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Abstract: The material library is an emerging, new data-driven approach for developing pharmaceu-
tical process models. How many materials or samples should be involved in a particular application
scenario is unclear, and the impact of sample size on process modeling is worth discussing. In this
work, the direct compression process was taken as the research object, and the effects of different
sample sizes of material libraries on partial least squares (PLS) modeling in the prediction of tablet
tensile strength were investigated. A primary material library comprising 45 materials was built.
Then, material subsets containing 5 × i (i = 1, 2, 3, . . ., 8) materials were sampled from the primary
material library. Each subset underwent sampling 1000 times to analyze variations in model fitting
performance. Both hierarchical sampling and random sampling were employed and compared, with
hierarchical sampling implemented with the help of the tabletability classification index d. For each
subset, modeling data were organized, incorporating 18 physical properties and tableting pressure as
the independent variables and tablet tensile strength as the dependent variable. A series of chemo-
metric indicators was used to assess model performance and find important materials for model
training. It was found that the minimum R2 and RMSE values reached their maximum, and the
corresponding values were kept almost unchanged when the sample sizes varied from 20 to 45. When
the sample size was smaller than 15, the hierarchical sampling method was more reliable in avoiding
low-quality few-shot PLS models than the random sampling method. Two important materials were
identified as useful for building an initial material library. Overall, this work demonstrated that as
the number of materials increased, the model’s reliability improved. It also highlighted the potential
for effective few-shot modeling on a small material library by controlling its information richness.

Keywords: material library; sample size; few-shot modeling; compression behavior classification
system (CBCS); tabletability; formulation design; hierarchical sampling; latent variable modeling;
tablet tensile strength

1. Introduction

In pharmaceutical design and development, the material library or material database is
an emerging, new, and efficient approach for organizing physical property data of materials
like active pharmaceutical ingredients (APIs), excipients, or intermediates. The material
library method aims to develop a standard material characterization framework to collect
and store the physiochemical properties and related information of pharmaceutical materi-
als [1]. By using a material library, both new and generic drug development activities could
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be enhanced in different ways, such as by understanding the relationship among different
material quality attributes and simplifying the material characterization workload, finding
the surrogate or equivalent materials for costly APIs during initial process development,
and supporting the development of process models by linking the materials’ physical
properties to unit operations [2–7].

In practice, the material library was presented in the form of tabular data, in which the
rows were different materials, and the columns were material quality attributes. Table 1 shows
the typical sizes of reported pharmaceutical material libraries after retrieving articles in Web of
Science using “material library” or “material database” as key words [1,3,4,7–23]. The material
name and attributes in each material library are shown in Table S1 in the Supplementary
Materials. From the aspect of material attributes, it can be seen that the numbers of material
property descriptors are mainly spread in the range of 8 to 55. In particular, Van et al. [8]
built a material library involving over 100 raw material descriptors. The investigated
material properties are usually function-related or process-oriented. For instance, Wang
et al. [12] tried to predict feeder performance based on material flow properties. Generally
speaking, a thorough evaluation of material properties is the prerequisite for building
predictive models for in silico processes and formulation development. But this does
not mean that more material property descriptors are better, since there may be inter-
relationships among them and more descriptors mean a higher cost of characterization.
Van et al. [8] proved that correlated descriptors in the raw material property database could
be simplified using a multivariate data analysis (e.g., principal component analysis).

Table 1. The sizes and applications of material libraries reported in 2018~2023.

No. Number of
Samples

Number of Material
Attributes Year Application Area Reference

1 20 30 2018 Find surrogate materials for pharmaceutical process development. [1]
2 55 Over 100 2018 Build predictive models for in silico process. [8]

3 41 8 2019 Develop a direct compression decision-making tool to accelerate
materials’ screening. [9]

4 15 25 2019 Predict the volumetric and gravimetric feeding behavior of a
low-feed-rate feeder. [10]

5 130 18 2019 Develop a compression behavior classification system for direct compression. [4]

6 20 32 2019 Study the effect of tracer material properties on the residence time
distribution of continuous powder-blending operations. [11]

7 20 44 2019 Evaluate material performance on a loss-in-weight feeder. [12]
8 111 22 2019 Develop a compression behavior classification system for roll compaction. [3]

9 12 18 2019 Analyze the effect of material attributes on the dissolution profile
of the matrix tablet. [13]

10 10 30 2020 Analyze the impact of material attributes on the performance
of an auger dosing process. [7]

11 13 44 2021 Predict feeding performance based on material properties. [14]

12 81 28 2021 Develop machine learning models by linking material properties and direct
compression tablet properties. [15]

13 27 48 2021 Develop a TPLS model for the twin-screw wet granulation process and
formulation development. [16]

14 56 18 2021 Develop a formulation process quality model for high-shear wet granulation. [17]
15 12 44 2022 Analyze the impact of material attributes on the gravimetric feeding process. [18]

16 14 55 2022 Develop a TPLS model for the direct compression process
and formulation design. [19]

17 32 19 2022 Develop a PCA model to recognize the highest amount of variability in
physical powder properties. [20]

18 30 19 2022 Develop a tabletability change classification system for high-shear wet
granulation and tableting. [21]

19 15 14 2023 Analyze the impact of material attributes on direct compression
extended-release formulations. [22]

20 31 18 2023 Develop a tabletability change classification system for roll compaction, dry
granulation, and tableting. [23]

In addition, the requirements for sample size and sample diversity of a material library
also need to be considered to obtain a high-quality dataset. As shown in Table 1, the sample
sizes of most material libraries range from 10 to 130. Material types are often determined
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empirically by considering the following aspects: (1) selecting materials with different
deformation behavior (e.g., plastic or brittle) [5,24,25]; (2) choosing materials with different
chemical compositions like APIs, cellulose, lactose, starch, or calcium hydrogen phos-
phate [26–28]; (3) using different pharmaceutical excipients like fillers, binders, lubricants,
or disintegrants [8,27]; (4) enriching material variability by incorporating materials from
different suppliers or with different grades [29–31].

Conventionally, sufficiently more observations serving as a training set are considered
favorable before modeling in machine learning. For instance, in the field of artificial
neural networks, there is a set of rules of thumb regarding sample size requirements.
(1) The sample size needs to be at least a factor 50 to 1000 times the number of prediction
classes; (2) the sample size needs to be at least a factor 10 to 100 times the number of the
features; (3) the sample size needs to be at least a factor 10 times the number of parameters
(i.e., synaptic weights and biases) in the network [2,32]. In fact, collecting and annotating
high-volume data meeting these above requirements is time-consuming and expensive. To
overcome this obstacle, some research has discussed the feasibility of minimum dataset
size and few-shot learning, which does not result in significant model performance loss in
the presence of limited data. Bongiorno et al. [33] constructed sample sets ranging from
10 to 50,000 to study the effect of dataset size on model training performance and found
that approximately 200 examples were generally sufficient to train a machine learning
algorithm, and increasing the number of training samples did not significantly improve the
accuracy of the results. Li et al. [34] proposed an indicator g2, which was used to assess
the model structure to analyze the minimum size of data to construct a valid model. The
verification found that with the increase in the number of samples of the modeling dataset,
the model became stable, as the g2 index converged to zero. Althnian et al. [35] found
that the overall performance of classifiers depended on how well a dataset represented the
original distribution rather than its size. These studies demonstrated that it was possible
to find the suitable sample size for modeling purposes. As far as we know, the impacts of
sample size in the material library domain on data-driven modeling have not been studied.

Direct compression (DC) is a desirable tablet manufacturing route because of fewer
unit operations, shorter operating time, and lower labor costs [30,31,36]. In our previous
work [4], the tabletability index d was proposed to differentiate five categories of tensile
strength (TS) vs. pressure (P) relationships. If the index d is higher than 0.5, this material
falls into Category 1, indicating excellent tabletability at the low-pressure range. If a
material belongs to Category 2A or 2B, the compression force needs to be fine-tuned when
material is compressed. When a material belongs to Category 2C or 3, the material requires
special attention, as it may exhibit poor tabletability at most pressures. In this paper, both
the number and type of samples when constructing the material library are investigated. A
primary material library containing 45 fully characterized pharmaceutical materials was
constructed. Different subsets of the primary material library were sampled to simulate
effects of changes in sample size, and these subsets were applied to construct DC process
models. At the given sample size of each subset, the supervised sampling method was
performed by the tabletability index d to control sample diversity, and was compared
with the totally random sampling method. The minimum material library requirements in
terms of size and type were estimated by analyzing the performance of DC process models.
The results of this study would be useful guides for selecting materials and organizing a
diversified small-size material library, resulting in shorter material accumulation time as
well as quicker process model development.

2. Experimental Methods
2.1. Construction of the Primary Material Library

A total of 45 powdered materials, including 32 pharmaceutical excipients and 13 natu-
ral production powders (NPPs), were carefully selected from a homemade database named
intelligent TCM (iTCM) [4,37]. Different batches or types of the same material, exhibiting
different capacities, were considered in the material library. For instance, seven types
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of MCC powders, including PH102, PH200NF, Oricel™PH-102 SCG, Oricel™PH302NF,
Oricel™PH-112, Oricel™PH302NF, and vivapur® type200, were included. These 45 sam-
ples were used as the primary material library and were divided into 5 categories (Cat.1,
2A, 2B, 2C, 3; Cat.1 denotes Category 1, and the same nomenclature applies to the others)
by the tabletability index d. Each category included 9 samples. The names, lot numbers,
and suppliers for all materials are described in Table S2 in the Supplementary Materials.
All 45 powdered materials are described by 27 quality attributes, including 18 physical
powder parameters and 9 compression descriptors, as outlined in Table 2.

Table 2. Overview of powder characterization techniques, corresponding descriptors, and
abbreviations.

Property Characterization Technique Descriptor Abbreviation

Powder properties Powder density test Bulk and tapped density ρb and ρt
Ture density and porosity Dt and ε
Carr’s index IC
Inter-particle porosity Ie
Hausner ratio IH

Diametrical crushing test under
maximum compression pressure Cohesion index Icd

Flow through an orifice Angle of repose AOR/α
Flow time t′′

Rapid moisture test Moisture content HR%

Moisture sorption Water uptake at 76% (±2%) of the relative
humidity H%

Laser diffraction 10, 50, and 90% cumulative undersize of
volumetric particle size distribution D10, D50, D90

Width and span of volumetric particle size
distribution Span

Percentage of particles measuring <50 µm %Pf
Homogeneity index Iθ

Compression descriptor The Kawakita model P
C = P

a + 1
ab a, ab, b−1

The Heckel model
ln
(

1
ε

)
= kP + A

Py = 1
k

Py

The Gurnham model ε = − 1
K ln
(

P
P0

)
K

The Ryshkewitch–Duckworth model TS = exp(−kbε) kb
The Shapiro model ln(ε) = ln(ε0)− kP − f × P0.5 f
The Power model TS = dPg d, g

Tablet Mechanical property Diametrical crushing test Tensile strength TS

Among the 27 powder properties, 12 parameters were measured or calculated by
standard testing procedures of the SeDeM expert system methodology [38,39]. These
parameters include bulk density (ρb, g·cm−3), tapped density (ρt, g·cm−3), inter-particle
porosity (Ie), Carr’s index (IC), Hausner ratio (IH), angle of repose (AOR, ◦), flow time (t′′, s),
cohesion index (Icd, N), loss on drying (HR%), hygroscopicity (H%), proportion of particles
smaller than 50 µm (%Pf ), and homogeneity index (Iθ). The dimensions of powder can be
expressed by ρb and ρt. The parameters IC, Ie, and Icd characterized the compressibility of
powders. Descriptors AOR, t′′, and IH reflect the flowability of powder. The stability of
powder can be described by the parameters HR% and H%. Physical properties %Pf and Iθ
represent the uniformity of the powder. The remaining 6 physical properties include true
density (Dt, g·cm−3), particle sizes (i.e., D10, D50, and D90, µm), particle size distribution
width (Span), and solid fraction (SFp). The compression curve (TS vs. pressure P) data
for each material were also stored in the iTCM database. As for compression descriptors,
different compression equations are used, respectively, to interpret the compressibility,
compactability, and tabletability. The compressibility of a powder is the powder’s ability to
deform under pressure, and it is described by the indexes of Kawakita a, ab, and b−1, Heckel
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Py, Shapiro f, and Gurnham K [40–42]. The compactability of a powder is the ability to form
mechanically strong compacts and is expressed by Ryshkewitch–Duckworth kb [41–43]. The
tabletability of powders, defined as the capacity of a powdered material to be transformed
into a tablet of sufficient strength under the prescribed pressures, can be indicated by the
index of Power d [4,43,44].

2.2. Construction of Material Libraries with Different Sample Sizes

To investigate the influence of different sampling methods on the prediction perfor-
mance of the model, a supervised sampling method under the guidance of index d and
a random sampling method were used to construct training datasets from the primary
material library. The sampling procedures are shown in Figure 1. As for the supervised
sampling method, i (i represents the number of sampled materials from the primary library;
i = 1, 2, 3, . . ., 8) materials were systematically selected from the 5 categories in turn and
then merged to construct the training dataset with different sample sizes. To analyze the
variation in model fitting performance with different numbers of samples, each training
pattern was sampled 1000 times under a given i condition. Consequently, 8 groups of hier-
archical sampling training datasets (HSTi) were obtained. Regarding the random sampling
method, 5 × i (i = 1, 2, 3, . . ., 8) materials were randomly sampled from the material library.
Similar to the hierarchical sampling, each training pattern was sampled 1000 times under a
given i condition and 8 groups of random sampling training datasets (RSTi) were obtained.
The dataset containing all 45 materials was also used as the training set and denoted as
HST9 and RST9, respectively. The sampling program was compiled on the Matlab R2019a
platform (Mathworks, Natick, MA, USA).
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and the same goes for the rest.

2.3. Predictive Modeling and Model Evaluation

The material property data matrix for the primary material library was organized
to contain 27 columns and 45 rows. Similarly, the material property data matrix for the
sampled material library was organized to contain 27 columns and 5 × i (i = 1, 2, 3, . . .,
9) rows, with the rows representing different materials and the columns representing
material quality attributes. These quality attributes comprise 27 parameters, encompassing
18 physical powder parameters and 9 compression descriptors. The principal component
analysis (PCA) was performed to compress the number of correlated material property
variables into a smaller number of uncorrelated variables called principal components
(PCs). PCs are ranked from the highest to the lowest variance. The score plot shows
sample locations in the PC space, facilitating the detection of sample patterns and grouping
similarities and differences. The loading plot helps interpret the relationships between the
variables [45]. Before modeling, the data were scaled and centered. The PCA analysis was
performed using SIMCA 13.0 (Umetrics, Umea, Sweden) software.

The partial least squares (PLS) regression method is employed to reduce the input
dataset to a set of latent variables, which are linear combinations of the original variables.
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PLS assesses the relationship between the input space (X ∈ Rn×m, where n and m represent
the sample and the number of variables in turn) and the output space (Y∈ Rn×l , where l
is the number of output variables). The decomposition occurs in the feature, where the
score matrix, load matrix, and latent variables (LVs) are calculated [46]. Additionally, the
goodness-of-fit indexes (i.e., R2X and R2Y) are associated with the amount of variability
captured by the LVs in PLS analysis. The goodness of prediction is estimated by 10-fold
cross-validation method. In this work, each sample in the material property data matrix was
combined with a set of pressure (P) vectors. Each tablet tensile strength (TS) corresponded
to a pressure value in the compression curve. The DC compression dataset of the primary
material library was constructed with 1090 rows and 20 columns, comprising 18 physical
properties and the tableting pressure as the independent variables and TS as the dependent
variable. Z-score was used to standardize and normalize the 19 independent variables. The
first 4 LVs explained (R2X) 71.9% and (R2Y) 88.1% of the variability of 45 samples. Adding
one more latent factor did not enhance the model performance, and thus, 4 latent variables
in the PLS analysis were set. The PLS algorithms were performed on the Matlab 2019a
software (Mathworks, Natick, MA, USA) with the PLS Toolbox 2.1 (Eigenvector Research
Inc., Wenatchee, WA, USA).

These few-shot HST (RST) models, constructed in Section 2.2, were validated by 10-fold
cross-validation and external validation to evaluate the predictive ability of the constructed
model. The indicators used for predictive model evaluation include the coefficient of
determination (R2) and the root mean square error (RMSE), the coefficient of determination
at validation set (R2 p), and the root mean square error at validation set (RMSEp). The
SCORE parameter, representing the ratio of the correlation coefficient to the mean absolute
error percentage (MAPE), was employed. A higher SCORE value indicates better prediction
performance of the model. The SCORE parameter was specifically used to extract the
model for subsequent important material analysis. The MAPE value, which measures the
error between prediction and observation in regression analysis and model evaluation, is
employed to eliminate the variable unit compared to the RMSE [47]. The model evaluation
indexes mentioned above are defined as follows in Equations (1)–(4).

R2 =

(
Cov

(
Yobs, Ypre

)
σobs × σpre

)2

(1)

RMSE =

√√√√∑N
i=1

(
Yobs

i − Ypre
i

)2

n
(2)

SCORE =
R2

MAPE
(3)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yobs
i − Ypre

i

Yobs
i

∣∣∣∣∣ (4)

In addition to the commonly used chemometric indicators, a new method for eval-
uating the sample diversity of a selected material library has been proposed. The 95%
confidence ellipse of the two-dimensional PCA score data is used to visualize the degree
of aggregation of the data, and the eigenvalues and eigenvectors of the first two principal
components are obtained [48]. The overlapping area between the confidence ellipse of
sampled materials and the confidence ellipse of the primary material library samples is
then calculated. Subsequently, the percentage of the overlapping area compared to the
confidence ellipse area of the primary material library is obtained (Equation (5)). There is
an illustrative diagram for calculating the index of the overlapping area (Figure 2). The
calculation support was carried out on Matlab (R2019a).

The overlapping rate =
overlapping area

95% ellipse area o f all samples
× 100% (5)
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2.4. Establishment of the External Validation Set

The external validation set was designed to test the prediction performance of estab-
lished training models. Mixtures in the validation set were obtained using the full factorial
design including three factors, i.e., Composition A, Composition B, and the ratio of A to
B, as shown in Table 3. Composition A has two levels, representing two pharmaceutical
excipients (i.e., microcrystalline cellulose PH102, lactose Tablettose® 80). The MCC PH102
and lactose Tablettose® 80 are two commonly used diluents in tablet formulation, and they
represent the plastic and brittle compaction behaviors, respectively [49–51]. MCC PH102
was classified into Category 1 tabletability, and lactose Tablettose® 80 was classified into
Category 2B by the index d. Composition B has four levels, representing 4 natural pro-
duction powders (i.e., Stellariae Radix extract, Radix Rehmanniae Preparata extract, Rhizoma
Alismatis extract, and Flos Farfarae extract). The 4 NPPs were independent with 45 materials
and were classified into Category 2A tabletability. The ratio of A to B is a continuous
variable, and three levels are designed as 1:3, 1:2, and 1:2 in w/w, respectively. As a result,
24 formulations were generated from the design. Different mixtures were expected to
exhibit different compaction behaviors, serving the validation purpose.

Table 3. The factors and levels of the validation design for arranging 24 binary mixtures.

Factors Levels

Composition A MCC PH102 Lactose Tablettose® 80
Composition B Stellariae Radix extract Radix Rehmanniae Preparata extract Rhizoma Alismatis extract Flos Farfarae extract

Ratio of A to B (w/w) 1:3 1:2 1:1

Each binary blend was mixed in a three-dimensional mixer for 10 min. A total of
0.5% magnesium stearate was added and mixed for an additional 5 min. The blended
powders were then compressed into tablets using a single punch tablet press machine
(C&C600A, Beijing C&C CAMBCAVI Co., Ltd., Beijing, China) equipped with a flat-faced
punch and die with a 10 mm diameter. The magnesium stearate was used to lubricate the
punch surfaces and the die walls before each compaction. After lubrication, the powders
were manually filled into the die. Considering the different bulk densities of the materials,
the filling mass was set to 300 mg or 350 mg to ensure the smooth ejection of the tablet.
For each material, 3 compression pressures (5, 7, and 9 KN, where 1 KN = 12.74 Mpa)
were applied to produce tablets with varying hardness. The applied mean velocity of the
upper punch was 28 mm/s. At least three tablets were obtained under each pressure. The
prepared tablets were sealed in a ziplock bag. After being stored for 24 h, the weight (GL124-
1SCN, Beijing Sanfu Hezhong Technology Development Co., Ltd., Beijing, China), diameter,
thickness (547-401 Digimatic Caliper, Mitutoyo, Kawasaki city, Japan), and diametrical
crushing force (YPD-500, Shanghai Huanghai medicine inspection instrument Co., Ltd.,
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Shanghai, China) of the tablets were measured. The tensile strength (TS) of the tablet was
calculated as follows (Equation (6)).

TS =
2F

πDH
(6)

where F (N) is the tablet crushing force, D (mm) is the tablet diameter, and H (mm) is the
tablet thickness [52].

The physical characterizations of single validation materials were published previ-
ously [4], and the physical properties of the binary mixture were calculated using the ideal
mixing rule (Equation (7)). The physical properties of every single material were multi-
plied by its ratio and summed. For the external validation set, a total of 72 data records
were obtained.

propertymix = ∑ ratioi × propertyi (7)

3. Results and Discussion
3.1. The Powder Properties

Forty-five materials were divided into five categories according to the tabletability
index d, and the boxplots of bulk density, cohesion, angle of repose, and median particle
size (D50) are shown in Figure S1 in the Supplementary Materials. Boxplots provide a
visual representation of data distribution, including showing the minimum, first quar-
tile (Q1), median, third quartile (Q3), and maximum. The bulk density (ρb) across the
45 batches of powders was wide, ranging from the very lightly packed MCC vivapur®

type 102 (0.31 g·cm−3, Cat.1) to the densely packed Radix Polygoni Multiflori semi-extract
powder (0.71 g·cm−3, Cat.3). Among the five types of materials, Cat.1 materials exhibited
the smallest average bulk density (0.36 g·cm−3), while Cat.2C materials had the largest
bulk density (0.62 g·cm−3). The cohesion index (Icd), directly proportional to the com-
paction of powder, changed from 9.7 N (calcium hydrogen phosphate, Cat.2C) to 366.8
N (MCC PH102, Cat.1) [53]. The cohesion index was consistent with the results of the
five subcategories. The angle of repose (AOR) is directly reflected in the flowability of the
powdered material, which is related to inter-particulate friction or resistance to movement
between particles. According to the USP-NF<1174>, if the AOR is less than 45◦, the powder
could flow in such a way to meet industrial production requirements with or without aid.
But if it exceeds 50◦, the flow is rarely acceptable for manufacturing purposes. Angle of
repose values in this research varied between 31.8◦ (Flowlac® 100) and 57.3◦ (Granulac®

200). The mean values of AOR in Cat.1, 2A, 2B, 2C, and 3 were 40.6, 43.7, 45.0, 47.5, and
49.0, respectively. The D50 values varied greatly between different powders, from 12.6
µm to 253.6 µm. The D50 values of Cat.1 materials were larger than 100 µm, except MCC
PH102NF (94.2 µm) and Ethyl Cellulose N-7 Pharm (65.5 µm). In Cat.2 and Cat.3, the D50
values of 31 materials were no more than 100 µm. Overall, Cat.1 materials generally had
the smallest bulk densities, the strongest cohesion, the smallest angle of repose, and the
largest median particle sizes. The Icd and AOR parameters for Cat.2B materials showed the
widest distribution range. The properties of Cat. 2C and Cat. 3 materials were similar.

Furthermore, the data matrix of the primary material library was organized to contain
27 columns and 45 rows. The PCA model projected the 27 variables to a latent space
with four PCs. The first two PCs explained (R2X) 50.9% and predicted (Q2X) 36.5% of the
variability of the data. The score plot (Figure 3A) and the loading plot (Figure 3B) for the
first two PCs were generated. In the score plot, the 45 samples in the primary material
library were colored based on five tabletability categories. The loading information revealed
that compression descriptions d, g, and kb were mainly associated with PC1. Parameters a
and K were mainly associated with PC2. The Cat.2C and Cat.3 materials overlapped, since
both of them had poor tabletability. Combined with the loading plot, it was found that
the Cat.2C and Cat.3 materials were opposite to the position of particle size parameters
(D10, D50, D90, Iθ), and had the same position in terms of AOR, %Pf, and ρt. The Cat.1
materials were relatively concentrated in the positive half-axis and were opposite to the
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Cat.2C and Cat.3 materials. Cat.2A materials were concentrated in the center of the score
plot, indicating that they had moderate material properties. Cat.1 materials had lower
Py and K values than Cat.2A materials, revealing that the former could be compressed
easily [54]. The data for 24 binary powders in the external validation set were also projected
onto the score plot. It could be seen that the mixtures were spread within the region of
Cat.1, Cat.2A, and Cat.2B materials, from which two of the mixtures were made.
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Figure 3. (A) The PCA score plot of 45 materials. (B) The PCA loading plot of 27 variables. The
grey square represents Category 1 tabletability. The red square represents Category 2A tabletability.
The blue square represents Category 2B tabletability. The green square represents Category 2C
tabletability. The purple square represents Category 3 tabletability. The grey circle represents external
validation set. The green circle represents the physical property of materials. The red circle represents
the compression descriptor of materials.

3.2. Comparison of Model Performance

Nine groups of HST and RST models were constructed and evaluated using the
methods mentioned in Sections 2.2 and 2.3. An external validation set, as described in
Section 2.4, was employed to evaluate the prediction performance of the HST and RST
models. The values for R2, RMSE, R2 p, and RMSEp in each group of the HST (RST) models
were calculated and recorded.

3.2.1. The R2 Values during Cross-Validation

The mean, peak width, and extreme values of R2 in each group of 1000 sampling
results were calculated. The extreme values, i.e., the maximum (Max) and the minimum
(Min) R2 values for each group, are shown in Table S3 in the Supplementary Materials. The
frequency distribution histograms are drawn (Figure 4). The peak width was obtained by
fitting the frequency distribution results with a Gaussian function.

When the number of materials was 5 (i = 1, corresponding to modeling data sizes in
the range of 63~190 rows), the peak width of RST1 was 0.57, while that of HST1 was 0.46,
with the latter being smaller than that of the RST model. From ST2, the peak width
of RST was nearly equal to that of HST, and the peak width of ST ranged between
0.01 and 0.05. The mean R2 values for nine groups of HST models were stable in the
range of 0.88~0.91. The mean R2 values for nine groups of RST models were spread in
the range of 0.86~0.88. The maximum R2 values for each group under the two sampling
methods were close, but the minimum R2 values of the HST models were larger than those
of the RST models. When the number of samples was less than 15 (i = 3, corresponding
to modeling data sizes in the range of 243~482 rows), the frequency histograms of R2 in
HST models were more concentrated than that of RST models. This suggested that it was
possible to avoid developing a model with poor fitting performance when the size of the
material library was less than 15. When the number of samples exceeded 15, the R2 values
of HST and RST obtained became close, suggesting that the structure of the training set
sample began to stabilize.
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3.2.2. The RMSE Values during Cross-Validation

The peak width and the extreme values of RMSE in each group of 1000 sampling
results were calculated. The maximum and minimum RMSE values of the sampling
dataset, the group of models ST1~ST9, were calculated, as shown in Table 4. The frequency
histograms are shown in Figure S2 in the Supplementary Materials. It was observed that
with the increase in the number of samples, the RMSE frequency histogram of the HST
models and RST models tended to concentrate on the right side of the axis.

Table 4. The maximum and minimum RMSE values of training models during cross-validation.

Max Min Max Min

HST1 1.31 0.41 RST1 1.33 0.19
HST2 1.21 0.52 RST2 1.30 0.28
HST3 1.19 0.60 RST3 1.15 0.48
HST4 1.15 0.71 RST4 1.20 0.55
HST5 1.14 0.77 RST5 1.20 0.71
HST6 1.14 0.80 RST6 1.14 0.76
HST7 1.10 0.88 RST7 1.12 0.83
HST8 1.08 0.93 RST8 1.09 0.91
HST9 1.04 1.03 RST9 1.04 1.03

When the number of materials was 5 (i = 1), the peak width of RST1 was 0.41 and the
peak width of HST1 was 0.33. From the sample size 15 (i = 3, corresponding to modeling
data sizes in the range of 243~482 rows), the gap between HST peak width and RST became
less than 0.1, indicating that the peak shape was concentrated. Comparing the maximum
values of the models from ST1 to ST8, the differences between the HST models and RST
models were less than 0.1. The minimum values of RSME in the eight groups of HST
models were larger than those of RST. The maximum RMSE values of each group under the
two sampling methods were closer, but the minimum RMSE values of the HST models were
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larger than those of RST. Comparing the RSME range of each group of models, it was found
that the ranges of the remaining HST models were narrower than those of RST, especially
for the HST1~3 models. The result was consistent with the R2 results in Section 3.2.1.

3.2.3. The R2 p Values during External Validation

The mean, peak width, and extreme values of R2 p in each group of 1000 sampling re-
sults were calculated. The extreme values, i.e., the maximum and the minimum R2 p values
of each group, are shown in Table 5. The frequency distribution histograms are shown
(Figure S3 in the Supplementary Materials). The peak width was obtained by fitting the
frequency distribution results with a Gaussian function.

Table 5. The maximum and minimum R2 p values of models during external validation.

Max Min Max Min

HST1 0.94 0.00 RST1 0.94 0.00
HST2 0.95 0.05 RST2 0.95 0.01
HST3 0.95 0.33 RST3 0.95 0.16
HST4 0.95 0.50 RST4 0.95 0.45
HST5 0.95 0.79 RST5 0.95 0.72
HST6 0.95 0.82 RST6 0.95 0.74
HST7 0.95 0.85 RST7 0.95 0.84
HST8 0.94 0.91 RST8 0.94 0.88
HST9 0.93 0.93 RST9 0.93 0.93

The peak width values of the HST2~8 models were larger than those of RST2~8 models,
and the difference values between HST2~8 and RST2~8 were less than 0.01. The mean
R2 p values gradually increased as the number of sampling materials increased. The mean
R2 p values for the top three groups of RST models were spread in the range of 0.54~0.86.
The mean R2 p values for the top three groups of HST models were spread in the range
of 0.62~0.87. The mean R2 p values for the remaining six groups of HST models were
spread in the range of 0.90~0.93, which was consistent with the range observed for the RST
models. When the number of materials was 15, the minimum R2 p value was 0.33 in the
HST3 models, while the minimum R2 p value in the RST3 models was 0.16. Comparing the
extreme values of the HST and RST models, it was found that the minimum R2 p values of
the HST models were larger than those of the RST models, and the maximum R2 p values
of the HST models were similar to those of the RST models. As the numbers of materials
increased, the prediction performance of the two sampling methods became similar. The
HST models could be used for their superior performance, to avoid models with poor
prediction performance, especially when the number of samples was smaller than 15.

3.2.4. The RMSEp Values during External Validation

The mean, peak width, and extreme values of RMSEp in each group of 1000 sampling
results were calculated. The extreme RMSEp values of each group are shown in Table 6.
The frequency distribution histograms are shown (Figure S4 in the Supplementary Mate-
rials). The peak width was obtained by fitting the frequency distribution results with a
Gaussian function.

The peak width values of RMSEp gradually decreased as the number of sampling
materials increased. For HST1 models, the peak width of RMSEp was 1.48, compared
to 1.67 for RST1 models. The peak width values of RMSEp for the HST4~9 models were
similar to those of the RST6~9 models, and the differences between HST4~9 and RST
4~9 were less than 0.03. The mean RMSEp value of the HST1 models was 1.81, while that
for the RST1 models was 2.08. The mean RMSEp values gradually decreased until the
number of sampling materials reached 15 (I = 3, ST3). The differences in mean RMSEp
values between the HST4~9 models and RST4~9 models were less than 0.03. The maximum
RMSEp values were quite different. Almost all maximum RMSEp values of the RST models
were larger than those of the HST models, especially for HST1 and RST1 (with a sampling
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number of 5). The maximum RMSEp of the HST1 models was 9.7, while that of the
RST1 models was 41.56. The minimum RMSEp values in the HST and RST models were
almost the same. It suggested that the differences in RMSEp values within or between ST
models decreased, and the model prediction performance was gradually improved as the
number of samples increased. When the number of samples was smaller than 15, the HST
models were more effective for avoiding models with excessive errors and providing better
generalization ability.

Table 6. The maximum and minimum of RMSEp values of models during external validation.

Max Min Max Min

HST1 9.70 0.49 RST1 41.56 0.52
HST2 4.09 0.41 RST2 4.30 0.48
HST3 2.88 0.45 RST3 4.12 0.45
HST4 2.30 0.49 RST4 2.55 0.45
HST5 1.68 0.52 RST5 2.39 0.47
HST6 1.44 0.46 RST6 1.74 0.51
HST7 1.30 0.56 RST7 1.30 0.58
HST8 1.20 0.65 RST8 1.23 0.66
HST9 0.97 0.97 RST9 0.97 0.97

3.3. The Overlapping Rate of Confidence Area

The values for the index of overlapping area for eight groups of HST (RST) models
were calculated according to Equation (5). The frequency histograms of overlapping area
rate are drawn in three intervals of <60%, 60–80%, and >80%, respectively (Figure 5).
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It was found that all the maximum overlapping area rates in the HST and RST models
approached 100%, but the minimum value in the HST models was larger than that in
the RST models. The total number of models with an overlap rate less than 60% in the
HST models was smaller than that in the RST models. In particular, when the number
of materials involved in a model was 5, the frequency of the overlapping area rate of the
RST1 in the <60% interval exceeded 50%, while the corresponding frequency for the HST1
model was 24.4%. When the sampling number was 20 (i.e., HST4, RST4), the proportion
of models with an overlapping area rate higher than 80% in the HST models was 94.8%,
while that of the RST models was 83.3%. As the number of sampling materials increased,
the overlapping area rate between the HST5 and RST5 models exceeded 90%, and the
differences in overlapping area rate between the HST5 and RST5 models were gradually
narrowed. To sum up, it was suggested that the hierarchical sampling was helpful for
ensuring the diversity of samples. A value of 15 or 20 was a potentially acceptable number
for sampling materials to construct a material library for few-shot modeling, where the
material properties were closer to the population.
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3.4. Finding Important Materials for Model Training

Finding important materials is useful for building a representative material library
and training high-performance process models. These materials were identified by analyz-
ing the occurrence frequency of materials in HST and RST models with high correlation
coefficient and small prediction error. The model performance index SCORE parameter
was proposed to screen high-performance models. The SCOREcv and SCOREp values
for each group of HST (RST) models were calculated according to Equation (3), respec-
tively. Then, the model with the maximum SCORE value (=SCOREcv + SCOREp) from the
1000 models in each group of HSTi or RSTi models was found. The materials used in the
identified models were recorded. The frequency histograms of materials in models with
the maximum SCORE values are shown in Figure 6. Important materials were defined to
have an occurrence frequency greater than 7 in this work. As shown in Figure 6A, among
the materials in the selected HST models, MCC vivapur® type102 is the high-frequency
material, which has Cat.1 tabletability according to index d. As shown in Figure 6B, among
materials in the selected RST models, processed Radix glycyrrhizae extractlactose extract is
the high-frequency material, which is classified as having Cat.2A tabletability. The com-
pression curves of the two high-frequency materials obtained are plotted in Figure S7 in
the Supplementary Materials. The Cat.1 material (MCC vivapur® type102) with excellent
tabletability could exceed 3 Mpa when the tableting pressure was lower than 100 Mpa.
The Cat.2A material (processed Radix glycyrrhizae extract) had good tabletability when the
pressure was above 100 Mpa.
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Figure 6. The histograms of potential important materials contained in (A) hierarchical sampling
models with the maximum SCORE values; (B) random sampling models with the maximum
SCORE values.

To study the effect of two identified important materials on constructing the mate-
rial library and the resulting model performance, the material library with sample size
5 was investigated. Three kinds of material libraries were constructed: (A) two important
materials and three hierarchically sampled materials; (B) two important materials and three
randomly sampled materials; (C) five randomly sampled materials without two important
materials. For each kind of material library, 1000 rounds of sampling were carried out. After
that, PLS models were established, and the rate of overlapping area was calculated. The
results are shown in Figure 7, and details are listed in Table S4. In Group C, the frequency
count was highest when the overlapping area rate was less than 50%. Compared with
Group C models, over 70% of the models in Group B had an overlapping area rate higher
than 50%, and over 80% of the models in Group A had an overlapping area rate larger than
50%. These results proved that important materials could ensure information richness and
enable better model performance. The overlapping area rate can be used as an indicator
to quickly judge the diversity of samples in the sampling subset. The sample set obtained
by HST was helpful for ensuring the representativeness and diversity of samples in the
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training set. The information richness is as important as the data volume, which would
challenge the idea that “bigger is better” [55].
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Figure 7. The histogram of overlapping area rate for 3 groups of datasets. Materials in 3 datasets
were constructed as follows: (A) two important materials and three hierarchically sampled materials;
(B) two important materials and three randomly sampled materials; (C) five randomly sampled
materials without two important materials.

4. Conclusions

This paper proposes the following assumption: Is there a minimum sample size to
develop an acceptable predictive model? Based on the primary material library including
45 materials, both the hierarchical sampling supervised by index d and the random sam-
pling method were used to obtain subsets with different sample sizes and material compo-
sitions. Then, the HST and RST predictive models were compared and analyzed from the
aspects of cross-validation and external validation performance. The differences between
performances were assessed in different scenarios. The selection conditions of sample size
and type were further summarized with the index SCORE and the overlapping area rate.
Using this approach, the sample size requirements of a material library were summarized.
(1) A minimum dataset with 15 or 20 representative and diverse materials was feasible to
develop an acceptable predictive model; (2) the supervised sampling method guided by
index d was implemented to make the development phase more effective than random
sampling; (3) the important materials, such as microcrystalline cellulose and processed
Radix glycyrrhizae extract, could be considered in building an initial material library.

Collecting material property data may face many challenges, such as tedious testing,
high time investment, high labor costs, and material consumption. The data size is an
important and common factor affecting the availability of a material library. This paper
only applied a material library comprising 45 single materials to investigate the change
in model performance, and the conclusions drawn require further validation through the
formulation of mixtures and a more comprehensive database. Furthermore, while only
index d was employed as a classification indicator, more sophisticated classification systems
could be considered in future research.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics16020242/s1, Supplementary Materials S1:
Figure S1: The boxplots of 45 materials physical properties (A) bulk density; (B) Icd; (C) AOR; (D) D50.
Figure S2: The histograms of root mean square error from cross-validation. Figure S3: The histograms
of correlation coefficient from external validation. Figure S4: The histograms of root mean square
error from external validation. Figure S5: The scatter plots of prediction performance of hierarchical
sampling models screened by 3 evaluation indices. Figure S6: The scatter plots of prediction perfor-
mance of random sampling models screened by 3 evaluation indices. Figure S7: The compression
curves of identified important materials. Table S1: The information of material libraries reported in
2018~2023. Table S3: The maximum and minimum of R2 values of models during cross validation.
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Table S4: The PLSR performance and overlapping area rate of 3 models. Supplementary Materials S2:
Table S2: The information of 45 materials including names, abbreviations, batch numbers suppliers
and physical attributes. References [1,3,4,7–23] are cited in the supplementary materials.
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Max Maximum
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