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Abstract: Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhance-
ments due to challenges such as significant first-pass metabolism, poor absorption, and limited oral
bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic
polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by
solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the forma-
tion of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in
the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs
often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect
of the native form of DAS was investigated as well, considering its potential accumulation in the envi-
ronment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other
test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor)
exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorp-
tion but also has the potential to reduce the proportion of DAS that enters the environment through
human excretion. This comprehensive approach highlights the significance of integrating advances
in drug development while considering its environmental implications.

Keywords: dasatinib; mechanochemical activation; amorphous solid dispersion; drug release;
ecotoxicological evaluation

1. Introduction

Dasatinib (DAS) is a second-generation tyrosine kinase inhibitor used for the treat-
ment of Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) and
acute lymphoblastic leukemia [1]. DAS is of particular importance for patients who have
developed resistance or intolerance to imatinib, the first tyrosine kinase inhibitor approved
for clinical use and used in prior therapy [2,3]. As the disease progresses, resistance to
imatinib becomes more common, affecting around 40–66% of patients with advanced-
phase CML and 38% of patients with chronic-phase CML. DAS is commercially supplied
as Sprycel®—film-coated tablets manufactured by Bristol Myers Squibb and available in
various dosage strengths [4]. It falls within class II of the Biopharmaceutical Classification
System (BCS), which is characterized by poor aqueous solubility but good intestinal perme-
ability. Its limited solubility in water leads to slow and insufficient absorption, resulting in
low oral bioavailability ranging from 14% to 34% [5,6].

Improving the bioavailability of poorly-soluble crystalline drugs such as DAS can be
achieved through a promising approach: modifying their crystalline structure with supramolec-
ular changes, such as the preparation of co-crystals, polymorphs, or co-amorphous systems [7].
Usually, the crystalline form of drugs is preferred for stability and purity reasons in
formulations [8]. Nevertheless, the amorphous solid state presents advantages, such as im-
proved solubility and release rate, attributable to a reduced energy barrier for dissolution [9].
Yet, amorphous drugs tend to recrystallize during transit, packaging, and storage, posing
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stability challenges [10]. To effectively address these stability issues, a practical approach
involves converting the crystalline drug into its amorphous state and embedding it within
an amorphous polymeric matrix, resulting in the formation of an amorphous solid dis-
persion (ASD). This advanced formulation technique holds great promise for improving
the aqueous solubility of poorly water-soluble anticancer drugs such as DAS [11]. The
inclusion of a polymeric matrix plays a crucial role in enhancing the physical stability and
regulating the drug release rate by inhibiting its conversion into crystalline form, primarily
by limiting drug mobility [12]. The preferred intermolecular interactions between the drug
and the polymer, such as hydrogen bonds, π–π, or ionic interactions, do not affect the drug’s
pharmacological activity but enhance the system’s physical stability. Even in the absence
of specific interactions, ASD can remain stable due to molecular-mixing levels [10]. To
avoid the thermodegradation of thermosensitive drugs and the use of toxic and hazardous
organic solvents, the method of drug mechanochemical activation by co-grinding with
amorphous polymers to obtain ASDs is gaining attention as the most environmentally
friendly approach [7]. Amorphization achieved through co-grinding results in several
favorable outcomes, such as increasing the specific surface area, reducing the particle size
of the drug, and enhancing wettability, all of which contribute to an improved drug dissolu-
tion rate [13]. Among the frequently used polymers for this purpose, polyvinylpyrrolidone
(PVP) stands out due to its hydrophilicity, low toxicity, and biocompatibility [14]. In addi-
tion to grinding, which aims to reduce particle size and increase the drug’s surface area
in contact with the solvent, various other methods have been employed successfully to
improve the release properties of many poorly soluble drugs. These methods include
supercritical fluid-based processes [15–17], spray drying [18–20], lyophilization [21–23],
electrospinning [24–26], and various others.

Numerous methods have been documented to obtain amorphous DAS, with some involv-
ing the use of hazardous organic solvents such as dimethylformamide, 1,2-dichlorobenzene,
and ethylene glycol [27]. One approach involved preparing solid dispersions of DAS
and various polymers through a solvent evaporation method by using water, organic
solvents (such as ethanol, methanol, or isopropanol), and hydrochloric acid [28]. Notably,
improved drug release was achieved by preparing an ASD of DAS and cellulose acetate
butyrate through the solvent evaporation method using acetone [5]. However, residual
solvents present a risk of inducing the reversion of amorphous DAS to its crystalline form,
altering the drug’s properties. These forms are not stable nor suitable for pharmaceutical
development. Consequently, there is a need to establish a process that is both efficient
and less hazardous, while also being economically viable and environmentally friendly, to
address two of the big challenges that the pharmaceutical industry faces nowadays: the
overuse of hazardous organic solvents and the formulation of drugs with low solubility,
such as DAS. One promising solution is mechanochemical activation by grinding, which
is a fast and simple method that not only meets economic and environmental standards,
but also overcomes issues related to solubility, solvent complexation, or solvolysis [29].
For example, co-grinding DAS with hydroxypropylmethylcellulose acetate succinate and
Kollidon® VA 64 was described in US patent 9,249,134 B2 [30].

As a result of DAS’s poor solubility in human intestinal fluids (HIFs), another significant
ecological issue arises. Namely, anticancer drugs often undergo limited metabolism within
the body, leading to their excretion unchanged through urine and feces by patients [31]. This
process poses an environmental concern, as these drugs are continuously released into
the aquatic environment, causing acute and chronic toxicity to both the aquatic ecosystem
and human health [32,33]. The environmental monitoring of DAS’s trace-level residues in
wastewater and biological samples has been documented in the literature in concentrations
up to 150 µg L−1 [34]. However, to date, no studies have been published on the ecotoxicity
of DAS resulting from its accumulation in the environment.

The main objective of this study was to prepare ASDs of DAS within a PVP K30 matrix
using an environmentally friendly co-grinding method. Hopefully, such a formulation will
enhance the release rate of DAS. Different parameters for co-grinding were chosen—such as
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grinding jars and balls made of materials of different hardnesses, as well as different revo-
lution speeds—to investigate the effect on the drug amorphization rate. The ASDs obtained
through this process were thoroughly characterized using several techniques: differential
scanning calorimetry (DSC) for thermal analysis, Fourier transform infrared spectroscopy
(FTIR) for the investigation of possible hydrogen bonding between DAS and PVP, and X-ray
powder diffraction (XRPD) for detection of the amorphization level of DAS as a result of
co-grinding with PVP. These methods can confirm the successful preparation of ASDs and
predict the enhancement of the drug release rate. Subsequently, in vitro dissolution of the
drug from obtained ASDs was tested and compared to that of the untreated drug, providing
valuable insights into the effectiveness of the co-grinding approach in enhancing drug
release. To investigate the ecotoxicological effects of the native form of the drug, the follow-
ing test organisms were selected: Vibrio fischeri, a marine bacterium; Pseudomonas putida, a
saprophytic bacterium; Chlorella sp., a freshwater microalga; and Lemna minor, a floating
duckweed. The detailed investigation of ecotoxicological effects on these selected organ-
isms not only contributes to our understanding of the drug’s environmental impact but also
informs strategies for sustainable drug development. This conscientious examination aligns
with contemporary principles of ecological risk assessment, emphasizing the importance of
evaluating pharmaceuticals in a broader environmental context.

2. Materials and Methods
2.1. Materials

Dasatinib monohydrate was generously supplied by Teva Pharmaceutical Industries
(Zagreb, Croatia). Polyvinylpyrrolidone with an average molecular weight of 30 kDa
was purchased from Acros Organics (Newark, NJ, USA). Sodium acetate anhydrous was
obtained from Lach-Ner (Neratovice, Czech Republic). Triton X-100 was purchased from
Biochem Chemopharma (Cosne-Cours-sur-Loire, France), and glacial acetic acid was pur-
chased from Alkaloid AD Skopje (Skopje, North Macedonia). Chlorella sp. and Lemna minor
were obtained from the Department of Zoology at the University of Zagreb, Faculty of
Science, Zagreb, Croatia.

2.2. Methods
2.2.1. Preparation of Amorphous Solid Dispersions

ASDs of DAS and PVP K30 were successfully prepared by co-grinding in a planetary
ball mill Pulverisette 6 (Fritsch GmbH, Weimar, Germany). Different grinding conditions
were chosen (Table 1). The jars and grinding balls used were made from materials of
contrasting hardness levels: agate, which falls within the 6.5–7 range on the Mohs hardness
scale, and zirconium oxide, notable for its remarkable hardness rating of 8.5. The weight
ratio of DAS to PVP in each sample was 1:3. If the polymer loading is lower than DAS
loading, the development of ASD which can resist crystallization may be a challenge [35].
Briefly, 250 mg of DAS and 750 mg of PVP K30 were accurately weighted, homogenized in a
mortar with a pestle, and transferred to the planetary ball mill. The volume of the agate jar
was 15 mL, and the volume of the zirconium oxide jar was 75 mL. Each mechanochemical
activation lasted for 60 min. The samples were kept in a desiccator containing silica gel to
prevent the absorption of moisture.

Table 1. Grinding conditions for obtaining ASDs.

Sample Jar and Ball Material Number of Grinding Balls Ball Mass to the Sample Weight Ratio Revolutions Speed (Operational), rpm

ASD-1 agate 2 5:1 500

ASD-2 agate 2 5:1 600

ASD-3 zirconium oxide 10 20:1 500

ASD-4 zirconium oxide 10 20:1 600
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2.2.2. Differential Scanning Calorimetry

Thermograms of the untreated DAS, PVP, and ASDs prepared were collected using a
Mettler-Toledo DSC823e differential scanning calorimeter (Mettler-Toledo, AG, Greifensee,
Switzerland). All samples were weighed into aluminum pans with perforated lids, each
containing an equivalent amount of 5 mg of drug. The samples prepared in agate grinding
jars were heated from 0 to 360 ◦C, and the samples prepared in zirconium oxide grinding
jars were heated from 0 to 150 ◦C, cooled from 150 to 0 ◦C, and then heated from 0 to 360 ◦C.
The heating rate was 10 ◦C min−1. To provide an inert atmosphere during measurement, a
nitrogen gas was chosen at a flow rate of 60 mL min−1.

2.2.3. Fourier Transform Infrared Spectroscopy

FTIR spectra of the samples were obtained using an ATR-FTIR Bruker Vertex 70 spec-
trophotometer equipped with a platinum detector (Bruker, Billerica, MA, USA). The FTIR
data collection parameters included a scanning range of 500–4500 cm−1 with a spectral
resolution set at 2 cm−1.

2.2.4. X-ray Powder Diffraction

XRPD diffractograms of the samples were obtained using the Shimadzu XRD 6000 in-
strument (Shimadzu, Kyoto, Japan), employing a Cu-Kα radiation source with a wave-
length λ = 1.5 Å. The instrument operated at a voltage of 40 kV and a current of 30 mA.
A step size of 0.02◦ was used with a hold time of 0.6 s. Data collection was performed over
a range of 2θ = 5–50◦.

2.2.5. Drug Release

Dissolution tests were performed using a Dissolution tester RC-6D (Zhengzhou Nanbei
Instrument Equipment, Zhengzhou, China) to obtain DAS release profiles. The in vitro
experiments adhered to the USP Apparatus II Paddle method in a 1000 mL acetate buffer
(pH = 4.0) with the addition of 1% Triton X-100 and were maintained at a controlled
temperature of 37 ± 0.5 ◦C. Stirring was facilitated by a paddle mixer rotating at 60 rpm for
a duration of 120 min. These test conditions were selected based on the recommendations
of the United States Food and Drug Administration [36]. The addition of the surfactant,
controlled temperature, and pH of the medium aimed to better replicate physiological
conditions [37]. Specifically, DAS, being a weak base with pH-dependent solubility, displays
higher solubility in the acidic environment of the stomach but lower solubility in the small
intestine. Consequently, upon transitioning from the stomach to the small intestine, it tends
to supersaturate and/or precipitate [38]. Thus, the utilization of acetate buffer (pH = 4.0)
simulated duodenal fluid [39]. After determining the appropriate test conditions, capsules
were loaded with ASDs prepared in different conditions and initial DAS, with a combined
weight equivalent to 20 mg of DAS. 5 mL samples were withdrawn, filtered through
PTFE membrane filters with a pore diameter of 0.45 µm, and subsequently analyzed for
DAS concentrations at specific time points using a UV/Vis spectrophotometer UV-1280
(Shimadzu, Kyoto, Japan) at a wavelength of 322.0 nm. It is important to note that the
results are averages derived from two separate experiments conducted independently. The
release profiles of DAS were analyzed with volume correction using the DDSolver Add-In
program for Microsoft Excel [40].

2.2.6. Ecotoxicity Tests with Bacterium Vibrio fischeri

Ecotoxicity tests were conducted using the bioluminescent bacterium Vibrio fischeri.
Bioluminescence inhibition was measured after a 30-min incubation following the standard
method [41] using a linear array. This method assesses the reduction in the physiological
activity of a pure culture of Vibrio fischeri in the presence of toxic substances, such as
the tyrosine kinase inhibitor DAS in this case. The bioluminescence property of this
bacterial species serves as a measure of physiological activity, and luminescence intensity
is measured after the 30-min exposure period. Two parallel experiments were performed
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for each dilution based on the linear array, and results were calculated using the mean
luminescence values. Additionally, tests for a 1% solution in methanol were conducted,
considering the dissolution of DAS in both methanol and water. The inhibition (INH),
expressed as a percentage, was calculated using the following Equation (1):

INH = (LuC − LuS)/LuC × 100% (1)

where LuC represents the luminescence of the control, and LuS denotes the luminescence of the
sample after the 30-min incubation period. However, the instrument provides two effective
concentration values: EC20 and EC50. These values indicate the volume fraction (%) of the
sample at which a 20% and 50% decrease in luminescence occurs, respectively.

2.2.7. Ecotoxicity Tests with Bacterium Pseudomonas putida

Bacterium Pseudomonas putida was cultivated following the established protocols [42].
Before the experiment, the bacterium underwent a 5 ± 0.5 h pre-cultivation in mineral
media [43]. The pre-cultivation was performed on a rotary shaker set at 120 rpm and at
the ambient temperature, with an initial optical density of 0.2. The optical density of the
bacterial suspension was assessed using a DR/2400 spectrophotometer (Hach, Loveland,
CA, USA) at 436 nm. Experimental procedures were carried out in sterile Erlenmeyer flasks.
The working volume of 25 mL was placed on a rotary shaker operating at 120 rpm and
maintained at 23 ± 2 ◦C. These flasks contained bacterial suspension, a mineral medium
(composition by the guideline), and a DAS solution. Flasks with methanol and control flasks
were also prepared. Initial experimental conditions were: γ (O2) = 8.21 ± 0.10 mg L−1,
pH = 7.41 ± 0.70, and CFU0 = 2.0 × 108 cells mL−1 (colony forming units). The number of
living bacterial cells was determined after 16 h of DAS exposure to the bacterium. These
values were used to calculate the growth INH using Equation (2):

INH = (log CFUC − log CFUS)/log CFUC × 100% (2)

where log CFUC and log CFUS represent the logarithmic value of CFU in the control and
sample, respectively.

2.2.8. Ecotoxicity Tests with Chlorella sp.

The activation of the stain occurred within the liquid basal medium at a temperature
of 25 ± 2 ◦C following a 12 h light and 12 h dark cycle. Aeration was employed to
prevent the sedimentation of microalgae, achieved through a 0.45 µm sterile filter (Ahlstrom
ReliaDiscTM). Living algal cell counts, denoted as CFU, were determined using an optical
microscope (Olympus BX50, Olympus Optical Co., Ltd., Tokyo, Japan) equipped with a
Thoma counting chamber. The acute toxic effects of five different concentrations of DAS on
the microalgae Chlorella sp. were evaluated, with toxicity measured by the inhibition of
algal growth in accordance with OECD guidelines [44,45]. The experiments were conducted
in sterile Erlenmeyer flasks placed on a rotary shaker for 3 days at 120 rpm and 25 ± 2 ◦C.
The working volume of 50 mL contained a pre-cultured suspension of Chlorella sp., basal
medium, and a DAS solution. Additional flasks containing a methanol solution were also
prepared for comparison, while control flasks lacking DAS were also set up. CFU values
were recorded daily throughout the exposure period, with the final value (after the third
day) used to calculate the inhibition of algal growth following Equation (2). The initial
dissolved oxygen concentration was 8.30 ± 0.14 mg L−1, the pH value was 8.06 ± 0.02, and
the initial CFU was 1.6 × 105 cells mL−1.

2.2.9. Ecotoxicity Tests with Lemna minor

Duckweed Lemna minor was cultivated in Steinberg medium at 24 ± 2 ◦C under a 16 h
light and 8 h dark cycle. Following OECD guidelines [46], a toxicity test was conducted
with the experiments set up in 100 mL beakers, each containing 50 mL of Steinberg medium
and 10 fronds of duckweed with roots removed. These experiments were carried out in a
climate chamber with high humidity (>70%) at 24 ± 2 ◦C, maintaining a photoperiod of 16/8 h
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(light/dark) over a 7-day exposure period. At the end of the incubation period, the number of
fronds was counted, and the specific growth rate was calculated using Equation (3):

µ = (ln(Nt) − ln(N0))/t (3)

where µ represents the specific growth rate of Lemna minor (d−1), ln(Nt) is the logarithmic
number of fronds of Lemna minor at the end of the experiment (/), ln(N0) is the logarithmic
number of fronds of Lemna minor at the beginning of the experiment (/), and t is the
exposure time (d).

The average root length of duckweed was determined by measuring the root length
of 10 randomly selected plants in each beaker using millimeter paper [47]. Furthermore,
to ascertain the average concentration of chlorophyll, approximately 20 mg of fresh plant
material was weighed, homogenized in the dark with 95% ethanol, and stored in the freezer.
The absorbance of the supernatant was measured spectrophotometrically at wavelengths
of 664.2 and 648.6 nm (Hach, Loveland, CO, USA), and the concentration of chlorophyll a
was calculated according to established literature standards [48]:

Ca = 13.36 · A664.2 − 5.19 × A648.6 (4)

where Ca represents the concentration of chlorophyll a (mg L−1), A664.2 is the absorbance
measured at 664.2 nm, and A648.6 is the absorbance measured at 648.6 nm. The specific
concentration of chlorophyll a was calculated using the following Equation (5):

CSPa = Ca × V/(1000 × m) (5)

where CSPa represents the specific concentration of chlorophyll a (mg Ca g−1 fresh weight
of Lemna minor), V is the volume of 95% ethanol (L), and m is the mass of the fresh weight
of Lemna minor (g).

3. Results and Discussion
3.1. Differential Scanning Calorimetry

Figure 1 presents thermograms of the initial DAS, PVP, and the solid dispersions
obtained. The thermogram of DAS exhibited a distinct, narrow endothermic transition with
a prominent minimum at 288 ◦C, corresponding to its melting phase transition. The width
of this transition suggested a high level of crystalline order in the drug. A secondary, smaller
endothermic transition occurred over a broader temperature range and was attributed
to the thermal degradation of DAS, further confirmed by thermogravimetric analysis.
Additionally, there was a noticeable transition around 120 ◦C, corresponding to the release
of water from the crystal lattice, as the drug scanned was in the form of a monohydrate.
The thermogram of PVP showed a glass transition at 184 ◦C, confirming the amorphous
structure of the polymer used. In the case of ASDs prepared in zirconium oxide jars,
two heating cycles were required. During the first cycle, water was released from the
crystal lattice due to the mechanochemical activation, making it challenging to determine
the glass transition temperatures. However, upon reheating, no transitions associated
with released water were observed, confirming the complete removal of the water from
the crystal lattice. This phenomenon differed for the solid dispersions prepared in agate
jars. No melting peaks of DAS were observed in the ASDs samples, indicating a high
degree of amorphization of the drug upon co-grinding with the specified amount of
polymer [49]. In the case of amorphous drugs, less energy is required for dissolution,
facilitating solvent molecules to surround drug molecules, and consequently enhancing
apparent or kinetic solubility [50].
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3.2. Fourier Transform Infrared Spectroscopy

Figure 2 shows the FTIR spectra of DAS and PVP with highlighted functional groups
that may participate in hydrogen bonding interactions, while Figure 3 presents the FTIR
spectra of dispersions prepared under varying conditions using agate and zirconium oxide
jars. In the FTIR spectrum of DAS, distinctive absorption bands were observed, notably the
stretching of the N–H group at 3456 cm−1 and the stretching of the –OH group at 3203 cm−1.
The polymer spectrum showed absorption bands corresponding to the stretching of the
C=O bond at 1610 cm−1.
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Figure 3. FTIR spectra of obtained solid dispersions.

In the case of solid dispersions, the absorption bands were associated with the stretching
of HC=CH bonds at 1581 cm−1, the bending of –OH bonds at 1412 cm−1, and distinctive
absorption bands characteristic of C–O bonds at 997 cm−1, C–Cl bonds at 767 cm−1, and N–O
bonds at 1501 cm−1. Notably, the results indicated that there was no discernible shift in the
absorption bands corresponding to the functional groups within the polymer or drug structure
that could potentially participate in hydrogen bonding. Consequently, FTIR analysis did not
reveal any evident intermolecular interactions between the polymeric matrix and the drug.

3.3. X-ray Powder Diffraction

Figure 4 shows the diffractograms of initial DAS and PVP. The diffractogram of DAS
revealed sharp diffraction maxima that are characteristic of highly ordered crystal structures.
In contrast, the diffractogram of PVP displayed a complete absence of maxima, indicative
of its entirely amorphous structure.

In Figure 5, diffractograms of solid dispersions are shown. ASDs prepared in zirconium
oxide jars did not exhibit diffraction maxima, indicating a complete distortion of the crystal lat-
tice compared to those prepared in agate jars. While amorphization was achieved in both cases,
a small amount of crystalline residue was still present in samples from the agate jars. It was
postulated that the amorphous form would enhance the solubility of DAS, aligning with previ-
ous findings in the literature [51,52]. Amorphous substances tend to be thermodynamically
less stable, thereby promoting easier dissolution compared to their crystalline counterparts.
Following 5 months since preparation, diffractograms of all solid dispersions were recorded
again, revealing no changes in the degree of amorphization of the samples. This observation
underscored the robust stability of the amorphous drug within the solid dispersion with PVP.
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3.4. Drug Release

The release profiles of DAS from the formulated capsules were determined using
in vitro dissolution tests. In Figure 6, a comparison illustrates the release profile differences
between capsules containing the original drug and solid dispersions that were prepared
under various conditions outlined in Table 1. Noteworthy distinctions are evident in the
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release profiles, not only among samples containing a polymeric carrier but also between
those prepared under different conditions overall. Embedding DAS in the polyvinylpyrroli-
done carrier facilitated a faster release within the initial 40 min of the test. The ultimate
proportion of DAS released after 120 min was the lowest for the original drug. Notably,
samples ASD-3 and ASD-4 demonstrated the highest percentage of drug released, exceed-
ing 70%. This aligns with the findings of XRPD analysis and supports the hypothesis that
amorphous samples lead to improved dissolution. In such instances, the energy required
to disrupt the crystal lattice, as seen in drugs within solid dispersions in crystalline form, is
avoided [53]. On the other hand, samples ASD-1 and ASD-2, exhibiting a semi-crystalline
structure after mechanochemical activation, achieved a slightly lower proportion of re-
leased DAS. Interestingly, the revolution speed of the planetary ball mill did not affect the
final proportion or release profiles of DAS. However, the choice of jars and balls emerged as
a crucial factor in the outcomes. Specifically, using a larger volume jar made of zirconium
oxide (a harder material than agate) and an increased number of grinding balls resulted in
enhanced amorphization and a higher final proportion of the drug released from capsules
containing solid dispersions prepared under these conditions.
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3.5. Ecotoxicological Evaluation

Vibrio fischeri and Pseudomonas putida, as bacteria, are often used in ecotoxicity studies
due to their sensitivity to environmental changes and their rapid response to toxic sub-
stances. The inclusion of microalgae Chlorella sp. provides insights into the impact on
primary producers, crucial for understanding the potential effects on the base of the food
chain. Additionally, the utilization of duckweed Lemna minor offers valuable information
about the impact on higher plants, contributing to a more holistic assessment of ecological
consequences. Such a comprehensive approach aligns with contemporary standards in
ecotoxicology research, ensuring a thorough evaluation of the kinase inhibitor’s impact
across various facets of the ecosystem. These test organisms were exposed to varying
DAS concentrations: 25, 50, 75, 100, and 150 µg L−1. Exposure durations were set at
30 min for Vibrio fischeri, 16 h for Pseudomonas putida, 3 days for Chlorella sp., and 7 days
for Lemna minor. The selected DAS concentrations aligned with trace-level residues doc-
umented in wastewater and biological samples [34]. As a tyrosine kinase inhibitor, DAS
generally obstructs different types of proteins, potentially hindering the growth of cancer
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cells. Numerous studies are currently focusing on clinical trials for conditions such as acute
respiratory distress syndrome [54], lung cancer [55], and leukemia [56]. However, it is also
necessary to concurrently investigate the effects of DAS on aquatic organisms.

3.5.1. Ecotoxicity Tests with Vibrio fischeri

The acute toxicity of DAS was assessed through a standard test using the bacterium
Vibrio fischeri. Bioluminescence reduction was quantified as the percentage of inhibition in
relation to the tested DAS concentrations, generating the concentration–response curve shown
in Figure 7. Inhibition demonstrated a positive correlation with increasing DAS concentra-
tion, reaching the highest inhibition of 29.82% at the maximum tested DAS concentration of
150 µg L−1. While the estimated EC20 value was 122.11 µg L−1, the EC50 value could not
be determined as the maximum inhibition observed was less than 50%. This suggested a
relatively high ecotoxicity of DAS, raising concerns about its potential risk to aquatic organisms.
Although there is no published data on DAS’s ecotoxicity to Vibrio fischeri, comparisons with
microalgae and Daphnia magna data indicated a comparable EC20 value. Notably, Vibrio fischeri
appeared to be more sensitive, with a lower EC20 value (0.12 mg L−1) compared to the EC50 val-
ues for microalgae (>0.18 mg L−1) and Daphnia magna (0.17 mg L−1) [57]. Given Vibrio fischeri’s
classification as a proteobacterium with a prokaryotic structure, it was anticipated to exhibit in-
creased sensitivity to DAS. The effect of pollutants on Vibrio fischeri manifests through reduced
bioluminescence, attributed to luciferase enzyme inhibition and alterations in the regulatory
mechanism governing gene expression, known as “quorum sensing” [58]. In contrast, the tyro-
sine kinase inhibitor imatinib, which is similar to DAS, showed an EC50 value of 23.06 mg L−1

for Vibrio fischeri. Imatinib showed varied toxicity responses across different test organisms,
likely affected by distinct organism characteristics and the mode of action of imatinib. Both
DAS and imatinib inhibit tyrosine kinase enzymes crucial for cellular functioning, and their
effects are dependent on the presence of these enzymes in plant and/or animal cells [59].
Conducting additional studies will be instrumental in uncovering the intricate details of how
these kinase inhibitors interact with cellular components in Vibrio fischeri and other organisms.
This will contribute to a more holistic comprehension of the ecotoxicological effects of DAS,
allowing for a refined assessment of its environmental impact and the potential risks associated
with prolonged exposure.
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3.5.2. Ecotoxicity Tests with Pseudomonas putida

Pseudomonas putida, recognized as a saprophytic bacterium present in activated sludges [60],
was exposed to five concentrations of DAS for 16 h, following which the inhibition of bac-
terial growth was determined. In Figure 8, an increase in inhibition with increasing DAS
concentration was noticed. The highest inhibition of 4.48% was observed for the highest
tested DAS concentration (150 µg L−1). However, it is considered that the inhibition lower
than 10% is not high enough for a significant ecotoxicological effect. Accordingly, bacterial
growth was not affected despite the DAS exposure, and, as we know, there are no reported
studies on the ecotoxicity of DAS to Pseudomonas putida. Until now, toxicity tests involving
Pseudomonas putida have focused on several anticancer agents: 5-fluorouracil, cisplatin,
doxorubicin, cyclophosphamide, etoposide, bleomycin, and vincristine. The risk assess-
ment of these agents towards Pseudomonas putida indicated a low risk. Higher ecotoxicity
was observed for 5-fluorouracil (EC50 = 0.027 mg L−1) and cisplatin (EC50 = 1.20 mg L−1),
while lower ecotoxicity was noticed for cyclophosphamide, doxorubicin, and etoposide.
The difference in the ecotoxicity of bleomycin and vincristine to Pseudomonas putida af-
ter 16 h was noticed; EC50 for bleomycin was 7.27 mg L−1, while vincristine did not
cause significant effects on bacterial growth up to 100 mg L−1 [61]. Furthermore, Pseu-
domonas putida is a bacterium that has a rich enzymatic composition and is therefore
frequently used for bioremediation purposes [62]. It can degrade various pollutants—such
as pharmaceuticals [63], hydrocarbons [64,65], and pesticides [66]—and an enzyme has
been isolated from it and studied as a potential anti-cancer drug [67]. Accordingly, it is not
surprising that Pseudomonas putida was resistant to exposure to DAS, which was confirmed
by extremely low values of inhibition. In conclusion, the effect of DAS on bacterial growth
was negligible.
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3.5.3. Ecotoxicity Tests with Chlorella sp.

The concentration–response curve for toxicity tests with the microalgae Chlorella sp.
indicated an increase in inhibition with the rise of DAS concentration (Figure 9). The curve
was steep, and the trend suggested that inhibition increased up to 100 µg L−1, after which
the inhibition value plateau was reached. This observation indicates that further increases
in DAS concentration would not result in a significant change in inhibition, implying a
negligible ecotoxicological effect of the drug on microalgae. Like tests with Vibrio fischeri
and Pseudomonas putida, the highest tested concentration caused the highest inhibition
(8.54%). In this test, the inhibitions were below 10%, indicating extremely low inhibition
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values. Consequently, it was not possible to estimate the EC20 and EC50 values. It could be
concluded that DAS had no significant ecotoxicological effect on the microalgae Chlorella sp.
According to the available data [57], the EC50 value for Pseudokirchneriella subcapitata for
3 days was 0.18 mg L−1. Additionally, the EC50 value after the same exposure time (3 days)
for the ecotoxicity response to imatinib of Raphidocelis subcapitata was 5.08 mg L−1 [59]. In
this context, imatinib was considered an ecotoxic substance, while this classification also
applied to DAS, based on our results. Despite their similar mode of action, there is a possi-
bility that imatinib and DAS have different ecotoxicological effects. Different test organisms
possess distinct enzymes and properties that significantly affect the ecotoxicological effects
of tested substances. Other microalgae, such as Chlorella vulgaris and Chlamydomonas rein-
hardti, have been used for ecotoxicity tests of anticancer drugs, such as tamoxifen. The effect
of anticancer drugs varied depending on the microalgal strain; the half-maximal inhibitory
concentration (IC50) of tamoxifen for Chlorella vulgaris was 0.61 mg L−1, for Chlamydomonas
reinhardti 0.47 mg L−1, and for Pseudokirchneriella subcapitata 0.98 mg L−1. The stronger
resistance of Scenedesmus sp. to anticancer drugs has also been reported. Scenedesmus
and Chlorella, two types of microalgae, share properties that make them resilient to the
ecotoxicological effects of anticancer drugs, including DAS. Despite their robustness, these
photosynthetic microorganisms, positioned at the lower levels of aquatic food webs, play a
critical role in maintaining ecological balance. The potential repercussions of contaminants
on microalgae raise concerns, as any adverse effects could disrupt the entire food chain,
ultimately impacting human health. Fortunately, the ecotoxicological effects of DAS on mi-
croalgae appear to be negligible, underscoring their remarkable adaptability when exposed
to anticancer drugs. This adaptability holds particular significance in the broader context
of their environmental roles and applications [68]. As versatile contributors to ecological
sustainability, microalgae’s ability to withstand the effects of pharmaceuticals is reassuring,
supporting their continued use in various environmental remediation efforts.
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3.5.4. Ecotoxicity Tests with Lemna minor

The duckweed Lemna minor was exposed to five different concentrations of DAS
over a period of 7 days, and the inhibition of specific growth rate, average root length,
and inhibition of chlorophyll content were determined. The results indicated that neither
concentration considerably affected the specific growth rate and average root length of
Lemna minor (Figure 10). The specific growth rate of Lemna minor remained unaffected after
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7 days of exposure to DAS (Figure 10A). However, the average root lengths of Lemna minor
were lower in the DAS-treated samples compared to the control (Figure 10B). The longest
root was observed in the sample with the DAS concentration of 75 µg L−1, while the
shortest root occurred at the DAS concentration of 150 µg L−1. Additionally, the chlorophyll
concentration of Lemna minor was assessed, as shown in Figure 10C. The lowest chlorophyll
concentrations were noted at the highest tested concentrations of DAS (100 and 150 µg L−1).
Overall, the growth of Lemna minor was not significantly affected.
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To our knowledge, there are no studies on the ecotoxicity of DAS to Lemna minor.
However, an EC50 value (61.05 mg L−1) for Lemna minor after exposure to imatinib was
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reported [59]. This value was relatively high, suggesting a lower ecotoxicological effect
of this tyrosine kinase inhibitor on duckweed. Consequently, it is not surprising that no
significant effects of DAS (which is similar to imatinib) on Lemna minor were observed. In
toxicity testing, Lemna minor is commonly used due to its simple structure, rapid growth,
and notable tolerance to a diverse range of environmental conditions, including a wide
pH range and various pollutants, such as heavy metals, herbicides, and microplastics.
Thus, the absence of an observed ecotoxicological effect of DAS on Lemna minor aligns with
its high adaptability to various pollutants. The distinctive characteristics of Lemna minor
make it an ideal candidate for ecotoxicological assessments, providing valuable insights
into the potential impacts of contaminants on aquatic ecosystems. By using Lemna minor
in ecotoxicity tests, researchers can gain a comprehensive understanding of the potential
ecological risks associated with different substances. This approach aligns with the broader
goals of environmental monitoring and risk assessment, ensuring that the impacts of
pollutants on aquatic environments are thoroughly evaluated using a reliable and adaptable
biological model.

4. Conclusions

The solvent-free co-grinding method proved effective in preparing ASDs of DAS and
PVP through mechanochemical activation in a planetary ball mill. The most effective
parameters for achieving amorphous systems in this research included using grinding
balls and jars made of zirconium oxide due to its extreme hardness, malleability, and
ductility compared to agate, as well as a larger volume and greater quantity of grinding
balls. Following these conditions resulted in enhanced amorphization in samples ASD-3
and ASD-4. Notably, the revolution speed of the planetary ball mill did not significantly
affect the amorphization level or the drug release profile and percentage of DAS dissolved.
Therefore, the preferred revolution speed was determined to be 500 rpm due to lower
energy consumption. While FTIR analysis did not reveal possible intermolecular interac-
tions between the polymeric matrix and the drug, XRPD analysis confirmed the robust
stability of the amorphous drug within the ASDs with PVP. The results of DSC analy-
sis aligned with those of XRPD analysis, affirming the amorphous nature of the drug
within ASDs. Significant alterations in the release rate and profile of DAS were detected
in capsules containing ASDs compared to those with the crystalline, untreated drug. To
optimize the processing conditions and improve drug release efficiency from the polymer
matrix, using a design of experiments (DOE) would be beneficial. In ecotoxicological
assessments, the EC20 value, indicative of potential aquatic organism risk, was estimated
only for Vibrio fischeri (122.11 µg L−1). Inhibitions below 10% for Pseudomonas putida and
Chlorella sp. suggested no substantial ecotoxicological effects, aligning with the literature,
which indicates adaptation to anticancer drugs during exposure. Furthermore, neither
tested concentration of DAS significantly affected the specific growth rate and average root
length of Lemna minor, although the lowest chlorophyll concentrations were observed at
the highest DAS concentrations tested. Ultimately, this research not only introduces an
environmentally friendly method for improving the properties of poorly soluble drugs but
also highlights the potential of increased bioavailability to diminish their environmental
impact by reducing concentrations in the environment post-excretion.
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