee of the Faculty of Pharmacy, Helwan University, code 
no. 06A2022.

Study design

Eighteen Wistar rats 200 − 250 g ± 20 g in weight each, were 
divided into three groups (n = 6 per group) and participated 

Qt = Q
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in a parallel group study. All rats were maintained in a light-
controlled room at a temperature of 22 °C ± 2 °C and a relative 
humidity of 55% ± 5% RH. All groups were fasted overnight 
(12 h) with free access to water before the experiments. The 
first group was assigned as a negative control group, while the 
second group was treated with a single oral dose of pure drug 
equivalent to 8 mg/kg of FBX that was dispersed in 3 ml of 
water. The third group received 3 ml of an aqueous solution of 
ternary inclusion complex containing an equivalent amount of 
FBX with the same mentioned dose [36].

Blood sampling

Blood samples (1.5 ml) were obtained from the orbital venous 
plexus of the rats using a smaller needle, collected in screw-
capped heparinized tubes, and immediately centrifuged at 
5000 rpm for 10 min for the separation of plasma. The blood 
samples were withdrawn on the following time schedules: 
0.25, 0.5, 1, 1.5, 2, 4, 8, 12, 24, and 48 h post-dose of two 
treatments. The separated plasma was kept in screw-capped 
tubes via micropipette and frozen at − 80 °C until assayed.

Determination of FBX concentration 
in plasma

A rapid, simple, and highly sensitive LC–MS/MS method 
has been developed and validated for the quantifica-
tion of FBX in the presence of cilostazole as an internal 
standard (IS). An integrated system Shimadzu controller 
CBM20Alite, containing a pump Shimadzu LC20AT, an 
auto-sampler Shimadzu SIL20A, and a degasser was used 
for the study. The analyte and internal standard were sepa-
rated on Zorbax SB-C18 (75 × 4.6 mm, 3.5 µm) analytical 
column with an isocratic mobile phase of 80% acetonitrile 
and 20% of 0.1% formic acid in water at a 1 ml/min flow 
rate. The autosampler temperature was maintained at 4 °C, 
and the pressure was maintained at 25 MPa. The injection 
volume was 20 µl. Quantification was accomplished with 
MS–MS detection in positive ion mode for the analyte and 
the IS using a triple quadrupole LC–MS/MS mass spec-
trometer API 3200 equipped with a TurboIonSpray inter-
face at 550 °C. Multiple reactions monitoring (MRM) was 
used to display the precursor to product ion transition of 
317.1 → 261.1 for Febuxostat and 370.315 → 288.2 for the 
internal standard (IS). Dwell time was set at 300 ms. The 
analysis data was created with the software version 1.6. A 
plasma sample (0.5 ml) was mixed with 4 ml of ethyl acetate 
in plastic tubes and vortexed. The organic layer was evapo-
rated in a vacuum concentrator and reconstituted in 0.5 ml of 
the mobile phase and 100 µl of IS following vortex-agitation 
for 25 s. The tubes were left to stand at ambient temperature 
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for 20 min. After that, the tubes were centrifuged for 15 min. 
A 20 µl sample of the clear supernatant fluid was injected 
in to the column.

Pharmacokinetics analysis

The pharmacokinetic parameters following the oral adminis-
tration of the treatments were estimated for each rat in each 
group. The values of the maximum FBX plasma concentra-
tion (Cmax, ng/ml), the time to reach Cmax (Tmax, h), the area 
under the plasma concentration–time curve from time zero 
to 48 h (AUC 0-48, ng h/ml), elimination rate constant (Kel, 
 h−1), and elimination half-life (T1/2, h) were obtained from 
the individual plasma concentration–time curves.

The values of the Cmax and Tmax were obtained directly 
from plasma data, while the area under the plasma concen-
tration–time (AUC 0-48, ng h/ml) was calculated using the 
trapezoidal rule method.

The elimination rate constant (Kel) was calculated from 
the slope of the terminal part of the concentration time 
curve, where the slope = − Kel/2.303 then half-life (T1/2) was 
calculated as 0.693/  Kel. Mean residence time (MRT) was 
calculated from the equation  AUMC0-∞ / AUC 0-∞.

The relative bioavailability (Fr) of FBX ternary inclu-
sion complex was calculated in comparison to the aqueous 
suspension of FBX using the following equation:

Fr

AUC 0 − 48(FBX ternary inclusion complex) × Dose(FBX aqueous suspension)

AUC 0 − 48(FBX aqueous suspension) × Dose (FBX ternary inclusion complex)

All the obtained pharmacokinetic parameters (Cmax, AUC 
0-48, AUC 0-∞, Kel, Tmax, and  T1/2) were analyzed using the 
IBM SPSS statistics program version 22. A statistically sig-
nificant difference was considered at P < 0.05.

Results and discussion

Screening of polymers

As shown in Fig. 1, it was found that among the four water-solu-
ble polymers used for the study, 5% w/v PEG 6000 has shown a 
maximum solubility of FBX 60.1 ± 1.5% compared to the other 
investigated polymers present in the same percent of PEG 4000, 
PVP, and HPMC, which showed FBX solubility of 76.6 ± 1.3%, 
66.6 ± 1.5%, and 28.3 ± 1.6%, respectively. The investigated 
polymers PEG 6000 > PEG 4000 > PVP > HPMC increased the 
solubility of the FBX in ascending order. The increase in the 
solubility of FBX in the presence of hydrophilic polymers might 
be related to the increase in complexation efficiency and solubi-
lizing power of cyclodextrins, as reported by several authors [37].

Ternary inclusion complex containing FBX to SBE7-βCD 
(1:5) molar ratio in the presence of PEG 6000 of 5% w/v showed 
a higher by 2.6-fold, FBX solubility 83.33 ± 1.6% compared to 
32 ± 2.36% from our previously studied binary system. This 
result was in agreement with a report that showed the addition 
of PEG 6000 to cyclodextrin solutions resulted in higher solubil-
ity and dissolution rate of ternary complexes in comparison to 
binary complexes, suggesting a significant enhancement in the 
complexation efficiency between silymarin-βCD [38].

Fig. 1  The effect of differ-
ent hydrophilic polymers on 
solubilization efficiency of 
SBE7-βCD with Febuoxstat. 
FBX present with SBE7-βCD in 
molar ratio 1:5
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It was obvious from the results that using HPMC and PVP 
in the formation of ternary inclusion complexes decreased 
the solubility of FBX. The results mentioned were similar 
to those recorded by Ammar et al., who found that ternary 
inclusion complex of glimepiride-SBE-βCD in a molar ratio 

of 1:3 in the presence of HPMC and PVP 5% w/v showed 
a decrease in the solubility and dissolution rate of glime-
piride [39]. This could indicate a kind of interaction between 
these hydrophilic polymers and SBE7-βCD, resulting in the 
formation of polyrotaxanes, wherever many cyclodextrin 

Fig. 2  Fourier transform infrared spectra of A SBE7- βCD, B FBX, C PEG 6000 D PM of the ternary system, and E FD-ternary inclusion com-
plex
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molecules are threaded onto a linear hydrophilic polymer. 
Such interaction between CDs and polymers will decrease 
the ability of CDs to form complexes with the drug [40].

On the basis of the above results, a ternary inclusion 
complex containing FBX-SBE7-βCD in a (1:5) molar 
ratio in the presence of 5% w/v PEG 6000 was selected 
for further investigation.

Characterization of ternary inclusion complex

Fourier transform infrared spectroscopy (FTIR)

The IR spectra for FBX, SBE7-βCD, PEG 6000, a physical 
mixture of ternary system, and freeze-dried ternary inclusion 
complex were recorded in Fig. 2. The characteristic stretching 
peaks of FBX were 2962.66  cm−1 and 2873.93  cm−1 (alkane-
CH group), 2546.04  cm−1 (hydroxyl), 2233.87  cm−1 (C≡N 
nitrile stretch), 1681.93  cm−1 (C = N stretching of thiazole 
ring), and 1276.88  cm−1 (ether). FTIR spectrum of SBE7-βCD 
showed characteristic peaks at 3417.86 and 2939.52   cm−1, 
because of the O–H and C–H stretching vibrations and C–O 
stretching at 1412  cm−1. In addition, peaks at 1651.07, 1161.15, 
and 1041.56  cm−1 correspond to H–O–H bending of water mol-
ecules attached to CD, C–O, and C–O–C stretching of glucose 
units, respectively. The spectrum of PEG 6000 showed char-
acteristic peaks at 3425  cm−1 (O–H stretch), at 1109  cm−1 
(C–O–C stretch), and at 2889  cm−1 (C-H stretch). However, the 
physical mixture (PM) spectrum showed a little change, freeze-
dried ternary inclusion complex (FD-TC) spectrum showed the 
disappearance of most characteristic bands of FBX, and the 
significant low intensity in IR bands of PEG 6000 suggesting 
complexation of FBX in the presence of SBE7-βCD. Gener-
ally, hydrophobic drug molecules have a greater affinity for the 
cyclodextrin cavity when they are in water solution [41, 42]. 
Physical mixture compared to the freeze-drying method sup-
plied lower energy to molecules during preparation which may 

be insufficient to initiate the collision between molecules [43], 
but in the case of freeze-drying methods, inclusion complex for-
mation took place at the molecular level, and the energy required 
for the collision of molecules FBX and SBE7-βCD is supplied 
from heating and stirring during preparation [44].

Differential scanning calorimetry (DSC)

To confirm the inclusion complex formation, DSC curves 
may be a useful tool because the absence of an endother-
mic peak corresponds to the melting of the drug molecule, 
which indicates the formation of the complex [45]. Figure 3 
showed DSC graphs of FBX drug, SBE7-βCD, the physical 
mixture of the ternary system, and the freeze-dried ternary 
inclusion complex. The DSC graph of FBX was character-
ized by a sharp endothermic peak at 209.3 °C [46], corre-
sponding to its melting point, while the SBE7-βCD exhib-
ited a distinctive broad peak at 99.69 °C [47]. In the graph 
of PEG 6000, a sharp peak at 64.6 °C was associated with 
the melting endotherm of PEG [48].

Consequently, the DSC diagram of the physical mixture of the 
ternary system showed a shifted peak of SBE7-βCD at 120 °C, 
an attenuated peak at 209.3 °C for FBX, and a low-intensity 
peak at 61.5 °C for PEG 6000. On the contrary, the pattern of 
the ternary inclusion complex FD-TC showed the absence of a 
distinct peak of FBX and shifted the thermal peak of PEG 6000 
at 56.68 °C, as these may indicate the complete incorporation of 
FBX and ternary inclusion complex formation [49].

Surface morphology

In Fig. 4, SEM photographs of FBX, PEG 6000, PM, and 
FBX ternary inclusion complex visualized the morphologi-
cal changes of those particles. The drug appeared as discrete 

Fig. 3  DSC graphs of FBX, 
SBE7-βCD, PEG 6000, physical 
mixture of ternary system, and 
freeze-dried ternary inclusion 
complex
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particles, rectangular needle-shaped indicating its crystalline 
nature and SBE7-βCD appeared as round, oblong in shape, 
while the PEG micrograph showed crystals of irregular 
shape. The specific morphological characteristics of SBE7-
βCD and FBX no longer existed in the SEM micrograph of 
the ternary inclusion complex and the presence of irregular 
pieces of amorphous aggregates suggested successful com-
plex formation between FBX and SBE7-βCD in the presence 
of PEG 6000. Thus, altered particle shape and amorphous 
aggregates might be responsible for improved drug solubility 
and dissolution rate of FBX [50].

Further freeze-drying technique had contributed to the 
formation of whole amorphous-natured complexes result-
ing in fast drug release from the complexes and the pres-
ence of a single phase.

Powder X‑ray diffractometry (PXRD)

The PXRD patterns allow examination of the medium- 
and long-range ordering of materials, which is a useful 
method to confirm the formation of inclusion complexes. 
The XRD pattern of FBX in Fig. 5 A showed characteristic 
diffraction peaks at 7.2, 12.8, 25.8, and 26.1° 2θ, which 

revealed its crystalline nature, while the X-ray pattern of 
SBE7-βCD in Fig. 5 B revealed a halo pattern, indicating 
its amorphous nature. In Fig. 5 C, PEG 6000 showed peaks 
with the highest intensity at 2θ of 19.6, 23.4, and 27.1. The 
XRD pattern of the freeze-dried ternary inclusion complex 
in Fig. 5 D showed a halo pattern, with no characteristic 

Fig. 4  Scanning electron micrographs of ternary inclusion complex (A, B), FBX (C), SBE7-βCD (D), and PEG 6000 (E)

Fig. 5  XRD spectra of A) FBX, B) SBE7-βCD, C) PEG 6000, and D) 
freeze-dried ternary inclusion complex
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peaks of FBX indicating an amorphous form of the pow-
der. These changes can be interpreted as the incorporation 
of FBX in SBE7-βCD and PEG 6000. These observations 
were consistent with previous reports by Lateh et al. [51].

Drug content, particle size, 
and polydispersity index (PdI)

The drug content of the freeze-dried ternary inclusion complex 
was found to be 83.33 ± 1.6%. The size of FD-TC of FBX-
SBE7-βCD in the presence of PEG 6000 showed multicom-
ponent of triple modal size of different populations, which 
existed as inclusion complexes of 1.3 ± 0.3 nm in diameter 
with an intensity of 8.2%, small and large inclusion complex 
aggregates formation of 305.7 ± 87.7 nm and 5143 ± 516.6 nm 
in diameter with an intensity of 90% and 1.8%, respectively, as 
showed in Fig. 6. These results were consistent with previous 
reports by Ibolya et al. [48] that reported the size of ternary 
Asiaticoside/SBE7-βCD/P407 complex showed multicom-
ponent of trimodal size distributions (5.17, 31.76, 3245 nm) 

which existed as inclusion complexes, small and large aggre-
gates formation, respectively.

In our study, the PdI of the prepared freeze-dried of ter-
nary system was 0.545 ± 0.05 that reflected particles homo-
geneity [52]. It was believed that the higher the zeta potential 
value, the greater the stability for the nanoaggregate system. 
The zeta potential of the freeze-dried inclusion complex 
was − 24 ± 2.4 mV. The presence of this charge on the sur-
face of the ternary complex belongs to the anionic nature of 
SBE7-βCD molecules [53]. Also, it was suggested that the 
stabilization is regulated by the steric hindrance effect of 
hydrophilic polymer [54].

In vitro dissolution studies

It was evident from the data that the ternary inclusion com-
plex served a better dissolution profile and drug release than 
FBX drug in all the dissolution media as shown in Fig. 7. At 
120 min, freeze-dried ternary inclusion complex illustrated 
99.4 ± 1.3%, 55.4 ± 0.95%, and 93.6 ± 1.6% drug release in 
phosphate buffer, 0.1N HCl, and distilled, respectively, which 
was significantly (P < 0.05) higher than FBX drug. The higher 
dissolution rate of the ternary system can be attributed to the 
hydrophilic polymer-assisted enhanced complexation in the 
ternary system, increased drug particle wettability, and reduc-
tion of the crystallinity of drug molecules [55].

The possible reason for the difference of sample dis-
solution rate in different media could be explained by the 
Henderson-Hasselbalch equation [56]. As the equation indi-
cated, when the pH of the dissolution medium increases, the 
solubility of the weak acid drug (FBX) increases, and the 
enhancement of solubility could lead to an increase of disso-
lution as the Noyes-Whitney equation [57] showed. Besides, 
the pKa of FBX is around 3.08; therefore, FBX is poorly 

Fig. 6  Particle size of FD-ternary inclusion complex

Fig. 7  %Cumulative drug 
release versus sampling time 
of FBX drug and FD ternary 
inclusion complex in phosphate 
buffer pH6.8, 0.1N HCl, and 
distilled water



 Drug Delivery and Translational Research

1 3

soluble in water, which explained its low dissolution rate in 
water. While freeze-dried ternary inclusion complex exhib-
ited a higher dissolution rate regarding to the hydrophilicity 
of carriers (CDs and hydrophilic polymer).

We fitted the release data using various release models. 
The resulting correlation coefficients (r2) of FBX release 
from freeze-dried ternary inclusion complex were in agree-
ment with the first-order kinetics process, which could be 
ascribed to passive diffusion [58]. The results were in agree-
ment with the prior investigations performed by Dua et al. 
that showed the release kinetics of the best formulations of 
aceclofenac with a β-cyclodextrin molar ratio of 1:2 was 
observed to follow the first-order release kinetics [59].

Febuxostat in vitro release kinetics from the prepared 
ternary inclusion complex were studied by applying the 
Korsmeyer-Peppas model to the release data up to 60%. 
The ternary complex had a (n) value of 0.994, indicating a 
supercase-II transport in which the release is ruled by the 
macromolecular relaxation of the polymeric chains, signify-
ing of a combination of diffusion and erosion mechanisms 
controlling FBX release [60].

Effect of storage studies

The ternary complex was subjected to stability studies for 
6 months at different time intervals (i.e., 1, 3, and 6 months) 
stored at 5 °C ± 3 °C and at room temperature. It was observed 
that no significant difference (P > 0.05) was found for per-
centage drug content and particle size at both conditions for 
6 months, so it can be concluded that the formulation was stable 
for a period of 6 months and showing its suitability for storage 
at both conditions. The data was recorded in Table 1. 

Plasma concentration–time data

The mean plasma concentration–time data of Febuxostat fol-
lowing oral administration of a single dose (8 mg FBX/kg) 
of the prepared ternary inclusion complex and pure FBX 
suspension to rats were recorded. Figure 8 shows the col-
lective profiles of the mean plasma concentrations of orally 
administered FBX from the prepared FBX ternary inclusion 
complex and pure drug suspension.

Pharmacokinetic parameters

The mean values of the pharmacokinetic parameters are 
summarized in Table 2. The mean values of Cmax were 
17.05 ± 0.811 µg/mL and 5.013 ± 0.417 µg/mL, AUC 0-48 
126.522 ± 19.9 μg h/mL and 49.22 ± 9.87 µg h/mL, AUC 
0-∞ 143.88 ± 43.2  µg  h/mL and 53.84 ± 20.6  μg.h/ml, 
 AUMC0-∞ 2086.2 ± 216.2 µg  h2/mL and 885.71 ± 118.5 µg 
 h2/mL,  Kel 0.053 ± 0.003  h−1 and 0.0456 ± 0.001  h−1, MRT 
14.5 ± 3.35 h and 16.45 ± 4.42 h, and  t1/2 12.9 ± 0.74 h and 
15.1 ± 3.24 h for FBX ternary inclusion complex and pure 
drug suspension, respectively. The median values of Tmax 
following administration of FBX ternary inclusion complex 
and pure drug suspension were 0.5 h and 1 h, respectively, 
with interquartile range of 0.25 and 0.5, respectively. The 
relative bioavailability was found to be 2.57.

Statistical analysis of pharmacokinetic parameters

As shown in Table 2, statistical analysis of the pharmacoki-
netic parameters revealed that the difference between the 

Table 1  The effect of 
storage condition on FD 
ternary inclusion complex 
at different time intervals 
stored at 5 °C ± 3 °C and room 
temperature (25 °C)

Storage condition Time % content of FBX in 
selected formula

Particle size 
(nm)

Fresh sample 83.33 ± 1.6% 305.7 ± 87.7
At 5 °C ± 3 °C 3rd month 83.12 ± 0.99% 306.3 ± 65.7

6th month 82.22 ± 1.01% 307.7 ± 77.7
Fresh sample 83.33 ± 1.6% 305.7 ± 87.7

At room temperature (25 °C) 3rd month 83.01 ± 1.1% 306.8 ± 57.7
6th month 82.16 ± 1.33% 308.4 ± 87.7

Fig. 8  Mean plasma concentration–time curve of FBX (ng/ml) in rats 
after oral administration of a single dose of the prepared FD ternary 
inclusion complex and pure FBX aqueous suspension
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 Kel, MRT, and  t1/2 values of both prepared formulation and 
the pure FBX aqueous suspension was statistically insignifi-
cant (P > 0.05). However, there was a significant difference 
( P < 0.05) between values of Cmax, Tmax, AUC 0-48, and AUC 
0-∞ of both prepared formulation and the FBX plain aqueous 
suspension.

The mean Cmax and AUC 0-48 in the group administered 
prepared formulation was 3.4 and 2.57 higher than the group 
administered FBX plain, respectively.

The statistically significantly (P < 0.05) higher Cmax, 
Tmax, and AUC 0-48 that produced by FBX ternary inclu-
sion complex indicated that the oral bioavailability of FBX 
was improved by embedded FBX in the inner cavity of 
SBE7-βCD and the formation of rapidly soluble freeze-
dried ternary inclusion complex. The increased absorp-
tion of the prepared FBX ternary inclusion complex over 
pure FBX aqueous suspension may be attributed to the 
improvement in its dissolution and water solubility since 
FBX could be embedded in the SBE7-βCD cavity and 
SBE7-βCD has a hydrophilic surface [61]. The pharma-
cokinetic parameters were in good agreement with those 
of the dissolution study. The ternary inclusion complex 
system of FBX showed better bioavailability (2.57-fold 
increment compered to plain FBX) than the other delivery 
systems of FBX. Self-nanoemulsifying system for FBX 
[62], solid dispersions of FBX in the presence of PVP  K30 
and poloxamer188 as combined carriers [46], and FBX 
nanocrystals [5] showed bioavailability enhancement by 
twofold, 1.54-fold, and 1.53-fold increments compared to 
plain FBX, respectively.

The improved solubility and bioavailability of FBX 
achieved by the formation of ternary inclusion complex 
of FBX is a promising delivery system for FBX pharma-
ceutical application.

Conclusion

In the present study, the preparation of the ternary inclu-
sion complex of Febuxostat-sulfobutylether-β-cyclodextrin 
was successful in the presence of water-soluble polymer 
by lyophilization. The prepared ternary inclusion complex 
was characterized for effective complex formation. In vivo 
behavior of Febuxostat ternary inclusion complex in a rat 
model was evaluated and compared to that of pure Febux-
ostat suspension. In conclusion, the improved solubility 
and bioavailability of FBX achieved by the formation of 
FD-TC of FBX make it a promising delivery system for 
FBX pharmaceutical applications.
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Table 2  Mean pharmacokinetic parameters of Febuxostat in rats fol-
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*Median; ***P < 0.05: significant difference; ****P > 0.05: no signif-
icant difference; **Interquartile range; P-value: level of significance 
at 5%

Pharmacokinetic 
parameters

Mean values (± SD, n = 6)

FBX ternary 
inclusion 
complex

Pure FBX 
suspension

Cmax (µg/mL) 17.05 ± 0.811*** 5.013 ± 0.417***
Tmax (h) 0. 5* (0.25**)*** 1* (0.5**)***
AUC 0-48 (µg h/mL) 126.522 ± 19.9*** 49.22 ± 9.87****
Kel (h−1) 0.053 ± 0.003**** 0.0456 ± 0.021****
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