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ABSTRACT

Machine vision systems have emerged for quality assessment of solid dosage forms in the 

pharmaceutical industry. These can offer a versatile tool for continuous manufacturing while 

supporting the framework of process analytical technology, quality-by-design, and real-time 

release testing. The aim of this work is to develop a digital UV/VIS imaging-based system for 

predicting the in vitro dissolution of meloxicam-containing tablets. The alteration of the 

dissolution profiles of the samples required different levels of the critical process parameters, 

including compression force, particle size and content of the API. These process parameters 

were predicted non-destructively by multivariate analysis of UV/VIS images taken from the 

tablets. The dissolution profile prediction was also executed using solely the image data and 

applying artificial neural networks. The prediction error (RMSE) of the dissolution profile 

points was less than 5%. The alteration of the API content directly affected the maximum 

concentrations observed at the end of the dissolution tests. This parameter was predicted with 

a relative error of less than 10% by PLS models that are based on the color components of UV 

and VIS images. In conclusion, this paper presents a modern, non-destructive PAT solution for 

real-time testing of the dissolution of tablets. 
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1. Introduction

Regulatory agencies in the pharmaceutical sector prioritize innovation and continuous 

improvement to maintain quality, sustainability, efficiency and productivity [1][2]. In 

production processes these are critical and requiring manufacturers to stay up-to-date with 

constantly evolving requirements and the competition among industrial players [2]. 

The demand for the implementation of continuous manufacturing through process analytical 

technology (PAT) has increased in recent years owing to the numerous financial and 

environmental benefits [3]. This trend also promotes adopting process design and development 

based on the deep understanding of both the process and the product. Additionally, it facilitates 
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the implementation of the quality-by-design (QbD) approach. Thus, the main point of interest 

has become real-time, non-destructive, quality-based monitoring and control following the 

publication of the regulatory guidelines [4]. 

In the pharmaceutical market solid dosage forms are significantly represented, particularly 

tablets [5]. In the context of modernization, the development of new and innovative analytical 

systems and solutions for quality assessment remains a relevant area [6]. The QbD approach 

necessitates a thorough understanding, continuous monitoring, and control of critical quality 

attributes (CQAs) and critical process parameters (CPPs), such as compression force, hardness, 

content uniformity and in vitro dissolution behavior of tablets [7]. Traditionally, standardized 

in-process control tests are carried out during production, applying offline specialized 

equipment, often using destructive methods.

In vitro dissolution testing is an essentital procedure for assessing the in vivo effectiveness of 

the product. It is also applied during the research, development and manufacturing phases 

[8][9][10]. Despite being well understood and also required by regulatory agencies, this 

procedure is destructive, time-consuming, resulting in high resource demands and limitations 

on the number of samples that can be measured and evaluated [11][12][13]. The aleatory 

occurrence of variability in the profiles can be linked to several parameters, including the 

operator, the apparatus, and the tablet position in the vessel [10][8]. Moreover, the dissolution 

behavior significantly affected by various critical process parameters, leading to batch-to-batch 

variability [14]. These factors have driven attention to connect analytical science and 

manufacturing to achieve real-time in vitro dissolution predictions [12].

Near-infrared spectroscopy (NIRS) coupled with multivariate data analysis dominates the field 

of predictions of various CQAs and CPPs. This technique is a widely applied PAT tool and is 

supported by regulatory agencies [15][12]. The application of advanced data analysis methods, 

such as partial least squares and artificial neural networks (ANNs) was considered significant 

[12]. In their study, Freitas et al. utilized diffuse reflectance NIRS to establish a linear 

relationship between the NIR spectra of clonazepam tablets and their in vitro dissolution rate 

while varying the amounts of excipients [16]. Ojala et al. employed diffuse reflectance NIRS 

to predict the drug release from tablets containing toremifene as an API. The correlation 

between the drug release and the NIRS measurements was determined using PLS [14]. The 

application of artificial neural networks by Nagy et al. facilitated the prediction of the in vitro 

dissolution of caffeine-containing extended-release tablets using NIR and Raman spectroscopic 

data [12]. A PLS-2 model was created by Baranwal et al. utilizing NIRS data to anticipate the 
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dissolution profiles of multiple APIs in bilayer tablets [17]. The applicability of machine 

learning methods in predicting the in vitro dissolution of drotaverine-containing tablets was 

demonstrated by Galata et al. [18]. Beside NIRS tools, terahertz spectroscopy has also emerged 

as a valuable tool to provide modern solutions in the pharmaceutical industry [13]. Bawuah et 

al. made predictions regarding the dissolution of immediate release tablets containing ibuprofen 

and indomethacin. These predictions were based on the porosity measurements obtained with 

terahertz spectroscopy [19]. 

Despite the extensive representation of these methods, the focus is also on the easily accessible 

and affordable sources of information and predictions [20]. In the recent years, machine vision 

has become increasingly important in the assessment of pharmaceutical quality [21]. These 

highly evolving systems and multivariate data analysis presents a cost-effective and real-time 

solution. This can serve as a PAT tool to facilitate the implementation of continuous 

manufacturing. These methods have already established their effectiveness in visual inspections 

to identify core or coating defects [15][22][23], digitalization processes of packaging and labels 

[24] and for process monitoring [25]. These highlight the adaptability and extensive 

applicability of machine vision in both in-process and end-product testing. However, the 

authors have not found any publications that discuss the implementation of a machine vision 

system in combination with multivariate data analysis for the purpose of predicting dissolution 

behavior of tablets.

The previous studies of the authors have introduced digital UV/VIS imaging-based methods for 

inspecting meloxicam-containing tablets. These methods were used to determine API content, 

compression force, crushing strength, particle size distribution of the API, and classify tablets 

with different particle sizes of the API, as well as map the API distribution. In that scenario, 

adjustments were made to one parameter at a time, and the resulting modifications were 

examined [26][27].

This study aims to establish a non-destructive, rapid, digital UV/VIS imaging-based machine 

vision method for predicting the altered in vitro dissolution of meloxicam-containing tablets. 

The alteration was carried out by simultaneously modifying the CPPs, which included adjusting 

the compression force, particle size distribution, and content of the API. Additionally, the 

objective was to examine the cumulative impact of these factors on the dissolution behavior of 

the samples. ANN-based prediction of the dissolution profiles relied on input data obtained 

from the particle size distributions of the API and the compression force values, both predicted 

by the developed UV/VIS imaging-based machine vision system. A correlation was established 
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between the color components of the images and the API content of the samples, indirectly 

influencing the dissolution rate. Consequently, the estimation of the maximum concentrations 

achieved during the dissolution tests was carried out using PLS models. The input dataset was 

comprised of the color components from images captured from the samples within the target 

range of compression force and particle size distribution. The performance of the developed 

models was also tested on an external dataset of meloxicam-containing tablets. 

2. Materials and Methods

2.1. Materials

Meloxicam (MLX) was utilized as the active pharmaceutical ingredient (API), belonging to 

class 2 due to its high permeability and limited solubility in the Biopharmaceutics Classification 

System (BCS) [28]. Acetone, sodium hydroxide, and sodium-dihydrogen-phosphate were 

obtained from Sigma Aldrich (St. Louis, MO, USA). Vivapur 200 microcrystalline cellulose 

(MCC) was purchased from JRS Pharma (Rosenberg, Germany). 

2.2. Methods 

2.2.1. Preparation of the samples with altered in vitro dissolution behaviour

Particle size enlargement of the API by crystallization and the characterization of the 

product

In order to decrease the dissolution rate, the particle size of the API was increased compared to 

its initial size. For the particle size enlargement of MLX, slow cooling and evaporation method 

from the publication of Bolourchian et al. was used [29]. 1 g of MLX was dissolved in acetone 

solvent in a crystallization dish and MLX concentration was set at 0.45 w/v%. 50°C, 100 rpm 

stirring was applied until a clear solution was obtained. The solution was kept overnight at room 

temperature to evaporate the applied solvent. The particle size distribution of the prepared 

crystals was determined by laser diffraction using Malvern Mastersizer 2000 (Malvern 
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Panalytical, UK) [30].  A manual placement of 1 g of crystalline sample was carried out on the 

sample tray of the dispersion unit. The sample was guided into a sieve with bearings by the 

vibration of the tray, to ensure controlled sample flow and disintegration of any loose 

agglomerates. Compressed air was utilized to provide the sample flow and dispersion. The 

parameters for the applied standard operation procedure were as follows: the vibrational feed 

rate was set to 40%, the dispersive air pressure was set to 1 bar, and the measurement time was 

30 seconds. Particle size analysis is based on the application of the Mie theory. The 

measurement range of this instrument spans from 100 nm to 2 mm [30]. The initial MLX was 

labeled as MLX25μm, while the enlarged form was labeled as 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚  in the following. With 

the crystallized and initial MLX, two groups were created based on the different particle sizes. 

For the third group MLX25μm and 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚  were mixed with 50:50 ratio to produce the 

samples. 

Preparation of tablets 

After weighing the components, powder mixtures were manually homogenized for 10 minutes. 

A total of 172 tablets were manually produced using a Dott Bonapace CPR6 (Dott Bonapace, 

Italy) eccentric tablet press, within the compression force range of 5-15 kN, and with the API 

content ranging from 2.3-3.5 w/w% as stated in Table 1. The tablet press was equipped with a 

single concave punch. Biconvex tablets were obtained, with a diameter of 14 mm, weighing 

400 ± 15 mg. The dissolution test results are highly affected by these parameters, along with 

the increased particle size. The application of higher compression force values also leads to an 

increase in the disintegration time of the samples. The model development utilized 135 tablets 

from the produced samples, while an additional 22 samples were used as an external dataset In 

order to predict the maximum concentration at the endpoint of the dissolution tests, an extended 

sample set was used in the calibration and validation process of the developed models.

Table 1. The tablet properties and the experiment setup for predicting of in vitro dissolution 

behaviour

Levels of particle 
sizes of API

Levels of compression 
force (kN)

Levels of nominal 
API content 

(w/w%)

Weight of powder 
mixture for each 

level

Number of 
samples

Sample set for model development
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MLX25μm 5, 10,15 1.5, 2.5, 3.5 8g 1-45. 

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚 5, 10,15 1.5, 2.5, 3.5 8g 45-90.

MLX25μm+
𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176µ𝑚
5, 10,15 1.5, 2.5, 3.5 8g 91-135.

Extended sample set used for model development

MLX25μm 10 1.5, 2.5, 3.5 3g C1-15. 

External test set used for the application of the developed models

MLX25μm 8, 10, 12 2.3, 2.5, 2.7 5g 1-2., 6-22.

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚 10 2.5 3-4.

MLX25μm+
𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176µ𝑚
10 2.5 4-5.

2.2.2. In vitro dissolution testing

The in vitro dissolution testing was conducted using the paddle method (US Pharmacopoeia II) 

on the Hanson SR8-Plus dissolution tester (Hanson Research, Chatworth, CA, USA). The 

dissolution medium consisting of a pH=6.8 phosphate buffer,  and the volume of 900 ml. The 

applied temperature was maintained at 37 ± 0.5°C, while the paddle rotation speed was set to 

100 rpm. Released API content was measured online at a wavelength of 363 nm using an online 

UV/VIS spectrophotometer (Hewlett-Packard, CA, USA). The time interval of the tests was 24 

hours. In order to achieve a deeper comprehension and distinction between the dissolution 

profiles, a total of 70 sampling points were employed. Following the 2-minute and 5-minute 

sampling, the interval was modified to every 10 minutes until 190 minute. Subsequently, 

sampling periods of 20 and 30 minutes were implemented. 

2.2.3. Image acquisition

The in-house production of the image acquisition layout was carried out by the authors and 

previously published [26]. This layout can be mounted above a conveyor belt. The image 

acquisition was performed using a Basler acA4112-30uc area scan camera (Basler, Germany), 

which incorporates a CMOS sensor. It was equipped with the Basler MEGA TS1214-MP 

objective (Basler, Germany). The illumination was provided by a ring light, which contains 
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three rows of white, light emitting diode (LED, VIS), or a UV ringlight, which consists of 6 

ultraviolet LEDs, emitting light in the 380-395 nm range (UV) (Apokromat Ltd., Hungary). 

The exposition time for acquiring VIS images was set to 1200 µs, whereas for UV images it 

was set to 30000 µs. Both sides of the prepared samples were examined, resulting in images 

with dimensions of 480x480 pixels.

2.2.4. The algorithms utilized in the quality-based assessment, specifically for the 

in vitro dissolution of MLX-containing tablets

The applied algorithms were developed within the MATLAB R2020a environment 

(MathWorks, Natick, MA, USA). The PLS models were generated using PLS Toolbox 8.8.1 

(Eigenvector, Manson, WA, USA). Wavelet-based analysis of the images was performed using 

Wavelet Toolbox 5.4 (MathWorks, Natick, MA, USA). The Deep Learning Toolbox 14.0 

(MathWorks, Natick, MA, USA) was utilized for the tasks of neural network-based predictions 

and classifications. Figure 1. summarize the developed algorithms in a flowchart. 

In order to create an appropriate dataset for profile prediction, it was necessary to gather 

information on the compression force and particle size distribution. Hence, these were estimated 

by applying the acquired VIS and UV images. The API content must be taken into consideration 

in order to accurately estimate the in vitro dissolution behavior. This parameter has the potential 

to influence the maximum dissolved content at the end of the tests and may be linked to the 

color components of the images acquired from the samples. The subsequent algorithms were 

utilized to predict these parameters for the dissolution-based evaluation of the prepared 

samples.

After importing the images, the background extraction process was uniformly implemented in 

all cases. In the initial step, the images were binarized, followed by the detection of circles with 

the determined radius using circular Hough-transformation.
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Figure 1. The detailed presentation of developed algorithms for the prediction of compression 

force, particle size distribution, in vitro dissolution profile and the maximum concentration at 

the end of the tests

Prediction of compression force

An algorithm was developed using wavelet-based analysis and VIS images for the prediction 

of compression force. The authors have previously demonstrated the successful application of 

the developed algorithm to MLX-containing tablets [26]. Taking into account the nature of the 

images and the requirement to highlight surface details, brightness adjustment and contrast 

enhancement were carried out after the background extraction. In the subsequent step, wavelet 

decomposition was performed on the monochromatic images based on the L component using 

Daubechies2 and Meyer wavelets. Histograms were generated using the approximation 

coefficients and applied as input dataset for PLS. Autoscale preprocessing and venetian blinds 

cross-validation were implemented with 10 splits in the development of the PLS model. To 
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assess the performance of the developed models, R2CV (determination coefficient of cross-

validation), RMSECV (root mean square error of cross-validation), RMSEP (root mean square 

error of prediction, and the number of latent variables (No. of LVs) were employed. The 

obtained performance parameters are presented in Figure 6.

Classification based on the particle size and the prediction of particle size distribution of the 

API

A two-step process was carried out to gather information on the particle size of the API. The 

methodology comprised the execution of permissive thresholding to enhance distinguishable 

regions on the surface, which was then followed by classification. Considering the determined 

classes, it is possible to apply stricter thresholds in order to predict the particle size distribution. 

Processing of VIS and UV images involved the application of two algorithms. Image resizing 

was achieved using the sophisticated Lanczos kernel mathematical approach. Due to the 

characteristics of the low-resolution UV images and the variations in critical parameters, 

concentric image cropping was necessary. Following that, the thresholds for the cropped images 

were determined utilizing the G (green) component from the RGB colorspace of the API 

containing regions. The fusion of the resulting binary images took place in the next step, 

followed by calculating the area equivalent diameters in pixels. The input dataset for the pattern 

recognition neural network  (PRNN) was generated by creating histograms from the mentioned 

values. The determination of the target classes was based on the applied particle size groups of 

MLX.

Due to the specific characteristics of the VIS images, a slightly modified algorithm was 

employed for this purpose. Following the segmentation process, the images were transformed 

into the CMYK colorspace, mainly focusing on enhancing the Y (yellow) component to expose 

the API particles present on the surface. The CMYK images were converted to HSV colorspace. 

The determination of thresholds was carried out for the S (saturation) component. In the 

following steps, the center and outer region were combined through image fusion. The final 

steps remain unchanged as outlined in the algorithm for UV images.

The obtained datasets using the mentioned method based on UV and VIS images were applied 

as the input for PRNNs. The training, validation and test set ratio was 70:15:15. The elements 

of the sets were randomly selected. In feedforward network structure an input, a hidden and an 

output layer was utilized. The applied training function was scaled conjugate gradient 
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backpropagation. The output layer contained softmax transfer function. The optimization of 

neuron numbers was performed across a range of 1-15 neurons in all cases, with 100 instances 

of training. Each training process was restricted to a maximum duration of 20 epochs. The 

PRNNs was initialized with the default hyperparameters [31]. The results and goodness 

parameters were computed as an average. Target classes were based on the prepared API 

particles in different sizes, as mentioned in Section 2.2.1. For evaluation of the performance of 

PRNNs, root mean square error (RMSE) and cross-entropy (CE) were applied. The 

performance is considered to be good when these values approximating zero. 

In order to determine the particle size distribution of the API in the samples, more stringent 

thresholds were set for the various API groups based on the classifications derived from UV 

and VIS images. Particle size distributions were determined using area equivalent diameters, 

which were converted from pixels to microns using the QPCard 101 v3 millimeter reference 

scale (Argraph Corp., NJ, USA). The comparison between the measured and the predicted 

distributions was conducted using metric. When the value of the Wasserstein distance 

approximates zero, two distributions were considered similar.

In vitro dissolution prediction of the prepared tablets 

The in vitro dissolution profile predictions were executed using ANNs. For this purpose, the 

dissolution curves were normalized between the 0-100% range of the dissolution rate. The 

compression force values and the particle size distributions, both obtained using the machine 

vision system, were applied as the inputs of the ANNs. The applied feedforward ANNs 

consisted of three layers: an input layer, a hidden layer, and an output layer. The training and 

validation set contained 70% and the test set contained the remaining 30% of the samples. The 

elements of the sets were selected randomly. The used training function was Bayesian 

regularization [32]. In order to prevent overfitting a training process with maximum of 7 epochs 

were utilized. The default hyperparameters of the ANN were implemented [32]. The 

optimization occurred in a similar manner as mentioned in the context of PRNNs for 

classification. RMSE values were also utilized to assess the performance of the ANNs. The 

predicted and measured profiles were compared using f2 (similarity) factor using DDSolver 

[33].

The color components of UV and VIS images were utilized to predict the maximum API release 

obtained from the measured dissolution curve in the last sampling, referred to as maximum 

concentration thereafter. Following the background extraction steps, the G (green) components 
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were extracted from the UV images in the RGB color space. Histograms were generated from 

these values, which constituted the input dataset for the PLS. The calibration process involved 

the application of autoscale preprocessing and venetian blinds cross-validation with 10 splits. 

The VIS images underwent a conversion from RGB to CIELAB colorspace. Based on the color 

of the API, the ‘b’ (blue-yellow transition) component was applied. The subsequent steps were 

identical to those mentioned for UV images. In order to evaluate the performance of the 

developed models, the same parameters were utilized as mentioned in the case of predicting 

compression force. The obtained values  are presented in Figure 13.

3. Results and Discussion 

3.1. Acquired images of the samples and the comparison of the surfaces under 
altered attributes

The acquired images of the prepared tablets are shown in Figures 2-4. 

Altering the particle size of MLX and the compression force has a dual effect, not only on the 

dissolution rate but also on the visual properties of the surface (Figure 2). The utilization of 

UV and VIS light sources allows for the differentiation of API particles from the MCC matrix 

based on the acquired images. In the case of MLX25μm, the naked eye could discern the 

individual particles in the UV images, but the utilization of VIS images will require advanced 

image preprocessing to enhance the visibility of these small particles. The examination of the 

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚  particles utilizing UV or VIS sources can be easily conducted whether they are 

applied individually or incorporated into a mixture with MLX25μm. Accordingly, changes in the 

particle size can be identified on the surface of the samples. However, the application of UV 

illumination contributed to more significant effect. Based on these findings, the images provide 

sufficient information to determine or classify tablets based on particle size. Because of the low 

resolution, the diameters of the samples were estimated to be around 380 in pixels.
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Figure 2. The acquired, contrast enhanced VIS (first row) and UV (second row) images of three 

prepared tablets produced at 10 kN compression force and 1.5 w/w% API content with varying 

particle sizes (from left to right: MLX25μm, 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚 , MLX25µm + 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176µ𝑚  containing 

tablets)

VIS images of the samples exhibit visible changes that correspond to the applied compression 

force, even at low resolution (Figure 3). This offers the potential for predicting attributes like 

compression force and crushing strength, which rely on the surface structure. Notably, 

observing this phenomenon in UV images of this resolution was impossible. The variations in 

compression force can also result in subtle changes in color on the surface, particularly along 

the concentric edges of the samples. This could be seen in both VIS and UV images in this 

resolution. Consequently, this aspect is important to take into consideration as it has the 

potential impact on the determination of API content or maximum concentration of the 

dissolution test. The influence of this parameter on the concentric edges of the tablets is minimal 

in relation to particle size prediction. This phenomenon is caused by the biconvexity of the 

samples.
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Figure 3. The acquired, contrast enhanced VIS (first row) and UV (second row) images of three 

prepared 2.5 w/w%, MLX25μm containing tablets with varying compression force (from left to 

right: 5 kN, 10 kN, 15 kN) 

The changes in surface color could be indicative of a correlation with the API content or with 

the maximum concentration obtained from the dissolution tests in the applied range (Figure 4). 

It is visually represented with a saturated yellow hue in VIS images. This effect became more 

pronounced in UV images as the content increases. An increased quantity of particles was 

observed on the surface of the samples, resulting in a more noticeable color change from blue 

to yellow. This phenomenon is also observed when a larger particle size of the API was applied. 

Despite this, the concentric edge of the sample is affected by the increasing MLX content.

Figure 4. The acquired, contrast enhanced VIS (first row) and UV (second row) images of three 

prepared MLX25μm containing tablets using 10 kN compression force with varying API content 

(from left to right:1.5 w/w%, 2.5 w/w%, 3.5 w/w%) 

3.2. The results of the in vitro dissolution tests of the produced samples

In vitro dissolution tests were conducted on a total of 157 samples. This sample set contained 

five samples from each combination of the levels of the mentioned CPPs. The dataset provided 

a suitable size for testing the capabilities of image analysis and neural networks in predicting 

altered profiles. The results of the tests were presented in Figure 5. 
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Figure 5. The in vitro dissolution profiles of MLX-containing tablets using different particle 

size groups and compression force levels

Figure 5 shows that as the particle size of the API increases, the dissolution rate highly 

decreases. Based on the visual inspection of the images obtained from the samples and the 

analysis of the dissolution profiles, it can be determined that the alteration was successful. 

However, when examining the dissolution profiles at different particle size levels, only the 

compression force that determines the profiles. The profiles can be differentiated at the applied 

compression force levels of 5, 10, and 15 kN, with the dissolution rate decreasing as the levels 

increase. In summary, both examined parameters in the applied range exhibit an impact on the 

rate of dissolution. Thus, it is crucial to understand the impact of these important factors for 

proper in vitro dissolution prediction.

3.3. Creating a comprehensive dataset for in vitro dissolution profile prediction 

3.3.1.  Prediction of compression force

Based on the visual inspection of the images taken from the samples, it is possible to gather 

information regarding the compression force. After the development of the model, this 

parameter was quantitatively estimated to generate the input dataset for in vitro dissolution 

prediction.

Model development

A model was developed to predict compression force using a dataset of 135 samples. The 

samples were selected randomly, with 70% allocated for the calibration set and 30% allocated 

for the validation set. Previous research by the authors confirmed the feasibility of predicting 

the mentioned parameter on VIS images of meloxicam-containing tablets by solely altering this 
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parameter. Nevertheless, in this case, the compression force, along with the API content and 

the particle size of the API, were changed. The PLS model and the goodness parameters for the 

calibration and validation are presented in Figure 6 a) and b).

Figure 6. a) The obtained PLS model and the goodness parameters for calibration, b) the 

results of the model validation and the obtained RMSEP value

During the model development stage for compression force, the PLS model accurately 

predicted this parameter with a relative error of 7.74% for the median of the applied range. The 

approval limit for this value is ± 10% and it falls within that range. In comparison to the model 

previously obtained by the authors, only the changes in compression force showed similar 

goodness (RMSEP: 0.836 kN) and relative error (6.8%) values. This indicates that the algorithm 

and compression force prediction method, utilizing the acquired VIS images, can be 

successfully used for model development in scenarios where critical parameters are subject to 

change.

Application of the model for samples of the external test set 

The model obtained for predicting compression force was applied to an external test set to 

simulate its application and assess its performance. The predicted values for the mentioned 

dataset were displayed with the calibration set in Figure 7. The relative error in the median of 

the test set was 8.26%. Accordingly, the obtained model was successfully applicable to an 

external dataset of MLX containing samples. 
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Figure 7. Obtained result of compression force prediction for the external dataset displayed 

with the calibration set

There are slight variances that can be observed between the predicted and measured values. 

According to Table 2 samples labeled as 3-6, in which 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚  and MLX25μm were applied, 

exhibit lower values than measured. It is important to emphasize that a single model has the 

ability to predict the compression force under the condition where multiple parameters undergo 

simultaneous changes. The target compression force was 10 kN, which was determined by the 

authors. The dissolution profiles of Samples 1-2 and 15-16 are expected to be greatly influenced 

by the compression force, based on the predicted values. The measured values also provided 

support for this observation (Figure 14).

Table 2. The measured and the predicted compression force values of the samples from the 

external test set

No. of 

sample

Measured 

value 

Predicted 

value

No. of 

sample

Measured 

value 

Predicted 

value

1 12.2 kN 13.1 kN 12 10.9 kN 11.0 kN 

2 12.7 kN 12.8 kN 13 9.7 kN 9.2 kN 

3 10.4 kN 9.7 kN 14 9.7 kN 9.8 kN 

4 10.4 kN 9.3 kN 15 7.6 kN 7.6 kN 

5 10.9 kN 9.0 kN 16 7.3 kN 7.8 kN 

6 10.9 kN 9.7 kN 17 10.1 kN 8.9 kN 

7 10.8 kN 9.5 kN 18 10.3 kN 10.4 kN 

8 10.7 kN 10.5 kN 19 10.4 kN 10.5 kN 

9 10.4 kN 11.0 kN 20 10.3 kN 9.9 kN 

10 10.8 kN 9.2 kN 21 10.7 kN 9.6 kN 

11 10.7 kN 10.1 kN 22 10.4 kN 9.5 kN 
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To summarize, the obtained model and results for the test set suggest the possibility of 

predicting the compression force of MLX-containing tablets using VIS images, even in the 

presence of variations in multiple critical parameters, such as the API content and particle size. 

The predicted compression force values provide a compact and manageable dataset suitable for 

input into subsequent models.

3.3.2. Prediction of the particle size of the API 

The measured dissolution curves confirmed the importance of predicting the particle size of the 

API. This prediction was carried out using a method that combined qualitative and quantitative 

analysis.

Model development for qualitative analysis of particle size

The classification based on the produced three different particle sizes of the API was carried 

out using both UV and VIS images. These tasks were executed by applying PRNNs. 135 tablets 

were divided in a proportion of 70:15:15 for training, validation, and testing purposes. The use 

of a random partition of the input dataset led to a minor skew in the distribution of particle size 

groups among the training, validation, and test sets. The neural networks underwent 

optimization through training with 100 iterations using a range of 1-15 neurons. Figure 8 

provides a summary of the misclassified sample ratio in the test set during the optimization 

process for UV and VIS imaging-based input datasets. The obtained values led to the selection 

of 14 and 15 neurons in the hidden layer for UV and VIS images.

Figure 8. The ratio of incorrect classification in the test set during the optimization of pattern 

recognition neural networks for classification based on the particle size (a) using UV and (b) 

using VIS images
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The neural networks were able to establish a correlation between the applied images and the 

particle sizes, as demonstrated in Table 3, which displays the CE and the average RMSE values. 

These values indicate the trained PRNNs’ effective performance in the classification tasks. The 

values of both the RMSE and CE have been obtained at a small value.

Table 3. The summary of the goodness parameters of the applied pattern recognition neural 

networks

Image 

type
Dataset RMSE CE

Incorrect 

classification

Correct 

classification

UV Training 8.93×10-2 2.21×10-2 1.1% 98.9%

Validation 1.17×10-1 3.43×10-2 0% 100%

Test 1.25×10-1 3.86×10-2 0% 100%

VIS Training 1.09×10-1 3.36×10-2 2.1% 97.9%

Validation 1.77×10-1 6.54×10-2 0% 100%

Test 1.85×10-1 7.22×10-2 0% 100%

Pattern recognition neural networks reliably classified the prepared samples using information 

from the images, as shown by the confusion matrices (Figure 9). Only one was misclassified 

out of the UV illuminated images in the training set. In contrast, two images in the training set 

were misclassified using VIS images. All the samples were correctly classified during testing 

and validation. The slight imbalance in the ratio of the particle size classes within the sets did 

not present any limitations on the execution of the classification task. It is important to highlight 

that the classification results also produce a subset of samples where the dissolution profiles are 

affected by this critical parameter.
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Figure 9. The confusion matrixes for training, validation, and test sets for VIS (first row) and 

UV (second row) images (1. group: MLX25μm, 2. group: 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚 , 3. group: 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176µ𝑚 + 

MLX25μm)

Application of trained pattern recognition neural networks for classification of the 

samples from the external dataset 

The PRNNs were applied using the same external sample set as mentioned in the prediction of 

compression force to assess the performance. The obtained confusion matrixes are shown in 

Figure 10 for VIS and UV images.

Figure 10. The confusion matrixes for external test sets for VIS (a) and UV (b) images (1. 

group: MLX25μm, 2. group: 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚 , 3. group: 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176µ𝑚 + MLX25μm)



21

The classification task was successfully executed using the developed algorithms and trained 

PRNNs, as indicated by the obtained confusion matrices. There were no occurrences of 

misclassified samples in the external test set. For UV images, the RMSE and CE values were 

1.25×10-1 and 3.00×10-2, respectively. For VIS images, the corresponding values were 4.65×10-

2 and 1.54×10-2. The classification was executed successfully on the samples of the external test 

set, as the obtained RMSE and the CE values were considered low. 

Prediction of the particle size based on the results of the classification

Following the classification, an opportunity arose to assess the particle size distribution of the 

API in the prepared samples by employing more stringent thresholds of the color components. 

Figure 11 displays the measured and obtained PSDs by applying all the samples from the 

determined groups. The limited resolution of the images restricts the ability to observe the 

complete range of the reference particle size analysis, particularly within the 2-20 μm interval. 

However, the domain size of these groups can be measured. As the alteration of the dissolution 

profiles was linked to the enlargement of the initial MLX, the significance of the mentioned 

interval was limited. Nevertheless the primary goal of this analysis was to discern the changes 

and collect data on the employed particle sizes of MLX. Hence, the resulting distributions can 

be utilized. The predicted distributions closely resembled those measured using laser diffraction 

method beside of the mentioned range. In the context of comparing the measured and the 

predicted distributions using the two illuminations, Wasserstein distances were calculated. The 

obtained higher values were caused by the limited resolution of the images. Based on these 

values it can be concluded that similar distributions can be obtained with both of the applied 

illuminations. Consequently, these particle size distributions were utilized as input for the 

subsequent analysis. 
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Figure 11. The measured and the predicted PSDs of 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176µ𝑚  and MLX25μm groups using 

UV (first column) and VIS (second column) images

To conclude, the developed algorithms and the utilization of low-resolution images enable the 

execution of particle size determination, despite variations in compression force and API 

content within the applied range.

3.4. In vitro dissolution prediction

Model development for in vitro dissolution profile prediction

The input dataset included the predicted compression force and particle size distributions of the 

API. Both UV and VIS images were used to predict the profiles. The optimization of the 

networks can be observed in Figure 12. The selection of neuron numbers was determined by 

analyzing the square root of the performance function (MSE) obtained from the optimization 

process. Consequently, 14 and 15 neurons were chosen in the hidden layer.
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Figure 12. The results obtained from optimizing neural networks to predict in vitro dissolution 

profiles using UV (a) and VIS (b) images

In Table 4, the goodness parameters are presented, with a focus on the averaged RMSE values 

for the training and test sets based on one hundred runs. These percentages for the datasets were 

below 5%. The obtained results indicate that the application of the developed image processing 

algorithms and artificial neural networks can be utilized for predicting the mentioned parameter. 

The application of two distinct wavelengths of light yielded similar goodness. In addition, the 

simultaneous changes in particle sizes and compression force can be effectively managed by a 

single model.  

Table 4. The goodness parameter of in vitro dissolution profile predictions using UV and VIS 

images

Taking the API content into consideration is vital for a proper in vitro dissolution prediction. 

Therefore, the predicted percentage of the API dissolved at the final sampling point is related 

to the mentioned parameter. The obtained images reveal that the prediction of compression 

force and particle size is achievable, and there is a connection between color change and API 

content. Therefore, this allows for the prediction of the maximum concentration of the 

dissolution test. For this purpose, a subset of samples within the target range were chosen from 

the total of 135. This corresponded to a total of 15 samples, which was further supplemented 

with an additional 15 samples from the extended set to construct a suitable dataset for model 

development. After splitting, 21 samples were used for calibration, and 9 samples for validation, 

Image type Dataset RMSE Image type Dataset RMSE

Training 3.74% Training 4.48%
UV

Test 4.24%
VIS

Test 4.59%
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employing both VIS and UV images. The results and goodness parameters of the obtained PLS 

models are displayed in Figure 13.

Figure 13. The goodness parameters and the result of the calibration of PLS model in maximum 

concentration prediction for the dissolution tests based on UV (a) and VIS (b) images 

The goodness parameters of the maximum concentration predictions demonstrated similarity in 

both UV and VIS images. According to the values of R2CV, RMSECV and RMSEP, the models 

were considered acceptable.

Application of the developed models for the prediction of dissolution profile and the 

maximum concentration of the in vitro dissolution tests for the external dataset

The demonstration of the application and evaluation of the trained ANNs utilized 22 samples 

of the external dataset. Figure 14 summarize the measured and the UV and VIS images-based 

predictions with the f2 values. The RMSE values were 3.93% and 4.15% for using UV and VIS 

images, respectively.
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Figure 14. The measured (red) and the predicted profiles for the prepared tablet along with 

the f2 values using UV (blue) and VIS (green) images

The average f2 values were 77.04 for UV images and 76.37 for VIS images. The performance 

of both ANNs was found to be similar. This outcome was anticipated in light of the particle 

size distribution and the compression force predictions. In conclusion, the algorithms and ANNs 

were successfully applied to predict the in vitro dissolution profile of MLX tablets produced 

within the specified range of compression force and particle size.

The prediction of the maximum concentration results for the 14 samples of the external test set 

and RMSEP values are displayed in Figure 15 for both types of images. Considering these 
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f2VIS: 63.46
f2UV: 72.02

f2VIS: 80.00
f2UV: 78.82

f2VIS: 75.58
f2UV: 59.52

f2VIS: 64.37
f2UV: 74.06

f2VIS: 69.55
f2UV: 76.38

f2VIS: 92.83
f2UV: 90.04

f2VIS: 60.59
f2UV: 74.71

f2VIS: 66.14
f2UV: 80.94

f2VIS: 60.01
f2UV: 71.12

f2VIS: 86.59
f2UV: 66.19

f2VIS: 75.46
f2UV: 86.93

f2VIS: 71.79
f2UV: 81.90

f2VIS: 79.16
f2UV: 70.19

f2VIS: 83.92
f2UV: 72.00

f2VIS: 88.68
f2UV: 87.15

f2VIS: 76.24
f2UV: 74.35

f2VIS: 90.24
f2UV: 81.76

f2VIS: 82.92
f2UV: 82.98

f2VIS: 90.16
f2UV: 70.04

f2VIS: 65.99
f2UV: 80.86

Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Sample 7 Sample 8

Sample 9 Sample 10 Sample 11 Sample 12

Sample 13 Sample 14 Sample 15 Sample 16

Sample 17 Sample 18 Sample 19 Sample 20

Sample 21 Sample 22
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values, the implementation of the PLS models were suitable, if a single parameter, the API 

content undergoes alteration through VIS or UV images.

Figure 15. The result of the maximum concentration prediction for the samples of external 

dataset based on UV (a) and VIS (b) images

According to the RMSEP values obtained for the external dataset, the prediction can be carried 

out with a relative error of less than 10% for the target (USP limit for drug content error in a 

tablet is ± 25%). The in vitro dissolution behavior of the samples can be assessed by taking into 

account the predictions of the profiles and the maximum concentration. Various standard 

analytical methods can be applied to predict the API content. However, the primary advantage 

of machine vision its ability to provide information for each individual sample non-

destructively on the production line. Moreover, the obtained models and predictions for the 

critical attributes can provide an opportunity to identify samples that did not meet the required 

quality. 

4. Conclusion

In the pharmaceutical industry, modernization, innovation, and digitalization are at the center 

of attention. There is also an increasing interest in the utilization of machine vision systems as 

PAT tools. These methods can offer a rapid and non-destructive solution for evaluating the 

quality of solid dosage forms.

The dissolution characteristics of the prepared samples were modified by changing the particle 

size of the API, API content and compression force. The dataset used for in vitro dissolution 

profile prediction was generated through the utilization of imaging-based prediction of 

compression force and particle size. The presented work demonstrated that these sample 

attributes are successfully predictable even other critical parameters change at the same time. 
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In that scenario, the compression force was predicted utilizing VIS images, resulting in a 

relative error of 7.4%. The qualitative and quantitative assessment of the samples based on the 

particle size of the API can be executed even when low-resolution images are applied. The 

predicted and the measured particle size distributions showed a high similarity. In the context 

of in vitro dissolution prediction RMSEP values were less than 5%, and the averaged f2 

similarity factors were 77, respectively. For the maximum concentration prediction the RMSEP 

valu-es were lower than 9%.

The prediction of compression force using VIS images is not reliant on the applied API or color; 

instead, it solely relies on the surface texture. Therefore, it could be possible to implement the 

algorithms and methods for other samples. The API color is particularly relevant when VIS 

images are employed to predict the maximal concentration of in vitro dissolution and analyze 

particle size. Therefore, the API can be evaluated through VIS images, in which the color or 

hue differs from the matrix component. It is crucial to acknowledge that the use of UV 

illumination can greatly expand the range of accessible colored or white APIs for evaluation. 

The importance of this arises when the API can be discriminated from the matrix component 

due to differences in color or hue. Therefore, the UV/VIS imaging-based system presented here 

has the capability to adapt to white APIs as well.

Based on the obtained results, there is a possibility of incorporating imaging to support complex 

quality assessment in the context of critical parameters, which is considered a crucial element 

in modern manufacturing. The characteristics of the developed system could fulfill the 

requirements of PAT and has the potential to contribute to QbD and RTRT approaches in the 

future. It should be noted that it can support the conventional methods used in that field by 

providing more information of the product. Moreover, the imaging-based system can enable 

the evaluation and selection of each sample based on the requirements. In conclusion the 

developed system could be a promising solution for predictions of critical attributes and can be 

utilized for a comprehensive quality assessment of MLX-containing tablets.
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