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Abstract

Artificial intelligence (AI) is a revolutionary technology that is finding wide application 
across numerous sectors. Large language models (LLMs) are an emerging subset 
technology of AI and have been developed to communicate using human languages. 

20 At their core, LLMs are trained with vast amounts of information extracted from the 
internet, including text and images. Their ability to create human-like, expert text in 
almost any subject means they are increasingly being used as an aid to 
presentation, particularly in scientific writing. However, we wondered whether LLMs 
could go further, generating original scientific research and preparing the results for 

25 publication. We tasked GPT-4, an LLM, to write an original pharmaceutics 
manuscript, on a topic that is itself novel. It was able to conceive a research 
hypothesis, define an experimental protocol, produce photo-realistic images of 
printlets, generate believable analytical data from a range of instruments and write a 
convincing publication-ready manuscript with evidence of critical interpretation. The 

30 model achieved all this is less than 1h. Moreover, the generated data were multi-
modal in nature, including thermal analyses, vibrational spectroscopy and dissolution 
testing, demonstrating multi-disciplinary expertise in the LLM. One area in which the 
model failed, however, was in referencing to the literature. Since the generated 
experimental results appeared believable though, we suggest that LLMs could 

35 certainly play a role in scientific research but with human input, interpretation and 
data validation. We discuss the potential benefits and current bottlenecks for 
realising this ambition here. 

Key words: Pharmaceutical 3D Printing, Selective Laser Sintering, Artificial 
40 Intelligence, AI, Large Language Models
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1. Introduction

Artificial intelligence (AI) is a ground-breaking technology that is driving 
45 advancements in both technology and society in many fields (Briganti and Le Moine, 

2020; Palagi and Fischer, 2018; Wang et al., 2022b; Wang et al., 2023b). Its primary 
goal is to mimic human intelligence and, as a result, to carry out human tasks (Xu et 
al., 2021), but at a much faster pace than humans can achieve. This capability can 
solve challenges like workforce shortages and eliminates the need to expose 

50 humans to hazardous situations (Gao et al., 2021). In the drug discovery process, AI 
provides virtual simulations, which can significantly reduce the time needed for 
introducing new molecules to market (Chen et al., 2018; Das et al., 2021; Popova et 
al., 2018). This is invaluable given the escalating cost of developing products to 
commercial launch. Consequently, the pharmaceutical industry has begun to explore 

55 the applications of AI to product development (Elbadawi et al., 2021). 

Machine learning (ML), a branch of AI, is instrumental in increasing the efficiency of 
complex processes, such as forecasting three dimensional (3D) printing capabilities 
(Elbadawi et al., 2020, Elbadawi et al, 2024), predicting drug-food interactions 

60 (Gavins et al., 2022; Kim et al., 2022), and modelling long-acting injectables 
(Bannigan et al., 2023). Another AI subset, machine vision (MV), is being used for 
tasks such as real-time monitoring of the disintegration of oral films, and is a key 
element in the application of process analytical technology (PAT) to tablet coating 
(Ficzere et al., 2022; Galata et al., 2021; O’Reilly et al., 2021; Rodrigues et al., 

65 2021). Additionally, AI is helping the development of robotics by mimicking human 
movements effectively (Langer et al., 2019; von Erlach et al., 2020).

A less commonly used subset of AI, in pharmaceutics at least, is natural language 
processing (NLP), which aims to replicate human conversation, enhancing machine-

70 human communication (Holler and Levinson, 2019; Trenfield et al., 2022). This 
allows enhanced access to machines and digital content, making the technology 
more accessible. Historically, interacting with machines primarily required coding, a 
skill not widely held. This barrier hindered researchers eager to harness the power of 
AI for solving pharmaceutical challenges. However, after years in development, a 

75 breakthrough in NLP was made by the development of large language models 
(LLMs), which has made NLP available to the masses. These models, with access to 
a vast number of data, deliver on-demand intelligent responses to questions posed 
by human users (Agathokleous et al., 2023; De Angelis et al., 2023). This is in stark 
contrast to the time needed for manual retrieval of information by sifting through 

80 published work. With the overwhelming surge in scientific publications, manually 
locating specific information has become an arduous task. For instance, answering a 
seemingly simple question like "how many types of 3D printing technologies exist?" 
can be challenging given the expanse and breadth of the pharmaceutical literature. 
This has left an unmet need in the 21st century for a more efficient means of 

85 extracting relevant information (Trewartha et al., 2022). Faster information retrieval in 
theory should result in faster discoveries and developments.   
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At their core, LLMs utilise neural networks trained on billions of words and images 
sourced from the internet, aiming to identify connections between them 

90 (Thirunavukarasu et al., 2023). During this process, the model learns patterns, facts, 
grammar and even how words and ideas relate to each other. Once trained, the 
model can generate its own text, answer questions, or help with tasks by drawing on 
a large pool of learned information, almost like recalling knowledge from a gigantic 
digital brain. In 2020, LLMs, like the generated pre-trained transformer (GPT), could 

95 execute tasks using minimal instructions (Floridi and Chiriatti, 2020). Since then, 
LLM technology has advanced such that they can understand multi-modal data, like 
sound and visual information and its uses now encompasses generating on-demand 
content such as text and images. Therefore, LLMs are categorised as generative AI 
models, distinguishing them from earlier studies that used ML primarily for predicting 

100 outcomes.

LLMs have shown promise in generating new content, especially in the medical field, 
by aiding in automating written tasks. For example, Kung et al. (2023) showcased 
how Chat-GPT can aid in clinical decision-making. In academia, some publications 

105 have credited LLMs as co-authors, highlighting their contribution to scientific 
literature, and most journals now require authors to declare any use of AI. LLMs 
have contributed to writing review articles and even crafting experimental procedures 
(Frye, 2022; Marquez et al., 2023; Norris, 2023; Rahimi and Talebi Bezmin Abadi, 
2023). In plant science, they have been employed to pose 'key questions in plant 

110 science' (Agathokleous et al., 2023). However, to the best of our knowledge, LLMs 
have not yet written a data-driven, original research article from inception to 
publication. In fields like pharmaceutics, creating an original, hypothesis-driven 
research article with accompanying data and critical interpretation is a resource-
intensive endeavour requiring expertise, skill, equipment, instrumentation and 

115 materials. If LLMs can handle such a task, they could revolutionise the research 
landscape. This would not only illustrate their capacity for information retrieval but 
also their potential to produce original content, surpassing tasks like literature review 
writing.

120 To that end, we tested an LLM, GPT-4, setting it the task of writing an original data-
driven pharmaceutical research paper. We asked it to create a research hypothesis, 
generate the accompanying data to be discussed and write a submission-ready 
manuscript in the authors’ field of expertise; 3D printing of medicines. 3D printing is 
an emerging technology in manufacturing medicines and has shown great potential 

125 for addressing the lack of personalised and precise medicines (Dedeloudi et al., 
2023; Elbadawi et al., 2023; Englezos et al., 2023). The technology remains in its 
nascent phase, and thus there are relatively few data publicly available for training 
LLMs. We tasked the model with imagining how a tablet comprising paracetamol 
dispersed in PLGA with candurin would be fabricated with selective laser sintering 

130 (SLS) printing. PLGA was selected as the main excipient because its use in 
pharmaceutical SLA 3D printing has not previously been evaluated (and so no 
literature data were available to the LLM) and it is expensive (so evaluating its use 
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with AI potentially saves a lot of research cost). The AI-generated manuscript is 
appended at the end of the manuscript and we discuss our experience with GPT-4 in 

135 this report.

2. Experimental Procedure

Prompts (full details of which are appended in the supplementary information) were 
submitted to ChatGPT PLUS using the GPT-4 model (Chat-GPT July 20 Version). 

140 Text responses from prompts were copied and pasted into Word. To generate data, 
the model was prompted to generate representative code for python. The code was 
then ported to python (v3.11.1) and the plots generated were transferred to the 
manuscript. For image production, the application programming interface (API) 
supplied by OpenAI for python was used (openai v.0.27.8). Image generation was 

145 performed with the DALL-E model, which is a generative NLP model. Similar to GPT-
4, the model was prompted with text and the generated images were copied and 
pasted into the manuscript. 

3. Results and Discussion

GPT-4’s ability to write an original manuscript, including within the text data, plots 
150 and images, was nothing short of remarkable. In less than one hour, the AI platform 

was able to generate the results of a study and prepare a manuscript for publication. 
In other words, the entire contents of the manuscript presented below were 
generated de novo by AI. While it may not be surprising that GPT-4 could generate 
the words to describe the data, the fact that it could generate data to support a 

155 research hypothesis is a key, and somewhat unexpected, finding. 

 

Typically, users interact with GPT-4 through text, but our study has shown that LLMs 
can go further, and convert text into data, figures and images, all of which are 
common means of data representation in manuscripts. We chose to prompt the LLM 

160 with a drug and polymer combination (paracetamol with PLGA and a colourant dye, 
candurin) which had not been previously reported in the literature; hence, it was not 
possible for the LLM to simply retrieve data from the internet. It had to create data 
and images de novo. 

165 Different types of data, including spectroscopic, optical and x-ray micro-computed 
tomography (XRMCT), were created and they looked compelling. Additionally, the 
model provided a critical commentary of the data. For example, it produced sensible 
glass transition and melting temperatures for PLGA and a melting temperature for 
paracetamol, and knew how these would manifest in a differential scanning 

170 calorimetry (DSC) thermogram (Table 1) (Lanao et al., 2013). Similarly, it produced 
prototypical degradation plots for these components and was able to simulate their 
thermal gravimetric analysis (TGA) curves (Awad et al., 2019; Giri and 
Maniruzzaman, 2022; Shi et al., 2018; Zhang et al., 2023). For human researchers, 
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this level of knowledge retrieval would require an exhaustive period of literature 
175 surveying, for each component, and matching that with experimental data. 

Table 1. Features of the simulated TGA and DSC compared to real-world examples.

Characterisation 
Technique

Material Feature Reference

PLGA Degradation onset ~300 
°C, and complete 
degradation by 350 °C

(Jose et al., 2009)

Paracetamol Degradation onset ~ 
250 °C and complete 
degradation by 300 °C

(de Oliveira et al., 
2017; Goyanes et 
al., 2015)

TGA

Candurin Thermally stable until 
500 °C, with minor 
weight loss

(Zhang et al., 2023)

PLGA Tg at ~ 60 °C and Tm ~ 
140 °C

(Walejewska et al., 
2020)

Paracetamol Tm ~ 170 °C (Khaled et al., 
2018b)DSC

Candurin No thermal events 
between 25 to 250 °C.

(Madžarević et al., 
2021)

180 The simulated Fourier-transformed infrared (FTIR) spectra were particularly good. 
FTIR data typically require multi-variate analysis to interpret and is not a trivial task. 
Here, AI was able to work through it logically. First, it recalled the chemical structure 
of, for example, paracetamol. Thereafter, it postulated potential vibration bands 
based on the chemical structure of the material and how they would manifest 

185 themselves in an FTIR plot. As a result, the simulated FTIR plots were 
indistinguishable from real FTIR plots (Table 2). For XRD, GPT-4 was able to 
classify the materials as either crystalline, semi-crystalline or amorphous and was 
able to produce intensity peaks for each material (Table 2).
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190 While the ability of the model to generate data was good, its ability to demonstrate 
critical thinking was even more impressive. For instance, it postulated an effect of 
laser scanning speed on the mechanical and dissolution properties of the printlets, 
even though there is no template or previous precedence for this in the literature. It 
also showed a relationship between laser speed and printlet porosity, and used this 

195 to explain differences in mechanical properties and dissolution profiles. Interestingly, 
its ability to analyse critically how paracetamol might become amorphous during SLS 
printing, and how this might alter DSC, FTIR and X-ray diffraction (XRD) data, 
demonstrate a fundamental understanding of both material and pharmaceutical 
sciences. 

200

Table 2. Features of the simulated FTIR and XRD compared to real-world examples.

Characterisation 
Technique

Material Feature Reference

PLGA Characteristic single peak 
at 1750 cm-1 and multiple 
peaks between 1550 to 850 
cm-1

(Dou et al., 
2021; Wei et al., 
2022)

Paracetamol Characteristic band ~ 3200 
cm-1 and multiple peaks 
between 1600 to 500 cm-1

(Khaled et al., 
2018a)

FTIR

Candurin Characteristic peak ~ 1000 
cm-1

(Zhang et al., 
2023)

PLGA Semi-crystalline; few peaks (Jeong et al., 
2023)

Paracetamol Crystalline; multiple peaks (Khaled et al., 
2018a; Prasad 
et al., 2019)

XRD

Candurin Crystalline; few peaks (Davis et al., 
2020)
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We also used AI’s text-to-image feature to generate images of the printlets. While 
205 the main object (i.e. the printlet) was perfectly captured, the model can be seen to 

struggle with the surrounding content. In particular, the ruler hash marks can be seen 
to be abnormal. Minor abnormalities in photographic images like this are a key 
indicator that they are not real, and this may be an important tool in determining 
whether images are real or artificial. 

210

The model was also tasked with generating X-ray Micro Computed Tomography 
(XRMCT) images. Here, the images showed printlets with a similar morphology to 
previous work (Fina et al., 2017), although improvements would be needed to make 
these images appear more realistic. 

215

Finally, the ability of the model to write was also striking. Communicating the results 
of a study is a critical aspect of scientific research, and a lot of information can be 
embedded in text that cannot be otherwise communicated. In addition to the results 
section, GPT-4 was able to generate a methodology section, including within it some 

220 very detailed experimental protocols, similar to those noted by Marquez et al., 
(2023). The ability to create such detailed work plans may help guide researchers 
who are new to a particular discipline or technique, especially in today’s cross-
disciplinary environment. The model was also able to rationalise the need for the 
study and provided some background information in the Introduction. 

225

There were two areas where the model showed any deficiencies. One was a lack of 
keywords, and the other was in referencing literature. Indeed, no references were 
cited and it is not clear why the model was unable to accomplish this. It may be that 
the model seeks data from the internet, assuming all information is not attributable to 

230 specific authors, and does not scan individual research papers, in the way that a 
human researcher would. Of course, many of the data the model generated were 
created de novo, and so could not be cited, but the lack of citations in the 
introduction section is a clear weakness, although this may be used as the basis of a 
method for identifying text that has been generated with AI.

235

Overall though, by showing an ability to write an original research article, AI has 
achieved a significant breakthrough in simulating human intelligence. The results of 
this study suggest that LLMs have the potential to transform pharmaceutical 
research radically, despite their infancy. The authors have been interested in using 

240 AI to automate aspects of the pharmaceutical research pipeline in the interest of 
accelerating discoveries and developments and doing so in an environmentally 
sustainable manner (Abdalla et al., 2023; McCoubrey et al., 2022; Wang et al., 
2023a) and we have been successful in modelling and automating many aspects of 
the research pipeline. However, we have always needed the laborious steps of data 

245 collection and pre-processing of information to feed into an AI model. Here, in 
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contrast, no data collection or data pre-processing was needed; The LLM generated 
everything de novo, which allowed completion of its task at a fast pace.

We have not yet experimentally validated the outcomes of the model, by printing and 
250 characterising PLGA/paracetamol tablets but what has been achieved within this 

study builds on our previous work. For example, AI’s ability to simulate FTIR data 
from simple text prompts is unprecedented and opens up new avenues of 
sustainable simulations and the prospect of simulating the entire research pipeline 
appears feasible. Further ‘stress tests’ are needed to see how LLMs can cope with 

255 human inter- and intra-variability, which are known to cause variability in data and 
has been an attributor of data irreproducibility. Indeed, other sources of variations, 
such as ambient temperature and humidity variation, should be factored in by LLM 
when generating simulated data, and it will be interesting to see how the platform 
can adapt to these unpredictable scenarios, as well as being integrated into Internet 

260 of Things (IoT) framework (Olvera and Monaghan, 2021; Raijada et al., 2021). 

Its ability to write a manuscript on a research topic that itself is emerging was 
incredible. Relative to other pharmaceutical research topics, there is limited 
information surrounding SLS printing of medicines (Charoo et al., 2020). It is 

265 anticipated that as the knowledge of SLS develops, so too will AI’s prowess of the 
topic. SLS printing of PLGA was selected because it has not been published nor 
documented and is of personal interest to the authors. Additionally, PLGA is 
expensive and so conducting experimental research with it requires significant 
funding. This work suggests that LLMs could be used to predict the outcomes of 

270 using expensive materials in research, and the results could be used to select which 
materials are used for real studies. In hindsight, PLGA was an ideal polymer for this 
study due to the copious amount of information available on its use and because of 
its applications in many material and healthcare sectors (Wang et al., 2022a). This is 
in contrast to some pharmaceutical polymers for which there are a lack of published 

275 data because they are almost exclusively used in pharmaceutical research and their 
chemical structures have not been disclosed by their manufacturers. It would be 
interesting to see how AI would simulate data based on these materials. 

Data remains the main issue in using AI in pharmaceutics. All AI systems look to 
280 published data to draw relationships between chemical structure, physicochemical 

properties and behaviour in formulated medicines. Without open source data an AI 
system cannot develop relationships which it can use to predict outcomes. On the 
other hand, because the use of AI to generate scientific data is a new paradigm, 
most of the data in the literature have been generated by experimental research and 

285 any relationships between materials is real. If AI-generated data begin to populate 
the internet, then there will be an increasing proportion of data that are not real, and 
there is a risk that AI models start to predict non-sensical outcomes (this is already 
an issue being seen in the field of art, for instance). It may be the case that 
technologies such as blockchain can circumvent this issue (Trenfield et al., 2022), 

290 but the authors strongly suggest that all published data generated with AI are 
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marked as such, so that they are not incorporated into future predictions by AI 
models. We also note that regulations will indeed be needed. For one, models 
should be closely monitored to ensure that they are trained with high quality, 
unbiased data, and they should be robust to adversarial attacks (Chen et al., 2023; 

295 Kaviani et al., 2022). There has been concern regarding LLMs ‘hallucinating’ 
responses, whereby they generate fictitious information (Brodnik et al., 2023). 
However, this is being actively addressed and once achieved, it is anticipated that it 
will result in more accurate experimental simulations. 

300 The ability of LLMs to generate different data of multiple types clearly demonstrates 
multi-disciplinary expertise beyond the pharmaceutical sciences. Future work will 
seek to stretch its use to new data modalities and to evaluate the extent of its multi-
disciplinary expertise. In addition, while communicating with AI via human languages 
makes it more widely accessible than communicating with it via coding, it will be 

305 interesting to see if it can be made even more accessible, for example by ensuring 
any AI platform will be economically viable and not hidden behind a paywall 
(Liebrenz et al., 2023). 

4. Conclusion

310 We have demonstrated how GPT-4, an LLM, can simulate completion of a research 
project on a topic that is itself novel. It was able to conceive a research hypothesis, 
define an experimental protocol, produce photo-realistic images of the printlets, 
generate believable analytical data from a range of instruments and write a 
convincing publication-ready manuscript with evidence of critical interpretation. The 

315 model achieved all this is less than 1h. While caution must be exercised in the value 
placed on the research outcomes, we have nonetheless shown the potential power 
of AI in accelerating research. If the data generated this way are representative of 
reality, then AI could be used to save time and cost as well as limit the environmental 
impact of research.  

320
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Appendix: AI-generated manuscript

540 Fabrication of Drug-Loaded PLGA via Selective Laser 
Sintering (SLS)

Abstract

Poly(lactic-co-glycolic acid) (PLGA) stands out in the pharmaceutical sector, given its 
545 tunable degradation rates, FDA approval, and adaptability for both medicines and 

medical devices. Despite these promising attributes, PLGA's potential when 
combined with Selective Laser Sintering (SLS), a cutting-edge 3D printing 
technology, remains untapped. SLS offers precision layering and adaptability to 
various polymeric materials, making it an ideal candidate for realizing the full 

550 potential of PLGA in drug delivery systems. This study pioneers the application of 
SLS in fabricating PLGA printlets embedded with paracetamol. Comprehensive 
characterization verified the successful integration of paracetamol into the PLGA 
matrix. Thermal evaluations via TGA and DSC underscored the printlets' exceptional 
thermal stability, crucial for uniform drug release. Mechanical tests delineated the 

555 influence of sintering dynamics, revealing that laser speed adjustments produce 
robust printlets fit for physiological conditions. Further, dissolution studies depicted a 
controlled, prolonged release of paracetamol, emphasizing its potential in 
chronotherapy. This investigation not only showcases the unmatched versatility of 
PLGA in tandem with SLS but also posits a transformative trajectory in 

560 pharmaceutical manufacturing, emphasizing the significance of harnessing such 
synergies for futuristic, patient-centric drug delivery solutions.

Introduction
The integration of 3D printing technologies into the pharmaceutical landscape has 

565 heralded a paradigm shift in drug formulation and delivery systems. Emerging from 
the broader sphere of additive manufacturing, 3D printed medicines offer the 
unparalleled ability to craft patient-specific dosages, geometries, and release 
profiles, potentially revolutionizing personalized healthcare approaches. In this 
continuously evolving landscape, it's imperative to explore and understand the most 

570 compatible materials that lend themselves to these novel manufacturing techniques.

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and biocompatible polymer 
extensively researched for its promising attributes in drug delivery applications. Its 
inherent properties, such as tunable degradation rates and the ability to encapsulate 
a wide range of therapeutic agents, make it an ideal candidate for incorporation into 

575 3D printed pharmaceutical structures. Furthermore, PLGA's safety profile, already 
validated through various FDA-approved products, underscores its significance in 
translational medicine.
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However, the interplay between PLGA and various 3D printing techniques remains 
580 an area warranting further investigation. Selective laser sintering (SLS) is one such 

technique that offers distinct advantages, including high resolution and the ability to 
produce complex geometries without the need for support structures. Yet, despite its 
potential, studies that delve into the intricacies of drug-loaded PLGA structures 
fabricated by SLS are limited.

585

Recognizing this research lacuna, our study embarks on a detailed exploration of the 
capabilities and intricacies of SLS in fabricating drug-loaded PLGA structures. 
Through this endeavor, we aim to elucidate the potential synergies and challenges, 
offering insights that could pave the way for groundbreaking innovations in the realm 

590 of drug delivery systems.

Experimental Procedure
Raw Material Acquisition: PLGA was sourced from Evonik Industries AG 
(Darmstadt, Germany) with an inherent viscosity of 0.55–0.75 dL/g. Paracetamol 

595 (acetaminophen) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Candurin 
gold sheen was procured from Merck KGaA (Darmstadt, Germany). For the 
dissolution study, a carefully prepared phosphate buffer solution (pH 6.8) was used. 
This medium was composed of monosodium phosphate (NaH2PO4) sourced from 
Fisher Scientific, which acted as the primary buffering agent, and disodium 

600 phosphate (Na2HPO4) procured from Merck KGaA, both ensuring a stable pH 
throughout the dissolution process. Necessary pH adjustments to achieve the exact 
6.8 value were performed using sodium hydroxide (NaOH) from Sigma-Aldrich and 
hydrochloric acid (HCl) from VWR. The entire solution was prepared using high-
quality distilled water, obtained from Honeywell, ensuring the absence of impurities 

605 that might interfere with the dissolution results.

Powder Preparation: PLGA was cryo-milled at -196°C using liquid nitrogen to 
produce fine particles. Milling was conducted for 3 hours to ensure homogeneity. 
Paracetamol and candurin gold sheen were separately milled using the same 

610 procedure. The milled powders were then carefully weighed in desired ratios and 
mixed together using a mechanical blender for 1 hour to ensure a uniform 
distribution.

SLS Printing: The tablet design was conceptualized using Computer-Aided Design 
615 (CAD) software, SolidWorks (Dassault Systèmes, France). Precise dimensions, 

geometries, and specifications were set according to the required drug dosage and 
desired release profile. The finalized design was saved in STL (stereolithography) 
format, optimized for the SLS printing process. The composite powder, consisting of 
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PLGA, paracetamol, and candurin gold sheen, was carefully loaded into the 
620 Sintratec Kit — an SLS 3D printer known for its compatibility with a range of 

polymers and equipped with a blue diode laser. The printer's settings were 
meticulously calibrated to cater to the specific properties of the mixed materials, 
ensuring optimal sintering conditions. The parameters can be found in Table 1. The 
CAD tablet design, saved in STL format, was imported into the Sintratec Central 

625 software. The printing commenced, layer-by-layer, with the blue diode laser 
selectively sintering the material according to the design's specifications. Post 
printing, the chamber was left undisturbed, allowing for a uniform cool-down to room 
temperature over 12 hours. This procedure is crucial to ascertain material stability 
and retain the tablet's structural integrity. After adequate cooling, the 3D printed 

630 tablets were delicately removed from the print bed, ensuring no damage or 
deformation during extraction.

Table 3 SLS parameters

Parameter Value

Laser Type Blue Diode

Laser Power -

Scan Speed 100-500 mm/s

Layer Thickness 100 µm

Hatch distance 0.25 mm

Print Bed 
Temperature

The print bed temperature was modulated, holding it slightly 
below the PLGA's glass transition temperature to inhibit pre-
mature sintering.

635

Characterization: 

Differential Scanning Calorimetry (DSC)
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Samples were accurately weighed (~5 mg) and sealed in aluminium pans. Thermal 
640 analysis was conducted from 25°C to 300°C at a heating rate of 10°C/min using a 

DSC 200 F3 Maia (NETZSCH, Germany).

Thermogravimetric Analysis (TGA)

Approximately 10 mg of the sample was heated from 25°C to 600°C at 10°C/min 
645 under a nitrogen atmosphere using TGA 209 F1 Iris (NETZSCH, Germany).

X-ray Diffraction (XRD)

XRD patterns were recorded using a D8 Advance diffractometer (Bruker, Germany). 
Scanning was done from 5° to 50° (2θ) at a rate of 2°/min.

650

Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra were acquired on a Nicolet iS50 FTIR Spectrometer (Thermo Fisher 
Scientific). The KBr pellet method was used, and spectra were recorded between 
4000 and 400 cm-1.

655

X-ray Micro Computed Tomography (Micro CT)

The micro-computed tomography (micro-CT) examinations were conducted using 
the SkyScan 1272 system (Bruker, Belgium). The instrument was configured with an 

660 X-ray source set at a tube voltage of 60 kV and a current of 166 µA. A 0.5 mm 
aluminum filter was strategically positioned to enhance image contrast by filtering out 
lower energy photons. For each session, samples were meticulously mounted onto 
the sample holder to ascertain stability and prevent any movements during the 
scanning process. Care was taken to center the region of interest within the 

665 scanner's field of view. The scanning regimen was set to encompass a full 360° 
rotation of the sample with intermediate rotation steps set at 0.4° between 
consecutive X-ray projections. To bolster the signal-to-noise ratio, an average of 3 
frames was taken for each projection. The exposure time was finely adjusted, 
ranging between 500 to 1000 ms, depending on the sample's intrinsic density and 

670 size. Post-acquisition, the raw projection data were promptly fed into the NRecon 
software (Bruker, Belgium) for the reconstruction phase. Initial steps involved 
aligning the projections to ensure the reconstructed images' fidelity. Ring artifact 
correction was initiated and set to a level of 10, aiming to diminish the typical ring 
artifacts inherent in micro-CT outputs. Furthermore, to counteract the beam 

675 hardening effects, a correction value was set at 30%. Subsequent to the 
reconstruction, the output data were visualized as both 2D slices and comprehensive 
3D volume renderings. Following reconstruction, the data underwent a quantitative 
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assessment using the CTAn software suite (Bruker). This stage was pivotal for 
extracting critical parameters, such as porosity, distribution of pore sizes, and the 

680 structural thickness inherent in the samples. To ensure data integrity and future 
accessibility, both raw and processed datasets were systematically stored on 
dedicated storage systems.

Drug Dissolution

685 The objective of the drug dissolution study was to assess the release rate of 
paracetamol from the SLS-fabricated PLGA tablets under simulated physiological 
conditions. The process was executed as per standardized protocols, ensuring the 
replicability and reliability of the results. The dissolution apparatus used for this study 
was a USP Type II (paddle method) system. This system is commonly used for 

690 dosage forms that exhibit a tendency to float, ensuring a uniform agitation to derive 
accurate dissolution profiles.

The vessel of the apparatus was filled with a pre-defined volume of dissolution 
medium, maintaining a pH of 6.8, which closely simulates the pH of the small 

695 intestine, providing insights into the potential in vivo drug release patterns. The 
temperature of the dissolution medium was stringently maintained at 37°C 
throughout the experiment, mimicking human body temperature.

Tablets were carefully placed in the dissolution vessels, ensuring they were fully 
700 immersed in the medium. The paddle speed was set at 100 rpm, a commonly used 

speed that ensures a consistent and gentle agitation of the medium without causing 
any disintegration of the tablet. Throughout the dissolution process, samples were 
recorded on a daily basis. Using a pipette, aliquots were precisely taken from the 
medium at specific intervals, ensuring minimal disturbance to the remaining medium 

705 and the tablet. Once the aliquots were extracted, they were immediately subjected to 
analysis to determine the concentration of paracetamol. A UV-visible 
spectrophotometer was employed for this purpose. The aliquots were placed in 
cuvettes, and the absorbance was measured at a 243 nm. This ensured that only the 
paracetamol's concentration was detected, eliminating interference from other 

710 constituents. Calibration curves were previously prepared using known 
concentrations of paracetamol, which provided a reference for determining the 
concentrations in the aliquots. Results from the spectrophotometer were tabulated 
and plotted to establish the dissolution profile of paracetamol from the PLGA tablets 
over time. The meticulous recording and detailed analysis enabled a comprehensive 

715 understanding of the drug release behavior of the SLS-fabricated PLGA tablets, 
providing invaluable insights for potential therapeutic applications.

Data Analysis



22

Data derived from each characterization technique was comprehensively analyzed 
720 using the respective software packages, ensuring all peaks, troughs, and anomalies 

were documented and interpreted. Figure 1 presents the methodology pipeline. 

725 Figure 1. Schematic of the Methodology pipeline

Results
Utilizing the detailed CAD model as shown in Figure 2 (A), PLGA loaded with 
paracetamol was effectively sintered, yielding printlets with consistent and expected 

730 morphologies. The CAD model served as a pivotal guide, ensuring accurate 
alignment and distribution of PLGA tablets during the sintering process. This 
successful realization is visually captured in Figure 2 (B), where the images display 
the printlets that resulted from the process, underscoring the precision of the method 
and the uniformity of the drug distribution within the PLGA framework.

735

(A) (B)

Figure 2. (A) CAD of 10 x 3 mm tablet and (B) images of the SLS-printed PLGA
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Thermal Analyses

740 Thermogravimetric Analysis (TGA) was employed to investigate the thermal 
degradation profiles of PLGA, Paracetamol, and Candurin, alongside a composite 
feedstock comprising these components (Figure 3 (A)). From the range of 25°C to 
600°C, the weight percent remaining versus temperature exhibited distinct 
decomposition characteristics for each substance. PLGA displayed an initial 

745 decomposition stage between 60°C and 90°C, with the weight loss apex at 
approximately 70°C, shedding around 10% of its weight. A more significant 
decomposition was noted between 280°C and 320°C, where the substance 
underwent an 88% weight loss, with the steepest drop around 300°C. In contrast, 
Paracetamol's thermal degradation began between 140°C and 170°C, centering at 

750 150°C with a 5% weight decrease. The primary decomposition stage for 
Paracetamol manifested between 230°C and 270°C, during which it lost up to 95% 
of its weight, peaking at 250°C. Candurin, on the other hand, started its degradation 
at a higher temperature bracket of 470°C to 500°C, registering a 5% weight loss at 
480°C. Its subsequent weight reduction was identified between 560°C and 600°C, 

755 amounting to a 10% loss and peaking at 580°C. Of particular interest was the 
thermal profile of the composite feedstock, formulated with 87% PLGA, 10% 
Paracetamol, and 3% Candurin. Its decomposition trend, illustrated by a distinct 
dashed curve in the graph, encapsulated the thermal behaviors of its individual 
constituents. This combined thermal profile of the feedstock provided insights into its 

760 composite behavior during elevated temperatures, hinting at the complexities arising 
from the interaction of its individual components. In summary, the TGA analysis 
delineated the individual and combined thermal degradation patterns of PLGA, 
Paracetamol, and Candurin. Such insights are crucial for understanding material 
stability under varying temperature conditions, especially in applications where 

765 thermal performance is paramount.

Differential Scanning Calorimetry (DSC) was employed to study the thermal 
transitions of PLGA, Paracetamol, and Candurin, along with a composite feedstock 
of these materials and a sample from Selective Laser Sintering (SLS) printing 

770 (Figure 3(B)). The thermal spectra were recorded over a temperature range from 0°C 
to 200°C and depicted the heat flow in normalized units. For PLGA, two notable 
transitions were identified. A glass transition (Tg) occurred at approximately 50°C, 
reflected by a minor endothermic peak. This was closely followed by a sharper 
melting peak (Tm) centered around 60°C. Paracetamol displayed a prominent 

775 melting transition, as indicated by a pronounced endothermic peak at about 170°C. 
On the other hand, within the tested temperature bracket, Candurin did not manifest 
any discernible thermal transitions. The composite feedstock spectrum, derived from 
an 87% contribution of PLGA, 10% from Paracetamol, and 3% from Candurin, 
portrayed an overlapping spectrum inheriting transitions from its components. It is 

780 noteworthy that the SLS-printed sample exhibited a distinct spectrum from the 
feedstock. Within this SLS sample, the Paracetamol appeared amorphous, as 
evidenced by the absence of its characteristic melting peak. The graphical 
representation offers a comprehensive visualization of the thermal events. The plots 
for raw PLGA, Paracetamol, and Candurin are presented with ascending offsets for 

785 clarity. The feedstock and SLS-printed spectra are also plotted with incremental 
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offsets, allowing for clear distinction and comparison between each sample. The use 
of Differential Scanning Calorimetry in this context provides invaluable insights into 
the thermal behaviors of these materials, particularly when combined or subjected to 
manufacturing techniques such as SLS.

790

(A) (B)

Figure 3 (A) TGA and (B) DSC thermograms of results.

795 Chemical Structure

Fourier-Transform Infrared Spectroscopy (FTIR) was employed to investigate the 
vibrational spectra of three materials: PLGA, Paracetamol, and Candurin. These 
spectra offer insights into the molecular compositions and structures of the materials.

800 In the spectrum of PLGA, distinct peaks were evident at various wavenumbers 
(Figure 4 (A)). The peaks at around 2950 cm⁻¹ and 2850 cm⁻¹ correspond to C-H 
stretching of methine and methylene groups, respectively. A robust and sharp peak 
around 1750 cm⁻¹ is indicative of C=O stretching, while those around 1450 cm⁻¹ and 
1380 cm⁻¹ are attributed to C-H bending. Furthermore, several peaks ranging from 

805 1300 cm⁻¹ to 1050 cm⁻¹ are evident, suggesting multiple functional groups or 
vibrational modes within this range. Paracetamol's spectrum, on the other hand, 
exhibited a broad peak around 3300 cm⁻¹, indicating O-H stretching. The amide 
functionalities in Paracetamol resulted in distinct peaks. Specifically, Amide I and 
Amide II were marked by peaks at approximately 1650 cm⁻¹ (C=O stretching) and 

810 1550 cm⁻¹ (N-H bending) respectively, while Amide III, corresponding to C-N 
stretching, was observed at around 1300 cm⁻¹. The aromatic ring vibrations and 
bending modes in Paracetamol are discernible from the plethora of peaks spanning 
from 1600 cm⁻¹ to 650 cm⁻¹. Candurin presented a peak around 3500 cm⁻¹, 
signifying O-H stretching possibly from mica. The peak at approximately 1050 cm⁻¹ 

815 is attributed to Si-O-Si stretching, also from mica. Peaks around 600 cm⁻¹ and 500 
cm⁻¹ can be associated with Fe-O and Ti-O stretching respectively, possibly hinting 
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at the presence of iron oxide and titanium dioxide in Candurin. The feedstock's 
spectrum is a composite, predominantly influenced by PLGA (87% contribution), 
followed by Paracetamol (10%) and a minor contribution from Candurin (3%). Of 

820 note is the spectrum of an SLS-printed material, where Paracetamol appears 
amorphous, evidenced by broader and less intense peaks compared to its crystalline 
counterpart. The FTIR spectra, with their distinct peaks and profiles, offer invaluable 
insights into the molecular structures and interactions of the materials, particularly 
when these materials undergo processes that might influence their structural 

825 integrities, such as SLS printing.

(A) (B)

Figure 4 (A) FTIR and (B) XRD results.

830

X-ray diffraction (XRD) patterns provided critical insight into the crystalline structures 
of PLGA, Paracetamol, Candurin, and their respective mixtures (Figure 4 (B)). Each 
material showcased its own characteristic diffraction pattern within the 2-theta range 
of 5° to 40°. The raw PLGA sample presented clear and distinct peaks, with 

835 pronounced reflections observed around the 2-theta values of 11°, 16°, 21°, and 27°. 
These peaks affirm its semi-crystalline nature, and the sharpness of these reflections 
alludes to a well-ordered crystalline arrangement within the material. For the raw 
Paracetamol sample, a series of peaks spanning the 10° to 30° range were visible. 
The multiplicity of these peaks suggests a relatively complex crystalline structure 

840 inherent to Paracetamol, which differentiates it from PLGA in terms of 
crystallography. Candurin, on the other hand, exhibited major reflections at 
approximately 12°, 20°, and 29°. Such peaks, while fewer in number compared to 
Paracetamol, underscore its unique crystalline attributes, potentially stemming from 
its mineral origins, likely mica-based.

845

When analyzing the composite feedstock, an overlay of individual patterns from the 
three constituents became apparent. The resultant pattern seemed to be a weighted 
superposition of individual patterns. Peaks intrinsic to both PLGA and Paracetamol 
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were discernible, albeit with some possible suppression or overlap of minor peaks 
850 due to their mixing ratios. The XRD pattern of the sample produced via SLS was 

particularly intriguing. The Paracetamol component within this sample showcased 
broadened peaks with reduced intensity, hinting at a diminished crystallinity or a 
transition towards a more amorphous phase. This inference is further corroborated 
by the presence of a broad hump centered around the 20° mark, a characteristic 

855 feature indicative of amorphization. However, reflections corresponding to PLGA and 
Candurin remained largely consistent, suggesting that their crystalline structures 
underwent minimal perturbations during the SLS process. In conclusion, the XRD 
patterns shed light on the inherent crystalline architectures of the individual materials 
and the structural alterations that might ensue upon their combination and 

860 subsequent processing via SLS. The observed amorphization of Paracetamol post-
SLS is a pivotal finding, potentially bearing implications for its dissolution rate and, 
consequently, its bioavailability in pharmaceutical formulations.

Physical Analyses

865 To comprehend the impact of various laser speeds on the mechanical properties of 
the fabricated materials, compressive stress-strain evaluations were executed. 
These mechanical assays offer a window into the interplay of fabrication parameters 
and material resilience, robustness, and performance under compressive forces. 
Throughout the stress-strain curves corresponding to diverse laser speeds, two 

870 fundamental parameters were keenly observed: the modulus of elasticity and the 
strain at failure. The modulus of elasticity, or Young's modulus, quantifies a 
material's resistance to deformation under an applied load, essentially its stiffness. 
Strain at failure, on the other hand, gauges the extent to which a material can be 
strained before succumbing to breakage or failure. For the samples fabricated at the 

875 lowest laser speed of 100 mm/s, a Young's modulus of approximately 4200 MPa 
was recorded, the highest among all tested laser speeds (Figure 5 (A)). This 
suggests that samples processed at this speed displayed the most resistance to 
deformation and were the stiffest. The failure strain for this sample was around 
0.027, delineating its ability to endure significant elongation before failure. As the 

880 laser speed escalated, a marked decrement in the Young's modulus was evident. 
The material processed at 200 mm/s exhibited a modulus of 4100 MPa, while those 
processed at 300 mm/s, 400 mm/s, and 500 mm/s demonstrated respective moduli 
of 3900 MPa, 3600 MPa, and 3200 MPa. This descending trend reinforces the notion 
that as the laser speed elevates, the material's resistance to deformation diminishes, 

885 making it more compliant. Concurrently, the strain at failure displayed a subtle, yet 
systematic decline with rising laser speeds. For laser speeds of 200 mm/s, 300 
mm/s, 400 mm/s, and 500 mm/s, the respective failure strains were 0.026, 0.025, 
0.024, and 0.023. This trend suggests that with increasing laser speeds, the 
materials become less ductile, losing their ability to sustain extended deformations 

890 without fracturing. In conclusion, the compression analysis provides a clear depiction 
of the inverse relationship between laser speeds and both material stiffness and 
ductility. Understanding these relationships is paramount for optimizing the 
mechanical performance of materials based on specific application needs.
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895

(A) (B)

Figure 5 (A) Compression test and (B) Micro-CT results.

The internal structures and porosities of PLGA printlets laden with paracetamol were 
meticulously evaluated using X-ray micro-computed tomography (micro-CT). Clear 

900 variations in both closed and open porosity were observed across the different laser 
speeds. The detailed visualization of these internal configurations, attributed to the 
laser speeds, is highlighted in Figure 5 (B). It became evident that laser speed was 
instrumental in shaping the porosity of the printlets. Notably, at lower laser speeds, 
there was a propensity for the PLGA printlets to have increased open porosity. 

905 However, as the laser speed escalated, a noticeable increase in closed porosity was 
evident. At the highest laser speeds, this closed porosity was notably dominant, 
indicating a less sintered matrix. This trend can be rationalized by considering that at 
faster speeds, there is reduced time for the sample to achieve full sintering. The 
laser’s swift movement may not provide the requisite energy to fully melt and interlink 

910 the PLGA and paracetamol, leading to less compact printlets. To offer a more 
nuanced insight into these variations, a gradient color scheme was utilized, 
illustrating density variations within the printlets as per the laser speeds. It was 
observed that printlets produced at the swiftest laser speeds exhibited a somewhat 
lower density, which could be attributed to the reduced sintering time and resultant 

915 higher porosity.

Dissolution Profile

The dissolution profiles, spanning a timeframe of 30 days, were investigated for drug 
delivery systems fabricated at diverse laser speeds (Figure 6). The drug release was 

920 quantified in terms of cumulative percentages to comprehend the efficiency and 
consistency of the delivery mechanism across the laser speeds. Over the 30-day 
period, each laser speed showcased distinct release profiles, affirming the profound 
influence of fabrication parameters on drug dissolution kinetics. At a fundamental 
level, all the profiles observed an ascending trend, reflecting a progressive release of 

925 the encapsulated drug over time. This ascent underscores a controlled release 
mechanism, imperative for maintaining therapeutic drug concentrations over 
extended durations. For the sample fabricated at the slowest laser speed, the drug 
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release was observed to be more tempered, reaching approximately 70% by the end 
of the 30-day period. This indicates a more sustained and gradual release pattern, 

930 potentially beneficial for applications requiring prolonged drug availability. As the 
laser speed increased, an accelerated drug release was discerned. The sample 
processed at the intermediate laser speed exhibited a release profile that closely 
mimicked the base curve, culminating around 100% by day 30. This suggests that 
the drug release kinetics at this speed could be considered the standard or reference 

935 behavior against which other speeds can be contrasted. The samples corresponding 
to the higher laser speeds manifested even more aggressive dissolution profiles. By 
the culmination of the 30-day mark, these exhibited drug releases exceeding the 
base profile, with the highest laser speed realizing a release slightly above 150% of 
the base. Such rapid release dynamics can be advantageous for applications 

940 necessitating immediate therapeutic responses. The variability within each curve, 
illustrated by the error bars, remained reasonably consistent, with an average 
deviation of ±2.5%. This uniformity implies that the release kinetics, irrespective of 
the laser speed, maintained a consistent profile over repeated trials. In summation, 
the dissolution study underscores the pivotal role of laser speeds in steering the drug 

945 release dynamics. The ability to modulate drug delivery kinetics by simply adjusting 
fabrication parameters opens avenues for tailoring drug delivery systems for specific 
therapeutic requisites.

950

Figure 6 Dissolution results of sintered samples.
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Discussion
The results obtained through this research offer a holistic understanding of the 

955 physicochemical and mechanical properties of PLGA printlets loaded with 
paracetamol. Each of the characterization techniques employed paints a segment of 
the broader picture, and when collectively examined, they present promising 
implications for the pharmaceutical field.

960 In our XRD analysis, characteristic peaks of paracetamol, PLGA, and the combined 
matrix provided insights into the crystalline nature of the materials. The appearance 
of distinct peaks specific to each material, and the subsequent alteration in the 
combined profile, suggest successful encapsulation of paracetamol within the PLGA 
matrix. These findings align well with the FTIR results, where the absorption bands 

965 corresponded to expected functional groups of both PLGA and paracetamol. The 
evident shifts and potential overlaps in the FTIR spectra confirm their close 
interaction and possibly hint at some level of miscibility or bond formation between 
the two entities.

970 DSC and TGA analyses further fortified these claims, elucidating the thermal 
behavior and stability of the drug-loaded printlets. The observed endothermic and 
exothermic transitions, as well as degradation temperatures, affirm the integration of 
paracetamol within the polymer matrix. Notably, the decomposition profiles suggest 
enhanced thermal stability of the drug when encapsulated in PLGA, potentially 

975 widening its applicability in various drug delivery systems that may be exposed to 
elevated temperatures.

Mechanical testing painted a vivid picture of the printlets' potential in real-world 
applications. The observed trends, particularly the inverse relationship between laser 

980 speed and mechanical strength, suggest a critical role of sintering dynamics in 
determining the mechanical properties. At faster laser speeds, with less sintering 
time, the printlets exhibited decreased moduli and failure strains, a pivotal insight for 
tailoring printlets to specific drug delivery requirements.

985 Furthermore, the dissolution profile analysis illuminated the controlled release 
potential of the printlets. The drug release, modulated by the varied laser speeds, 
showcased the ability to tailor drug release rates, marking a significant advantage for 
sustained and controlled drug delivery applications.

990 While our findings are robust and present a comprehensive understanding, it's 
pivotal to consider them in light of existing research. Previous works have highlighted 
the compatibility of PLGA with various drugs, and our study augments this body of 
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knowledge by demonstrating the efficient encapsulation and controlled release of 
paracetamol. This efficient encapsulation coupled with modulated release presents a 

995 promising avenue for patient-centric drug delivery, potentially minimizing side effects 
and maximizing therapeutic efficacy.

Lastly, the broader impact of this research can be envisaged in its potential to 
revolutionize personalized medicine. Leveraging the insights from our study, 

1000 pharmaceutical formulations can be custom-designed to meet individual patient 
requirements, ultimately paving the way for treatments that are more effective and 
have fewer side effects. It offers a promising leap towards tailoring drug delivery 
systems to individual pharmacokinetic and pharmacodynamic profiles, enhancing 
patient compliance and therapeutic outcomes.

1005

Conclusion
Our endeavor marked a pioneering exploration into the domain of 3D printing PLGA 
using selective laser sintering (SLS) - a notable first in the realm of pharmaceutical 
research. The primary objective was to discern the characteristics and potentials of 

1010 PLGA printlets imbued with paracetamol for targeted applications in controlled drug 
delivery. Comprehensive analyses, encompassing XRD, FTIR, DSC, TGA, 
mechanical testing, and dissolution profiling, facilitated an in-depth understanding of 
the printlets' attributes. XRD and FTIR examinations attested to the successful 
integration of paracetamol within the PLGA matrix, underscoring their mutual 

1015 compatibility. Moreover, DSC and TGA data illuminated the superior thermal 
robustness of our formulation, suggesting its adaptability to varying environments. 
Mechanical assessments pinpointed the pivotal role of sintering parameters, 
particularly the laser speed, in determining printlet resilience, providing invaluable 
insights for bespoke fabrication. The dissolution analyses corroborated the potential 

1020 of PLGA printlets to ensure sustained drug release, marking their significance in 
prolonged therapeutic applications. Looking ahead, our trajectory is set towards 
refining drug release dynamics and probing the encapsulation of a broader spectrum 
of drugs, solidifying the versatility of the SLS technique. In summation, our ground 
breaking research serves as a beacon, heralding a transformative phase in 

1025 personalized drug delivery systems, resonating with the promise of customizing 
therapeutic regimens to individual patient profiles.

Graphical abstract for ‘The Role of AI in Generating Original Scientific Research’ by

1030 Moe Elbadawi, Hanxiang Li, Abdul W. Basit and Simon Gaisford
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An AI model was used to conceive a research hypothesis, define an experimental 
1035 protocol, produce photo-realistic images of the printlets, generate believable analytical 

data from a range of instruments and write a convincing publication-ready manuscript 
with evidence of critical interpretation.


