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Progress and Opportunities for Machine Learning in
Materials and Processes of Additive Manufacturing

Wei Long Ng,* Guo Liang Goh, Guo Dong Goh, Jyi Sheuan Jason Ten, and Wai Yee Yeong*

In recent years, there has been widespread adoption of machine learning (ML)
technologies to unravel intricate relationships among diverse parameters in
various additive manufacturing (AM) techniques. These ML models excel at
recognizing complex patterns from extensive, well-curated datasets, thereby
unveiling latent knowledge crucial for informed decision-making during the
AM process. The collaborative synergy between ML and AM holds the
potential to revolutionize the design and production of AM-printed parts. This
review delves into the challenges and opportunities emerging at the
intersection of these two dynamic fields. It provides a comprehensive analysis
of the publication landscape for ML-related research in the field of AM,
explores common ML applications in AM research (such as quality control,
process optimization, design optimization, microstructure analysis, and
material formulation), and concludes by presenting an outlook that
underscores the utilization of advanced ML models, the development of
emerging sensors, and ML applications in emerging AM-related fields.
Notably, ML has garnered increased attention in AM due to its superior
performance across various AM-related applications. It is envisioned that the
integration of ML into AM processes will significantly enhance 3D printing
capabilities across diverse AM-related research areas.

1. Introduction

In recent years, the growing interest in machine learning (ML)
has been driven by a convergence of technological advancements,
data availability, community collaborations, and its practical ap-
plications in various domains. ML, a subset of artificial intelli-
gence, empowers systems to learn from data, recognize patterns,
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and make intelligent decisions.[1]

There are four types of ML algorithms
(Table 1): supervised learning,[2] unsu-
pervised learning,[3] semi-supervised
learning[4] and reinforcement learning.[5]

Supervised learning learns from a labeled
dataset (input-output pairs) and creates
a mapping between the input data and
the corresponding output, allowing the
algorithm to make predictions when pre-
sented with new data. Although supervised
learning requires a lot of human effort and
domain knowledge to label the data and
define the goal, it can produce accurate
predictions with repeated training itera-
tions with large relevant dataset, and has
found applications in various industries
such as sports[6] and robotics.[7] In con-
trast, unsupervised learning is trained on
a dataset without labeled output. It aims
to find patterns or relationships within the
large and complex data without human in-
tervention. Semi-supervised learning is an
ML algorithm that combines the elements

of both supervised and unsupervised learning; it is trained on
a dataset that contains both labeled and unlabeled data to im-
prove the model performance. It makes efficient use of available
data and reduces the reliance on costly labeled data to achieve
good performance. Lastly, reinforcement learning focuses on
regimented learning processes, whereby the algorithm under-
goes a trial-and-error process based on the provided set of ac-
tions, parameters, and end values to achieve the best possible
result.

Additive manufacturing (AM), often known as 3D printing,
has revolutionized the field of manufacturing by enabling the
fabrication of customized, complex 3D structures in a layer-by-
layer manner. It can be categorized into seven main groups based
on ISO/ASTM 52900:2021: 1) binder jetting, 2) directed energy
deposition, 3) material extrusion, 4) material jetting, 5) powder
bed fusion, 6) sheet lamination, and 7) vat photopolymerization.
When applied to AM, ML opens new avenues for enhancing the
entire manufacturing process, from material formulation, design
optimization, and process optimization to quality control. The
synergy between ML and AM has the potential to revolutionize
the way AM-printed parts are designed or produced. By harness-
ing the vast amount of generated data, ML algorithms can un-
lock deeper insights into AM processes such as optimizing de-
signs, predicting material properties, or even improving produc-
tion quality (Figure 1).
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Table 1. Different classifications of ML techniques.

Category Techniques

Supervised Learning Linear Regression

Logistic Regression

Support Vector Machine

Decision Trees (e.g., Classification and
Regression Tree)

Random Forest

Gradient Boosted Trees (e.g., XGBoost,
LightGBM, CatBoost)

Neural Networks (e.g., DNN, RNN, U-Net,
RandLA-Net, LSTM)

K-Nearest Neighbours (K-NN)
Gaussian Process Modelling
Ensemble learning (e.g., Adaboost, Bayes

optimal classifier, bagging, stacking)

Unsupervised Learning K-means Clustering

Hierarchical Clustering

Principal Component Analysis (PCA)

Independent Component Analysis (ICA)

Autoencoders (e.g., variational autoencoder)

Gaussian Mixture Models

Semi-supervised Learning Self-training

Multi-view Training

Generative Adversarial Networks (GANs)
Domain Adversarial Neural Network

Reinforcement Learning Q-learning

Deep Q Networks (DQN)

Monte Carlo Methods

Policy Gradient Methods
Actor-Critic

2. Publication Landscape for ML in AM

An analysis of the publication landscape was conducted to de-
termine the influence of ML on different 3D printing techniques
using the following set of keywords on Web of Science (“machine
learning” + “3D printing/additive manufacturing” + “printing
technique”). As there are many variants of 3D printing tech-
nique under each ASTM classification, numerous keywords for
each printing technique were used: 1) binder jetting—binder jet-
ting, multi-jet fusion; 2) directed energy deposition—directed
energy deposition, wire arc additive manufacturing; 3) material
extrusion—extrusion, fused deposition modeling, fused filament
fabrication, direct ink writing; 4) material jetting—jetting, inkjet,
microvalve; 5) powder bed fusion—powder bed fusion, selective
laser sintering, selective laser melting, electron beam melting,
laser powder bed fusion; 6) sheet lamination—sheet lamination;
and 7) vat photopolymerization—vat photopolymerization, stere-
olithography, digital light processing (DLP), and continuous liq-
uid interface production. As shown in Figure 2a, a total of 528
ML-related AM publications were published over the last 10 years
and the adoption of ML for each 3D printing technique varies—
powder bed fusion (225 publications) > material extrusion (135
publications) > material jetting (80 publications) > directed en-

ergy deposition (59 publications) > vat photopolymerization (20
publications) > binder jetting (8 publications)> sheet lamination
(1 publication). The ML-related AM research has grown substan-
tially over the last ten years; it has increased significantly from
one publication in the year 2013 to 213 publications in the year
2022 (Figure 2b).

As ML is prevalently used in AM processes, further analysis
was conducted on Web of Science to determine some common
ML applications in AM research using the following set of key-
words (“machine learning” + “3D printing/additive manufactur-
ing” + “application”). The top five most common ML applica-
tions in AM research over the last 10 years include 1) Quality
control (301 publications), 2) Process optimization (222 publica-
tions), 3) Design optimization (183 publications), 4) Microstruc-
ture analysis (45 publications), and 5) Material formulation (14
publications) (Figure 2c). These ML applications are applied in
various key AM-related research areas such as aerospace and de-
fense, bioprinting, construction printing, drug printing, electron-
ics printing, and marine and offshore and unmanned aerial ve-
hicles (Figure 2d). A more in-depth discussion of these five com-
mon ML applications and their specific roles in different key AM-
related research areas will be presented in subsequent sections.

3. Common ML Applications in AM Research

Over the years, ML has attracted increasing attention in AM
due to its superior performance in different applications such as
quality control, process optimization, design optimization, mi-
crostructure analysis, and material formulation. In-depth discus-
sion on the common ML applications will be categorized based
on their AM technique to provide a comprehensive overview of
how machine learning can be applied to each specific AM tech-
nique, thereby highlighting the unique challenges and solutions
that each method presents.

3.1. Quality Control

Quality control plays a crucial role in enhancing the efficiency
and reliability of additive manufacturing processes. Many studies
have explored the application of ML algorithms and sensor data
analysis to achieve real-time process monitoring and quality as-
surance. Signals from in situ sensors are used to train ML models
to monitor the stability of the process and detect defects within
successful builds. Different ML techniques (supervised, unsuper-
vised, semi-supervised, and reinforcement learning) have been
used for quality control in AM; the choice of ML approach for
quality control is dependent on the nature of the data and the
objectives of the quality control system. Supervised learning is
most used ML technique for quality control in AM and most of
the studies demonstrated high prediction accuracies > 90%. Al-
though it is well-suited for quality control with labeled historical
data from both good and defective products/processes, it may not
be useful for the detection of novel defects or anomalies not seen
in the training data. Figure 3 provides a summary of the tech-
niques involved and applications of ML in quality control and
more discussion on the different types of ML used in quality con-
trol will be provided in the subsequent sections.
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Figure 1. An overview of the integration of ML into AM processes for diverse optimizations and applications. The left section classifies ML into four
types—supervised, unsupervised, semi-supervised, and reinforcement learning—while introducing the emerging transformer model for ML applica-
tions. On the right, various AM techniques are detailed. The central part of the figure illustrates the potential benefits that ML can offer to AM and the
bottom part showcases practical applications across a wide range of industries, from aerospace and defense to electronics, and food, underscoring the
extensive impact of integrating ML with advanced manufacturing methods. Reproduced with permission.[53,76,115,176] Copyright 22 Mar 2024, Elsevier.
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Figure 2. a) Number of ML-related additive manufacturing publications over the past 10 years. b) Detailed annual breakdown of the number of publi-
cations for each printing technique from years 2013 to 2022. c) Detailed annual breakdown of the number of publications for different ML applications
in AM from years 2013 to 2022. d) Detailed annual breakdown of the number of publications on ML applications in various key AM research areas from
years 2013 to 2022.

3.1.1. Powder Bed Fusion

It is common to observe high porosity, balling, incomplete fu-
sion, and spattering during the AM process. These defects arise
from factors such as process instability and poor material interac-
tions. Such defects are detrimental to the quality of printed parts,
leading to compromised mechanical strength, surface rough-
ness, inaccurate geometries, and potential delamination. It is im-
portant to address these defects to ensure the reliability and per-
formance of AM-fabricated components across industries.[8]

Figure 3. Graphical overview summarizing the diverse applications of ML
in quality control across various AM processes.

To monitor the process stability, a study used data from the
supplied EOS M290 powder bed images to predict anomalies dur-
ing the powder spreading process (Figure 4).[9] The powder-based
materials included Ti6Al4V, AlSi10g, IN718, SS316L, SS17-4, and
bronze. The images were first filtered using 37 different 2D im-
age processing filters, and the filter responses were stored in vec-
tors for each pixel. The response vectors were then grouped into
100 groups using a standard k-means unsupervised clustering
algorithm. The mean response vector for each group was then
stored as visual words in a dictionary. Then, the pixel at each
training image patch was matched to the closest visual word,
and the histogram for the occurrence frequency of each word
in the patch was calculated and termed “fingerprints”. The ra-
tionale was that training images with similar powder-spreading
anomalies would result in similar “fingerprints”. During the
method execution, the powder bed image was divided into dif-
ferent patches and the “fingerprint” from each patch was then
calculated. The quality of a patch was determined by matching
its “fingerprint” to a database of 2402 “fingerprints”. These “fin-
gerprints” were manually labeled under six conditions: anomaly-
free: 1040 “fingerprints”, recoater hopping: 264 “fingerprints”, re-
coater streaking: 228 “fingerprints”, debris: 187 “fingerprints”,
super-elevation: 314 “fingerprints”, part failure: 264 “finger-
prints”, incomplete spreading: 105 “fingerprints”. The top three
matches from this database were then used to assess the patch’s
quality. The algorithm managed to classify the powder spreading
based on the six conditions with precision ranging from 65.0%
to 98.9%
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Figure 4. Flow chart of ML process to detect anomaly in laser powder bed fusion. Reproduced with permission.[9] Copyright 2018, Elsevier.

For defect detection in laser powder bed fusion (LPBF) builds,
various sensor technologies were used in conjunction with ML
techniques. These technologies included visible light cameras,
infrared cameras, high-speed cameras, photodiodes, and acous-
tic sensors. There were also efforts that combined multiple sen-
sor technologies for ML training. Using a high-resolution 36.3-
megapixel digital single-lens reflex (DSLR) camera, images of
each layer were taken before and after LPBF laser scanning to
predict the locations of voids.[10] Multiple images were taken un-
der different lighting conditions for each build layer and were
combined using an ensemble classification. It was possible to com-
bine data from multiple sensors through the ensemble technique
instead of only using data from a single sensor under different
conditions. The ground truths were obtained from X-ray com-
puted tomography (CT) convolved with a Gaussian filter and la-
beled using support vector machine (SVM) binary classifiers be-
fore being manually checked by a certified non-destruction in-
spection inspector. The ensemble method improved the accuracy
of prediction from 65% to 85% for single sensor image input to
85% for multiple images.

A four-phase (sliding, convolutional neural networks
(CNN), smoothing, and compensation) modeling approach
was developed for online surface measurement in additive
manufacturing.[11] This approach utilized a window-based data
reformulation technique and CNN to predict 3D surface data
directly from 2D images without the need for time-consuming
triangulation computations. The method proved to be highly
accurate, with an average relative prediction error mostly lower
than 10%. Its computational efficiency and ability to acquire
data layer-wise in real-time made it suitable for online quality
monitoring and control in additive manufacturing processes.

In-process monitoring using infrared cameras followed by ML
for data analysis was performed using the original equipment
manufacturer and customized hardware.[12] The EOSTATE Expo-
sure OT captured a long exposure image at ≈900 nm of the laser
scanning over one whole layer. Both groups changed the process
parameters to create the training dataset. The unsupervised K-
means clustering was used to enlarge the manually labeled train-
ing dataset followed by k-nearest neighbors (K-NN) supervised
learning to identify anomalies (drifts) in the images.[12a] These
anomalies were then shown to have a correlation with high poros-
ity occurrence in X-ray CT scans of the actual samples. Random
forest-bagged tree ensemble labeled with X-ray CT data are used
(Figure 5) and the use of multiple consecutive layers improved
the prediction accuracy. The interpretability of the random forest
(RF) model showed that the lack of fusion defects prediction was
dependent on the adjacent layers while keyhole defects prediction
was heavily dependent on the 10th subsequent layer. The model
could determine the average density of a small area measuring
1 mm × 1 mm.

An infrared thermographic camera was integrated to an SLM
280 LPBF system to capture short videos of delamination, splat-
ters, and defect-less processes that were then converted to image
frames to train a CNN.[13] The training dataset was augmented
by rotating the image, flipping the images, and random image
noise and blur. Delamination and splatter defects were detected
at an average accuracy of 96.8%.

High-speed cameras with frame rates above 1000 Hz in the
visible and infrared range were also used as inputs for ML mod-
els. A short wavelength infrared high-speed camera was used to
capture the thermal history of the part and train a customized
CNN for the identification of defect locations within the part.[14]

Adv. Mater. 2024, 2310006 2310006 (5 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202310006, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 5. Workflow of training the ML model using labeled X-ray CT data. Initially, a compilation of through-process data encompassing Computer-Aided
Design (CAD), processing parameters, real-time online monitoring data captured via Optical Tomography (OT) images, and subsequent post-processing
characterization data derived from X-ray Computed Tomography (CT) was performed. Subsequently, an ML model was developed to glean valuable
insights into the mechanisms underlying defect generation. The adeptly trained ML model is proficient in accurately forecasting porosity occurrences
within individual layers, leveraging the composite data from multiple layers of OT information. Reproduced with permission.[12b] 2022, Elsevier.

Melt-pool and time-dependent attributes were extracted from the
thermal images for groups of pixels and a threshold was set for
a binary outcome of pore and non-pore groups. The data was la-
beled in comparison to X-ray CT data with details from their pre-
vious work[15] and a 1D CNN model was trained using Bayesian
Optimization. It was found that a group of pixels representing
a volume of 700 × 700 × 50 μm produced the best prediction
accuracy for keyhole porosities above 0.1% in volume and de-
creasing the volume size reduced the prediction accuracy. A high-
speed visible light camera at 6,400 Hz was used to capture melt
pool images.[16] The feature extraction, classification, and sub-
sequent unsupervised ML model training were similar to an-
other work for build failure detection and modifications were
made to achieve a scale-invariant representation of the melt pool
morphology.[9] The “fingerprints” that were identified for five out-
comes include desirable, under-melting, keyhole porosity, severe
keyhole porosity, and balling. Two infrared (IR) high-speed cam-
eras at 700 and 950 nm wavelengths respectively were used to
take images of melt pools at 100 kHz (Figure 6).[17] Multiple
feature types from the raw sensor data and calculated thermal
field were extracted to train various ML models ranging from K-
NN, SVM, to CNN. The algorithms were used to 1) detect out-of-
focus laser and 2) porosity level and were able to achieve a true
positive rate of 90%. The computationally light ML models pro-
duced subpar results when trained on single feature types but
generated on-par results with the deep learning models when
trained on inputs from the multiple feature types (melt pool

morphology, spatter characteristics, and melt pool temperature
features).

One of the challenges for training ML models with high-speed
camera data was the difficulty in volumetrically matching the
ground truth data typically obtained by X-ray CT. Synchrotron X-
ray imaging was used to obtain real-time defect formation data
for comparison with the in situ visible and NIR imaging above
50 kHz instead of measuring the defects after the process.[18]

The frequency response of the intensity of the high-speed cam-
era images was grouped into wavelets shorter than 1 ms for train-
ing a deep neural network model to identify pore and non-pore
events. Simulation models were then used to provide further in-
sights into the pore formation mechanism. The developed simu-
lation model was then used to generate data to train a deep learn-
ing model for a high-speed camera integrated into a commercial
LPBF system SLM 280. Accuracies up to 87% were obtained for
identifying the pores.

Due to the limited penetration depth of visible and IR waves
in metals, the signals obtained from electromagnetic emissions
of these wavelengths typically only capture signals from the sur-
face of the metal during the process. Besides using synchrotron
X-ray to penetrate the metal, others have captured acoustic emis-
sions to potentially detect process signals originating from below
the metal surface. A microphone was secured 25–30 cm on top
of the build plate to sample acoustic emissions at 100 kHz.[19]

Features from the signal were extracted based on three primary
groups: time-series statistics, frequency domain characteristics,

Adv. Mater. 2024, 2310006 2310006 (6 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 6. Diagram illustrating the diverse physics-derived attributes extracted from various sensing methods, which are then used to train the CNN
architecture. A visual depiction of the efficacy of various models in classifying a) the size of the laser spot and b) the kind of porosity, measured using
the F1-score. RRC stands for ridge regression classifier, NLR denotes nonlinear logistic regression classifier, SVM represents support vector machine
classifier, and CNN signifies convolutional neural network classifier. Adapted with permission.[17] 2022, Elsevier.

and oscillatory modes via an ensemble empirical mode decom-
position technique. An SVM was then trained based on X-ray
radiograph ground truths for signal windows of 1–15 ms. A
window of 7.5 ms showed the best accuracy of 97% in pre-
dicting keyhole pore and keyhole-free scan lengths that corre-
sponded to the window. A sensor measuring a wideband of
100–900 kHz at the center bottom of a circular build plate was
used to detect acoustic emissions from coupons separated ra-
dially from the sensor.[20] The noise from the acoustic signal
was first removed and three methods were explored: k-means,
principal component analysis, and a general deep learning. K-

means clustering achieved a 90% prediction rate when paired
with a deep learning classifier, cracks were detected using prin-
cipal component analysis and lastly the general deep learning
model (trained on raw H13 signals) demonstrated good adapt-
ability for prediction when tested on SS316L data. A 1D CNN
model accurately detected the spattering event in the LPBF pro-
cess up to 85% (Figure 7a).[21] Conversely, acoustic emission from
the powder bed fusion process was used to predict possible de-
fect formation within the printed parts (Figure 7b).[22] The devel-
oped model was able to predict different types of defects (lack
of fusion pores, conduction mode, and keyhole pores) within

Adv. Mater. 2024, 2310006 2310006 (7 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 7. a) Schematic showing the ID-CNN model that is used for detecting spattering event using acoustic signal. Reproduced with permission.[21]

2021, MDPI. b) Schematic showing the flowchart of model that is used for detecting various types of defects using acoustic signal. Reproduced with
permission.[22] 2022, Taylor & Francis.

different materials (316L stainless steel, bronze (CuSn8), and In-
conel 718) with an accuracy of ≈93%. It was challenging to col-
lect the acoustic emissions as the signal passed through the pre-
viously melted layers and the build plate to reach the sensor.
Another study collected the acoustic signals via an optoacous-
tic fiber Bragg grating with sampling rates up to 10 MHz.[23]

Reinforcement learning was used to recognize acoustic emis-
sions from three classes of material: poor quality, medium qual-
ity, and high quality, and achieved detection accuracies above
74%. A monitoring strategy for LPBF process was developed us-
ing a hybrid deep learning (DL) model that combined CNN and
long–short-term memory (LSTM) (Figure 8).[24] The proposed
model achieved high prediction accuracy ranging from 95.9% to
100% in classifying lack of fusion, conduction mode, and key-
hole across various time scales, based on data from a heteroge-
neous time-synced sensing system. The study emphasized the
importance of back reflection and structure-borne acoustic emis-
sion sensors in the decision-making process. Although the model

demonstrated high accuracy, further validation is necessary for
complex geometries and scanning paths, other types of de-
fects, and optimization of hardware and data collection pipeline,
and the inclusion of physics-based inference from the trained
models.

The previous studies were either based on derived or raw data
taken from one sensor type. There were also efforts to use ML
for multiple sensor types to achieve improved defect detection
rates. Sensor data from the optical layer images, process multi-
spectral emission, and the vector scan path of the laser were com-
bined (Figure 9).[25] The combined sensor data input was trained
against X-ray CT ground truths in a CNN model to classify vol-
umes of 940 μm × 940 μm × 660 μm into flaw and nominal
build regions. The training accuracy was 97.3% when trained
solely on multi-spectral emissions but decreased to 88.7% for
the test dataset. Similarly, the training accuracy was 97.0% when
trained on all data modalities but decreased to 91.9% for the test
dataset.

Adv. Mater. 2024, 2310006 2310006 (8 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 8. Overview of the variable time scale monitoring of LPBF using a hybrid DL model. The proposed DL model can operate over variable time
scales for LPBF monitoring. A hybrid DL architecture combining CNN and LSTM was introduced. Heterogeneous signals, including optical and acoustic
emissions from the process zone, were used to train the DL model. The DL model demonstrated accurate classification of lack of fusion, conduction,
and keyhole regimes within time scales ranging from 0.5 to 4 ms. Adapted with permission.[24] 2022, Elsevier.

3.1.2. Material Extrusion

Material extrusion, a prevalent additive manufacturing tech-
nique, is prone to specific defects that impact the quality of
printed parts. Common defects include layer misalignment
caused by inaccurate deposition, voids stemming from incom-
plete material fusion, inconsistent extrusion leading to irregu-
lar wall thickness, and delamination due to weak adhesion be-
tween layers. These defects are dependent on factors like im-
proper temperature control, inadequate material flow, and incor-
rect print settings. These undesirable defects compromise the
structural integrity, mechanical strength, and dimensional accu-
racy of printed parts, making defect mitigation essential for pro-
ducing reliable and functional components.

To improve print quality and consistency of fused filament fab-
rication (FFF) processes, an innovative approach to quality assur-
ance in additive manufacturing processes was implemented by
leveraging environmental data and ML.[26] Various environmen-
tal parameters (temperature, humidity, air pressure, and gas par-
ticles) were recorded and analyzed during fused deposition mod-
eling (FDM) processes and different ML algorithms (multilayer
perceptron (MLP), 1D CNN, RNN, LSTM, Inception Time, Xcep-
tionTime, and eXplainable CNN for multivariate time series clas-
sification (XCM)) were employed for classification. The Xception-
Time architecture was found to be the most effective, achieving

a minimum accuracy of 95% with both small and large datasets.
This ML algorithm provided faster and cheaper quality assurance
compared to traditional optical 3D scan methods.

Nozzle clogging is also a common issue when dealing with
fiber-reinforced polymers. Nozzle clogging is usually undetected
by the printer and would cause an eventual print failure. A multi-
head encoder-decoder temporal convolutional network (MH-ED-
TCN) algorithm utilized time-series data from collaborative sen-
sors to detect nozzle clogging.[27] This algorithm outperformed
other ML approaches including SVM, LSTM, LSTM autoencoder,
and a simple CNN to achieve a remarkable 97.2% accuracy in
identifying nozzle clogging. Further improvements to the algo-
rithm were also recommended and the addition of appropriate
sensors addressed the printing malfunctions caused by the vis-
coelastic behavior of polymer materials. Although prediction of
nozzle clogging can be performed using ML approaches, it is
challenging to predict the quality of extruded materials from the
nozzle. To solve that, image-based anomaly detection techniques
were developed to realize real-time monitoring and correction.
Image classification model[28] and object detection models[29]

were used to predict under-extrusion and over-extrusion phe-
nomena during the FDM process and accuracies of 98.0% and
89.8% were achieved respectively. The system outperformed hu-
man response times in detecting and correcting defects. The
framework proposed can be extended to other 3D printing
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Figure 9. A Convolutional Neural Network (CNN) design for defect identification uses 3D image slices from M different sensor types. This network is
structured with two convolutional phases followed by a dense layer comprising one hidden layer. The model’s output predictions are produced through a
softmax classification layer. Bar chart showing sensor fusion performing better than the individual layer-wise optical layer images, process multi-spectral
emission, and the vector scan path of the laser. Reproduced with permission.[25] 2022, Elsevier.

technologies for fabricating high-performance materials in chal-
lenging environments without human intervention.

A study was performed to diagnose faults and identify causes,
particularly regarding the drift of process parameters. A deep ad-
versarial learning system that utilized captured upper-layer im-
ages during the manufacturing process was proposed.[30] It em-
ployed a conditional generative adversarial network (CGAN) to
address data imbalance and a domain adversarial neural net-
work (DANN) to handle domain-shifting problems caused by
drifting process parameters. The experimental validation demon-
strated the effectiveness and accuracy (91.01%) of the proposed
method. Although many approaches have been developed to pro-
vide automated monitoring, current automated methods can-
not be universally applied to various components, materials,
and printing systems. A study focused on generalizing the 3D
printing defects and correcting errors in material extrusion ad-
ditive manufacturing (Figure 10).[31] A multi-head neural net-
work trained on a large and diverse dataset (≈1.2 million im-
ages) was developed to identify deviations from optimal print-
ing parameters. The system allowed for real-time error detec-
tion and rapid correction across different printing scenarios. The
trained network achieved an overall accuracy of 84.3% in clas-
sifying the flow rate, lateral speed, Z offset and hot end tem-
perature and demonstrated the effectiveness of gradient-based
visual explanations for understanding network decisions. The
methodology offered a cost-effective and scalable solution that
can be easily integrated into existing printers and workflows,
leading to improved quality and reliability of end-use products
(Figure 11).

Defect detection is critical for large-scale printing due to the
high cost involved, especially so in building and construction.
A study has demonstrated automated layer defect detection in
construction 3D printing using deep CNN.[32] The system com-
prised a deep CNN model that took images as input and distin-
guished concrete layers from surrounding objects via semantic
pixel-wise segmentation. Data augmentation techniques gener-
ated 1 million images for training, tuning, and testing the CNN
model. Furthermore, a defect detection module was developed to
detect deformations in the printed concrete layers using the im-
ages output by the CNN model. The evaluation results showed a
high level of accuracy and F1 score (>90%) in differentiating con-
crete and non-concrete pixels, while the defect detection module
achieved a total accuracy of 97.5% and a miss rate of less than
6% for printed layers with and without defects. A similar study
with fewer images resulted in poorer performance of 80% mean
average precision.[33] These studies demonstrated the potential
of computer vision and deep learning techniques for automated
inspection and quality monitoring in construction 3D printing.

In construction printing, the bigger size (cm-scale) of the ex-
trudate allowed the utilization of 3D scanners for detecting defor-
mations in printed structures.[34] This was unlike smaller-scale
polymer printing (in mm scale) where the precision of 3D cam-
eras imposed limitations on this capability. A study evaluated the
performance of a monocular camera, LiDAR, and LiDAR-camera
in terms of point cloud density and 3D map reconstruction for
defect detection. The results showed that the RGB-L camera out-
performed the other sensors in all scenarios, with an error be-
low 4% when using K-means clustering at a distance of 0.5m.

Adv. Mater. 2024, 2310006 2310006 (10 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202310006, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 10. a) The feedback pipeline consists of six key steps that facilitate the online updating of parameters based on image data obtained during
the extrusion process. b) The provided table presents the values for 𝜃mode (mode threshold), L (sequence length), Imin (interpolation minimum), A+

(maximum increase), and A− (maximum decrease) for each printing parameter, along with the corresponding possible levels of update amounts. c) A
simple example is presented to illustrate the geometric structure of a single layer and the subdivision of the toolpath into smaller segments of equal
length. This subdivision, using 1 mm segments, enables swift correction and reduces the response time in the feedback process. Reproduced with
permission.[31] 2022, Nature Portfolio.

However, the execution time of the algorithm was currently too
high for real-time applications. It was suggested that future work
can focus on validating the system by analyzing concrete printed
areas, incorporating color information to better identify points
belonging to each printed layer, and developing the more ad-
vanced algorithm in C/C++ to reduce computational cost and en-
able real-time applications.

A novel methodology for real-time quality assurance in 3D-
printed electronics using U-Net was presented.[35] An FFF printer
equipped with an extruder was used for conductive paste dispens-
ing, pick-and-place unit, and dual cameras. The cameras cap-
tured images during the printing process and a trained neural
network was used to distinguish the conductive wires from the
plastic substrate. The method was used to identify common print-
ing flaws such as connection breaks, shorts, and inaccuracies in
wire width, comparing the actual output with the intended G-
code instructions with an overall accuracy of 96.6%. The results
facilitated high-resolution documentation and provided data to
improve the printing process. This innovation enabled the de-
tection of errors and can be potentially used for automated flaw
rectification, paving the way for more reliable and autonomous
3D-printed electronics production.

In situ monitoring is commonly implemented during the bio-
printing process to improve the dimensional accuracies of 3D-
bioprinted tissue constructs. The error (missing or excess mate-

rial) within each printed layer is compounded with increasing lay-
ers and it would lead to poor dimensional accuracies for large 3D-
bioprinted tissue constructs, which typically require a long print-
ing time and involve high material cost. The CNN-based classi-
fiers are typically utilized for defection detection in most man-
ufacturing processes; they can be implemented to monitor and
improve the printing outcome in 3D bioprinting processes using
computer vision. The captured images can be labeled as “under-
extrusion”, “good-quality” and “over-extrusion” images for train-
ing. A DL model can be used to optimize the printing parame-
ters iteratively and adaptively using a real-time in situ monitoring
and correction system. An ad hoc optimized CNN and a mathe-
matical model were used to perform in-process and parameter
optimization of the extrusion-based bioprinting process.[36] The
dataset was constructed by capturing videos of multi-layered scaf-
folds fabricated using the extrusion bioprinting process; the in-
puts include type of extrusion system (pneumatic or mechanical),
type of material, layer thickness, and infill density while the out-
put is based on extrusion multiplier (which represents the ratio
of printing resolution to nozzle diameter). The printing quality
can be optimized by tuning the printing parameters through a
series of consecutive prints in a feedback loop manner using the
CNN model. The results showed an accuracy of 94.3% for overall
printing; acceptable printing has a precision of 87.2% and recall
of 96.5%, over-extrusion has a precision of 98.3% and recall of

Adv. Mater. 2024, 2310006 2310006 (11 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202310006, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 11. a) The multi-head neural network allows for quick correction of errors caused by manual intervention in a single parameter. It has been
trained on a particular printer and PLA feedstock. The correction procedure is used on a hidden 0.4 mm nozzle that was not part of the training set
of data. b) The control pipeline shows that multiple incorrect parameters for thermoplastic polymers that were not seen during the training phase can
be simultaneously optimized online. This demonstrates the system’s adaptability to a variety of feedstocks with various material characteristics, colors,
and initial conditions. c) The system uses self-learned relationships between parameters to make corrective predictions, much like human operators
do. By decreasing the Z offset value and/or increasing the material flow rate, for example, a high Z offset can be corrected. d) The system successfully
fixes numerous wrong printing parameters that were added during a print job. The only difference between the two identical rooks printed under the
same circumstances was how the correction process was used. e) Prints started with the wrong parameter combinations are successfully handled by the
system. The same conditions were used to print a set of six spanners, demonstrating the system’s capacity to correct mistakes and produce the desired
results. Reproduced with permission.[31] 2022, Nature Portfolio.

94.5% and lastly under-extrusion has a precision of 97.6% and
recall of 92.2%.

These research efforts collectively demonstrate the growing
potential of ML and computer vision in automating quality in-
spection and monitoring in a material extrusion process. By ad-
dressing the limitations of manual inspection methods, these
advanced solutions offer enhanced accuracy, efficiency, and the
potential for real-time applications. Further developments in
dataset size, sensor technology, and algorithm optimization hold
promise for broader adoption and improved quality control in the
field of AM.

3.1.3. Material Jetting

A technique for in-process monitoring of droplet properties dur-
ing liquid metal jetting AM was developed using an in-process
millimeter wave (MW) sensor and ML.[37] The MW sensor pro-
vided a real-time monitoring solution that circumvented the com-
puting requirements of high-speed image sensors by produc-
ing efficient time series data to anticipate droplet size, velocity,

and shape. An MLP-based non-linear autoregressive model was
trained to predict droplet size and velocity with a statistical fi-
delity exceeding 90%, outperforming traditional statistical mod-
els. Furthermore, a supervised ML model was trained to classify
droplet shapes using spectral frequencies from the MW sensor
data, achieving an F1-score of over 95%. This approach presented
a practical and computationally efficient solution for quality con-
trol in liquid metal jetting AM. It was even suggested that future
research should aim to develop and use ML models for the pre-
diction of defect formation and build failures and contribute to
improved part quality and higher manufacturing efficiency.

A novel in situ monitoring method employing vision-based
techniques was introduced to observe droplet formation in inkjet
printing.[38] A drop watcher camera was implemented to capture
video sequences of droplet properties which include size, veloc-
ity, aspect ratio, and the existence of satellite droplets under vari-
ous voltage and frequency combinations. The influence of these
parameters on distinct droplet modes (namely normal, satellite,
and no-droplet) was analyzed through computer vision, and a
backpropagation neural network (BPNN) was constructed to cat-
egorize the droplet modes based on these properties with a high
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Figure 12. Illustration of the process for detecting irregular powder feeding. a) Deposition head featuring four side nozzles and a central camera for
monitoring the melt pool region, b) Training and validation of the model using image datasets representing both regular and irregular conditions, and
c) Real-time application of the pre-trained model for immediate inference. Reproduced with permission.[43] 2022, Elsevier.

degree of classification accuracy at 90%. This method offered a
sturdy framework for real-time quality inspection during inkjet
printing, which can potentially facilitate process enhancement
and predictive analysis. The work laid the foundation for the fu-
ture development of a digital twin model for inkjet printing and
other related electronic printing technologies.

Another study proposed the adoption of predictive models
and nonlinear autoregressive neural networks with external in-
put (NARX) for quality assurance and process control in AM
for electronics. The challenges of using 3D printing in elec-
tronics manufacturing were highlighted and modeling tech-
niques such as finite element analysis (FEA) and data-driven
ML can be applied for predicting product performance, qual-
ity, and reliability.[39] A novel model-based approach for inkjet
printing process is demonstrated using state-space models de-
rived from measured process data.[40] This approach helped to
anticipate process trends and associated product quality charac-
teristics over large prediction horizons, even in the case of mod-
erately non-linear dynamics of the 3D printing process. Both
studies emphasized the importance of proactive, model-based
assessment over conventional post-manufacture techniques to
mitigate common reliability and quality risks associated with
AM. These advancements have significant potential in enhanc-
ing the acceptance of 3D printing technology in the electron-
ics industry, while ensuring improved and more robust process
performance.

3.1.4. Directed Energy Deposition (DED)

The occurrence of defects is common in the DED process; these
defects include balling, lack of fusion, porosity, warping, and
waviness. The defects are caused by improper laser parame-
ters, material interactions, and heat accumulation. These is-
sues compromise the structural integrity, surface finish, and
dimensional accuracy of the manufactured parts, highlight-

ing the importance of meticulous parameter control and real-
time monitoring in DED processes for achieving high-quality
components.

An infrared camera coaxial to the laser beam was used to
train a deep CNN to identify process stability at four categories:
normal laser power, low laser power, low scanning speed, and
high scanning speed with accuracies above 80%.[41] Another
study analyzed process parameters to predict the melt pool tem-
peratures via extreme gradient boosting ensemble learning and
LSTM neural networks.[42] The melt pool temperatures were
trained on infrared camera measurements and the coefficient
of determination between the prediction and actual measured
temperatures was higher than 51% in all cases tested. Another
study used coaxial camera images to determine abnormal pow-
der supply in DED due to issues such as restricted powder flow
(Figure 12).[43] A few ML models were trained and the accura-
cies were above 55.1%, 69.8%, 70.6%, and 95.9% for K-NN, de-
cision tress (DT), RF, and CNN, respectively. Furthermore, an
in situ monitoring system was developed for DED process.[44]

The monitoring system consisted of a hyperspectral camera for
melt pool width and temperature control, a coaxial camera for
melt pool data, and a laser scanning system for material height
measurement. Independent tuning of the process parameters
was challenging due to the highly interconnected process param-
eters that significantly influenced the deposited geometry and
material properties. Hence, ML-based optimization is helpful in
finding the optimal controller output for the in situ process mon-
itoring system.

Beyond process stability, neural network-based ML such as
RandLA-Net with in situ sensors were used to detect defects
within the DED built parts. Geometrical defects were classified
based on a laser line scanner trained on a DL model to clas-
sify surfaces into normal, convex, and concave at accuracies of
91.3%.[45] A similar study used data from a laser profiler to first
cluster the points via an unsupervised ML model followed by su-
pervised learning to classify the clusters into no defect, bulging,
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dents, and wavy surfaces.[46] For the supervised learning, a few
ML models were explored, and K-NN achieved the highest ac-
curacy of 93.2%. Another work combined optical emission spec-
trometer and CCD camera images through Kronecker product of
graphs as inputs into an SVM model.[47] The model was trained
against X-ray CT data to classify the layers into three categories:
low, medium, and high severity. The combination of input from
the two sensors via a Kronecker product improved the statisti-
cal fidelity score from 35% to 75%. A microphone with a sam-
pling rate of 44.1 kHz was used to gather acoustic emissions
from the DED.[48] A deep learning model that consisted of a
fully connected regression deep neural network (F-DNN) and a
redundant convolutional encoder-decoder network (R-CED) was
trained to remove the signal noise from the machine motion, in-
ert gas motion, and powder supply based on the ground truth
signal that was equalized, filtered and processed using audio-
based algorithms.[48a] The acoustic signal was first denoised by
audio-based signal processing algorithms, followed by extraction
of time and frequency features to construct a sequence of Mel-
Frequency Cepstral Coefficients (MFCC).[48b] These coefficients
were used as inputs to train a CNN model and compared against
simpler ML models such as RF, SVM, gradient boosting, and K-
NN with a subset of the audio signal features used as inputs. The
MFCC CNN model produced the highest accuracies above 89%
at predicting defect free, cracks, and keyhole pores in the built
part (Table 2).

3.2. Process Optimization

Process optimization plays a crucial role in maximizing the effi-
ciency and reliability of AM processes. With the complexity and
intricacy involved in AM, fine-tuning the printing parameters,
and optimizing the process parameters are essential for achiev-
ing consistent and desirable results. One of the major challenges
in process optimization for 3D metal printing is the intricate in-
terplay of numerous variables, including laser power, scanning
speed, layer thickness, and powder characteristics. The optimal
combination of these parameters is dependent on the specific
metal alloy, part geometry, and desired mechanical properties.
This is where ML is important in process optimization for metal
printing. ML algorithms can analyze large amounts of data from
previous printing runs, identifying patterns and relationships
between process parameters and part quality. By learning from
these patterns, ML models can predict the optimal process pa-
rameters for a given set of conditions, thereby reducing the need
for trial and error, and minimizing material waste. In general,
ML can be implemented in metal printing to predict printability
of a material under specific set of process parameters, to opti-
mize the toolpath to decrease the residual stress, and to predict
the thermal gradient for process optimization purposes.

Supervised learning is commonly used for process optimiza-
tion in AM; it is suitable for process optimization when histori-
cal data with well-defined input-output pairs are available, but it
may not adapt well to dynamic processes. Figure 13 provides an
overview of ML applications in optimizing processes across di-
verse AM processes, along with various objectives related to pro-
cess optimization. The choice of ML approach is often dependent
on the specific process optimization problem, the availability of

Figure 13. Graphical overview of ML applications in optimizing processes
across diverse AM processes, along with various objectives related to pro-
cess optimization.

data (labeled or unlabelled), and the level of complexity involved
and more discussion will be provided in the subsequent sections.

3.2.1. Powder Bed Fusion

The quality of LPBF-fabricated parts is heavily influenced by
process parameters, but existing methods for determining the
parameter window are time-consuming and subjective. A su-
pervised ML method was implemented to optimize the LPBF
process in additive manufacturing (Figure 14).[53] An ML ap-
proach was proposed to detect and track defects and predict ma-
terial printability in LPBF. It classified printed tracks into five
groups based on surface characteristics and developed a data-
driven model using BPNN. The model utilized the classification
results as target output and four quantitative indicators calcu-
lated from surface morphology as input variables. The proposed
method significantly improved the efficiency of parameter win-
dow search, enabling defect-free printing and excellent part per-
formance. The integration of a 3D microscope for in situ mea-
surement further enhanced its applicability in unmanned facto-
ries. Overall, the work highlighted the importance of ML in op-
timizing the LPBF process, offering an intelligent solution for
parameter determination and paving the way for more efficient
and automated manufacturing processes.

The primary object of another study was to determine the opti-
mal laser tool path by minimizing the average thermal gradient.
The study showcased the capability of accurately predicting opti-
mal laser paths using a DL model, which was trained on 33000
physics-based simulation results that contain “good” labels (low-
temperature gradient) and “bad” labels (high-temperature gra-
dient) in a 1:1 ratio, despite limitations in training data and bi-
nary information.[54] Notably, the DL simulation, implemented
with a CNN, significantly outperformed brute force simulations
in terms of speed. This work underscored DL’s potential in tool
path optimization within AM, highlighting its ability to compre-
hend tool path patterns and reconstruct comprehensive path per-
formances. Furthermore, the research illustrated the feasibility of
applying a physics-based DL approach to other AM techniques,
providing lower simulation costs while maintaining accuracy.
Thus, a trade-off between computational expenses and accuracy
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Figure 14. Illustration showing the different types of line morphology created by powder bed fusion using different process parameters and the use of
ML to classify and predict the printability of the parts. Reproduced with permission.[53] 2020, MDPI.
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was identified, emphasizing the importance of striking an opti-
mal balance for future investigations in this domain. It is crucial
to note that, despite the DL’s model’s substantial speed advan-
tage over traditional brute force simulation methods, this does
not imply that the predictions are flawless and devoid of the need
for further refinement. The model’s success lies in its rapid nar-
rowing identification of a singular perfect solution. The model’s
predictions serve as a highly informed starting point, and subse-
quent optimizations can be applied using additional criteria or
constraints not fully captured by the training data. This iterative
refinement process is essential for tailoring the model’s output
to the specific nuances. It is important to note that while the DL
model significantly outperforms traditional brute force simula-
tion methods in processing speed, this does not imply that the
predictions are flawless and devoid of the need for further re-
finement. The model’s success lies in its rapid narrowing down
of potential tool paths to a subset likely to include the optimal
path, rather than guaranteeing the identification of a singular,
perfect solution. The model’s predictions serve as a highly in-
formed starting point, and subsequent optimizations can be ap-
plied using additional criteria or constraints not fully captured by
the training data. This iterative refinement process is essential for
tailoring the model’s output to the specific nuances of any given
LPBF task. Additionally, the well-known challenge of ML models
not precisely adhering to hard constraints is addressed. In the
context of LPBF tool path optimization, this limitation necessi-
tates the integration of supplementary optimization algorithms
or constraint-satisfaction techniques post-prediction. These steps
ensure that the final tool paths not only approximate the model’s
predictions but also align with the physical and operational con-
straints of the LPBF process.

3.2.2. Material Extrusion

Multiple process parameters such as the nozzle and bed temper-
atures, raster angle, layer thickness, nozzle size, and print speed
are known to affect the quality of the printed parts during ma-
terial extrusion. The high dimensionality of the dataset warrants
the use of ML techniques to identify the most optimum process
parameters.

A data-driven ML platform using MLP and CNN models
was developed to predict optimized parameters for the FFF
process.[55] Spatial features were first extracted using CNN and
were then transferred to the MLP model together with other
process parameters such as extrusion width, layer height, print
speed, infill, area, and volume. The approach enabled quick and
accurate predictions of decisive parameters such as time, weight,
and length, even with fuzzy input information. It did not require
consideration of the shape, size, and material of the printed ob-
ject and can perform the process automatically. The proposed ML
approach has several advantages, including better stability and
clearer rules compared to previous research, fast estimation of
printer parameters in approximately one second, and applicabil-
ity to various types of 3D printing materials and domains like con-
struction, medical, and architecture. In a different study, a data-
driven predictive model for the FDM process was created using a
variety of ML algorithms.[56] The model predicted dimensional
deviations between the printed model and the original one by

fusing temperature and vibration data from various sensors with
process parameters. In terms of parts dimensional accuracy pre-
diction, the residual attention neural network model performed
better than other ML models such as 1D CNN and LSTM net-
works. However, more advancements are required to consider
environmental factors from the outside, develop an online feed-
back system for real-time prediction, and create a comprehensive
digital twin system for AM.

Bayesian optimization was used in a recent work to accelerate
the printability optimization for extrusion-based bioprinting.[57]

The input variables for bioink compositions consist of 3-gelatin
methacryloyl (GelMA) concentrations and 3 GelMA/hyaluronic
acid methacrylate, whereas the input variables for printer pa-
rameters include bioink reservoir temperature, extrusion pres-
sure, print-head speed, and platform temperature. A scoring sys-
tem was then implemented to assess the filament morphology
during extrusion and pore architecture on layer stacking. The
study has shown that the Bayesian optimization algorithm can
be used to analyze the optimal printer parameters and acceler-
ate the extrusion bioprinting experimentation process in com-
parison to the traditional trial and error approach.[57] Another
work utilized Uniform Design (UD) technique to select 12 experi-
ment data points based on three parameters four-level data space
U12(P3

4)[58] and SVM algorithm to generate a process map that
identified optimal printing parameters to fabricate high-quality
printed parts using Pluronic F127 bioink with a high probability
of > 75%.[59] It provided a simple tool to improve the printabil-
ity of extrusion-based bioprinting process based on width index
with minimum dataset using inputs such as printing tempera-
ture, material composition, and path height.

An interesting study used optimized ML models to predict ma-
terial printability for FDM-printed pharmaceutical products.[60] A
total of 318 materials and 1594 formulations obtained from on-
line literature and in-house formulations were used as dataset
for this study; three different ML techniques (ANN, SVM, and
RF) were used and a 75:25 split was used for training and test-
ing. RF emerged as the best ML model for predicting all targeted
variables (filament mechanical characteristics, extrusion temper-
ature, printing temperature, and printability) with the highest ac-
curacy. Another work compared the optimization of 3D print-
ing properties for assistive devices using traditional ANN and
deep neural networks (DNN).[61] The DNN outperformed the
traditional ANN approach, offering improved calculation speed,
higher print quality, and decreased errors. It highlighted the ef-
fectiveness of DL-based optimization in 3D printing processes.

Another study proposed the use of both open-loop and closed-
loop ML models to monitor the effects of processing param-
eters on the quality of 3D-printed parts.[62] The open-loop ap-
proach utilized multiple ML classification algorithms such as
deep neural network (DNN), support vector machine (SVM), de-
cision tree (DT), random forest (RF), and logistic regression (LR)
to determine the relationship between processing parameters
and printed lines’ quality (large space, little space, good connec-
tion, little material flow, large material flow). A closed-loop sys-
tem is constructed based on this relationship using a fuzzy in-
ference system that generates optimized processing parameters.
The ML-based closed-loop system improved the quality of printed
parts and enabled a self-adjusting 3D printing process by effec-
tively monitoring and optimizing processing parameters. More
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research could be conducted to include additional processing pa-
rameters and conducting real-time closed-loop 3D printing ex-
periments.

In larger-scale construction printing, printing parameters
such as pumping, extrusion, and printing speeds, nozzle diame-
ter, and standoff height have a direct impact on the printing pro-
cess and the final mechanical properties of the concrete struc-
tures. It is a daunting task to identify the optimal printing pro-
cess due to the large number of variables involved. One approach
to address this challenge is through nozzle shape optimization.
A predictive modeling approach using ANN was proposed to di-
rectly control the geometry of concrete printing extrudate by opti-
mizing nozzle shapes.[63] Thirteen different nozzle shapes were
predetermined and used in the experiments, with their corre-
sponding extrudate geometries analyzed using MATLAB. The
ANN model was then developed to correlate nozzle and extru-
date shapes, and a nozzle-extrudate database was formed for an-
alyzing the optimal nozzle shape for specific target extrudate
shapes. The results showed a noticeable improvement in sur-
face finish quality without additional post-finishing effort, offer-
ing flexibility for various printing structures with different outer-
surface shapes. The proposed approach has the potential to im-
prove surface finish quality in concrete printing, as it directly
controls extrudate geometry without the need to reduce nozzle
size.

Researchers are making significant advancements in process
optimization for 3D printing by exploring nozzle shape optimiza-
tion, predictive modelling for mechanical properties, and AI-
based control systems. These approaches offer potential for en-
hanced surface finish quality, improved mechanical properties,
and better control over the printing process, paving the way for
further innovation and application of 3D printing in various in-
dustries.

3.2.3. Material Jetting

There are many variants of jetting-based printing techniques
which include inkjet printing, aerosol jet printing, electrohy-
drodynamic jet printing, acoustic printing, laser-induced for-
ward transfer printing, etc., that facilitate drop-on-demand high-
resolution printing. Each of these printing techniques are de-
signed differently and they have their unique sets of process
parameters that can be controlled to adjust the print qual-
ity. Typically, these print parameters are adjusted such that
a printed pattern with well-defined edges is obtained. How-
ever, most printing processes have multiple process parame-
ters that make it difficult to identify the most optimum print
settings for the best print condition. Thus, many on-going re-
search works are looking at applying ML to simplify process
optimization.

A multi-objective optimization design method for drop-on-
demand printing parameters through fully connected neural net-
works (FCNNs) was proposed; a hybrid multi-subgradient de-
scent bundle with an adaptive learning rate algorithm was used
for multi-objective optimization due to its rigorous convergence
theorems; it can be used to optimize printing of droplets with
smaller diameter, faster droplet speed with absence of satel-
lite droplets using inputs such as applied voltage, viscosity, sur-

face tension and nozzle diameter.[64] Another study used en-
semble learning approach and its base learners (RF, least abso-
lute shrinkage and selection operator (LASSO), extreme gradi-
ent boosting, and SVR) to predict the droplet velocity and vol-
ume using inputs such as polymer concentration, excitation volt-
age, dwell time, and rise time in inkjet-based bioprinting pro-
cess; the experimental results showed extreme gradient boost-
ing has highest predictive accuracy (R2 = 0.977, RE = 0.044,
and RMSE = 0.240) in accordance with the studied operating
conditions.[65]

Another study utilized ML models to optimize the electrohy-
drodynamic jet printing of graphene-based biosensors.[66] Su-
pervised ML models, trained on key printing parameters such
as nozzle speed, ink flow rate, and voltage, could predict the
conductivity of printed circuits in real time. The RF and K-NN
(k = 10) models delivered the highest prediction accuracy
of about 83%. The integration of ML aimed to streamline
the manufacturing process, ensure resource efficiency, and
produce devices with controlled electrical properties. Over-
all, the study emphasized the significant potential of ML
in enhancing the manufacturing processes in the electronics
industry.

ML models were used to predict ink-jetting behavior in the
inkjet printing process based on 11 distinct ink and printer
parameters.[67] Notably, small ensembles of DT such as boosted
DTs and RF demonstrated superior predictive power for drop ve-
locity and radius, with an RMSE of 0.39 ms−1 and 2.21 μm, re-
spectively. Furthermore, a neural network model was constructed
to categorize drop behavior into three categories: stable “sin-
gle drop”, “multiple drops”, or “no ejection” and achieved an
accuracy of 91.94%. The models were validated using an un-
tried graphene oxide ink, which was not included in the train-
ing dataset. This innovative ML approach could accurately pre-
dict ink jetting behavior and eliminate the need for costly, time-
consuming, and material-intensive jetting experiments. Overall,
the research demonstrated that ML can significantly enhance the
efficiency of inkjet printing, highlighting its potential for acceler-
ating the development of new functional ink materials for printed
electronics.

An innovative combination of a microfluidics-driven multi-
scale 3D printer with ML was implemented to enhance the pre-
cision of the freeform generation of active electronics.[68] A new
printing and ML workflow was developed to modulate ink com-
position in real time and classify complex internal features. This
was achieved by using an SVM-guided classification model for
automated, in situ pattern classification. The ML model showed
a balanced accuracy of 81.96% in classifying the internal tex-
tures of the evaporative-driven printed droplets. The developed
ML-integrated printing system facilitated autonomous optimiza-
tion of printing parameters and robust adaptation to unantici-
pated disturbances. This represented a significant step towards
automated process parameter control for the 3D printing of
electronics.

Another study applied RSM to investigate the interplay be-
tween aerosol jet printing parameters and the intense pulsed
light (IPL) sintering process for silver nanoparticle film in
printed electronics applications.[69] The correlation between
print passes and sintering distance on surface morphol-
ogy and sheet resistance was investigated to elucidate the
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Figure 15. Schematic showing the workflow for a multi-objective optimization using RSM for optimizing the electrical conductivity and surface roughness
in the IPL sintering process. Reproduced with permission.[69] 2022, AccScience Publishing.

complex relationships among the different parameters
(Figure 15). A hybrid multi-objective optimization approach,
including a modified central composite design (CCD) and
non-dominated sorting genetic algorithm (GA), was applied to
systematically manage these conflicting responses. The use of
ML allowed for the identification of optimal windows for the
IPL sintering process, resulting in films with low sheet resis-
tance and low surface roughness. Compared to conventional
trial-and-error methods, this optimization approach was found
to be more efficient and systematic. This work lays a founda-
tion for future optimization of IPL sintering parameters for
various nanoparticle-based films and multi-layered electronics
fabrication.

Various ML methods such as RSM, GA, and transfer learning
were used to optimize the process parameters of the aerosol jet
printing process and understand the complexity between their
interactions.[70] The results showed that the Gaussian process re-
gression performed better than the other ML models such as K-
mean clustering and SVM in terms of prediction of the classifi-
cation of printed features such as the line width, edge roughness,
and film thickness. It is possible to use a very small dataset for
the same prediction using transfer learning techniques such as
feature representation, instance transfer, and model-based trans-
fer. The feature representation technique outperformed the other
methods as it resulted in smaller error in the prediction. Overall,
the ML works for aerosol jet printing present a framework that

can be effectively transferred and applied in other printing tech-
niques.

3.2.4. Directed Energy Deposition (DED)

Besides toolpath optimization for LPBF processes, ML is often
applied in other metal printing such as DED and gas-metal arc
welding-AM to predict the spatial and temporal thermal fields to
inform the designers of the producibility and the potential risk
for cracks of the parts.[71] A study utilized a novel approach for
discretizing the deposition process of gas-metal arc welding-AM
process to enhance the adaptability and flexibility of numerical
simulation in analyzing thermal aspects of the material deposi-
tion process (Figure 16).[71a] A unique data structure was used to
obtain deposition state data from numerical simulation results.
The data was then utilized to train a recurrent neural network and
deep neural network (RNN-DNN), and one convolutional neu-
ral network (CNN) specifically designed for identifying correla-
tions between deposition stages and their corresponding ther-
mal fields. The validation results demonstrated that the devel-
oped method achieved a prediction accuracy exceeding 94% com-
pared to numerical simulation results. Interestingly, the time re-
quired for a single prediction process was reduced to the millisec-
ond level. Another study also RNN-DNN for thermal analysis in
laser-aided AM (LAAM).[71b] A thermal field prediction numerical
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Figure 16. Illustration showing the use of RNN-DNN and CNN model to predict the temperature field of the 3D printing process. Reproduced with
permission.[71a] 2021, Elsevier.

model was used to generate a comprehensive training dataset, the
developed RNN-DNN model successfully correlated laser scan-
ning patterns with their corresponding thermal history distribu-
tions. The high prediction accuracy of over 95% compared to fi-
nite element models highlighted the significance of ML in im-
proving efficiency and decision-making in LAAM processes.

This advancement enables rapid evaluation of different scan-
ning patterns within minutes, leading to potential cost savings
and enhanced manufacturing outcomes. Furthermore, the in-
tegration of ML techniques paves the way for future research
on multi-layered 3D deposition processes, expanding the un-
derstanding of complex geometries and optimizing deposition
strategies for desired material properties. Overall, these stud-
ies underscore the importance of ML in revolutionizing thermal
analysis in metal printing and accelerating its adoption in diverse
industries.

3.2.5. Vat Photopolymerization

A recent work has demonstrated the use of NN to learn printing
parameters for DLP process from a 3D-printed simulator to offset

the cell-induced light scattering effect.[72] Single-layer trial prints
were obtained from different sample masks and used to train the
algorithm; a print simulator was used to generate a huge amount
of new training data, which greatly reduced the required train-
ing samples by more than tenfold. The printed samples and the
generated samples were then used to train the neural network
which calculates the appropriate masks that compensate the cell
scattering effect. The NN approach in the study is composed of
two U-Net-like NNs—slave NN and master NN. The network ar-
chitecture of the master NN is composed of 14 convolution or
deconvolution layers with batch normalization, ReLU, and Tanh
activation function, as well as U-net style skip connections. The
slave NN learned the transformation of the physical 3D printer
and provided gradient information to support the training of the
master NN, while the master NN learned the inverse transforma-
tion of the 3D printer. This allowed the master NN to suggest a de-
formed mask for any given target structure and print it out under
highly scattering condition. Furthermore, the algorithm enabled
the use of a small sample size (as small as 32) for training data to
generate grayscale masks that can print fine-detailed structures
surpassing the traditional manual tuning method with identical
masks.
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Continuous liquid interface production (CLIP) is an ad-
vanced vat photopolymerization technique that uses an oxygen-
permeable “dead zone” between the fabricated part and trans-
parent window to continually cure the resin. There is an opti-
mal range of printing speeds to achieve successful print for each
defined geometry; a combination of physical modeling and ML
approaches was used in a recent work to identify the optimum
speed and appropriate speed range for continuous printing.[73] A
synthetic dataset was first generated in the absence of an available
experimental dataset to identify the significant factors using the
design of experiments (DOE) for successful prints. The predicted
results for the successful prints were then screened and collected
as new experimental dataset that were subsequently used for
training. Various ML algorithms such as conventional techniques
(DT, naive Bayes, K-NN, and SVM), ensemble approaches (RF,
gradient boost, and Ada boost), and DNN (Siamese networks)
were evaluated and compared; Siamese Networks demonstrated
superior performance (average training accuracy of 90.17% and
testing accuracy of 88.42%) as critical information was extracted
from the mathematical models-generated synthetic dataset
(Table 3).

3.3. Design Optimization

The rapid evolution of 3D printing technologies has paved the
way for innovative approaches in the design and fabrication of
materials and structures. Amidst the plethora of techniques that
have emerged to enhance the additive manufacturing process,
the integration of ML stands out as a game-changer. Particularly
in the realm of design and topology optimization, ML offers ca-
pabilities that have the potential to redefine the paradigms of
3D printing. Design and topology optimization traditionally in-
volve intricate processes, where the objective is to derive the best
material distribution within a given space, considering specific
boundary conditions and loads. The challenge here is the vast
solution space, which becomes computationally intensive and
time-consuming to navigate. This is where ML comes into play.
With its ability to analyze massive datasets, recognize patterns,
and make predictions, ML can provide insights and solutions at
a pace and precision that are often beyond traditional compu-
tational methods. Moreover, the iterative nature of design opti-
mization aligns seamlessly with ML models. These models can
be trained on a myriad of design variations, learning from each
iteration, and subsequently suggesting optimal design strategies
that not only meet but often surpass human-driven solutions.
Furthermore, the incorporation of ML allows for real-time feed-
back during the design phase, which can be instrumental in mak-
ing swift, informed decisions. In the context of AM, the choice of
ML approach is dependent on the stage of design process. Su-
pervised learning might be useful for the prediction of material
properties at the early design stage, while reinforcement learning
could be employed for fine-tuning and optimizing the design of
3D-printed parts. Most of the design optimization problems are
multi-objective with conflicting design goals. Hence, a combina-
tion of approaches, like multi-objective optimization algorithms
might be applied to determine the optimal solutions. Figure 17
provides a summary of the application of ML for design optimiza-
tion for various AM-related applications and more discussion on

Figure 17. Graphical overview illustrating the utilization of ML for opti-
mizing designs in the context of AM-related applications.

the use of different ML techniques for design optimization in AM
will be provided in the subsequent sections.

A novel approach for constructing AM design rules was in-
troduced using ML and knowledge graphs (Figure 18).[75] The
framework extracted knowledge on predictive manufacturability
from data, stored both existing and newfound AM knowledge in
an ontology-based knowledge graph and applied reasoning to de-
rive data-driven prescriptive AM design rules. The methodology
enhanced the automated and autonomous construction and im-
provement of AM design rules, supporting AI-related decision-
making in additive manufacturability analysis and (re-)design for
AM. By providing shareable AM design rule knowledge with the
AM community, this work promotes collaboration and facilitates
advancements in the field.

An optimization framework that utilized variational autoen-
coder (VAEs) was proposed to design composite mechanical
metamaterials (Figure 19).[76] The focus was on controlling
macroscopic elastic moduli and designing optimal representa-
tive volume element. The approach employed a variational au-
toencoder to learn a reduced representation of representative vol-
ume element configurations, enabling Bayesian optimization for
multi-material design problems. Bayesian optimization can be
used to construct a probabilistic surrogate model for the objec-
tive function and query the next data point. This ML-based frame-
work eliminated the need for subjective trial-and-error design de-
cisions. Experimental validation using multi-material 3D-printed
samples demonstrated good agreement between the optimized
values by the ML model and the experimental counterparts.

A method utilizing StyleGAN was employed to design archi-
tected materials inspired by nature, specifically focusing on the
generative formulation of original unit cell designs inspired by
leaf microstructures.[77] By employing unsupervised learning,
this approach facilitates the exploration of a latent space for pi-
oneering material design, overcoming the limitations associated
with labelled data. This methodology proves particularly perti-
nent to 3D printing workflows, where it can guide the develop-
ment of materials and structures by translating natural language
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Figure 18. Schematic diagram of a framework that utilized ML and knowledge graphs to formalize unstructured AM guidelines into structured knowl-
edge. The framework comprised four key components: a priori knowledge structuration, transformation of AM data into AM knowledge, transformation of
AM knowledge into design for AM ontology, and rule transformation. By employing this approach, the framework facilitated automated and autonomous
construction and enhancement of AM design rules by leveraging both existing knowledge and data-driven insights. Reproduced with permission.[75]

2021, Elsevier.

inputs or human design iterations into optimized 3D models.
This process showcases the potential of integrating advanced ML
techniques to augment material design and manufacturing pro-
cesses, thereby enhancing the efficiency and responsiveness of
intricate design workflows to human inputs.

A technique was developed to reverse engineer composite
material parts using imaging methods and ML (Figure 20).[78]

The approach captured the geometry of the parts and recon-
structed the 3D printing tool path by examining the microstruc-
ture. The study utilized glass fiber reinforced acrylonitrile

Figure 19. The metamaterial optimization framework involved three main steps. In Step 1, samples were drawn from a random process to create an
artificial database of representative volume element images, each consisting of 28 × 28 pixels. Step 2 involved training a variational autoencoder to
generate realistic output samples. By flipping the 28 × 28 images twice, larger 56 × 56 RVE images were obtained, which preserve symmetry. Finally,
in Step 3, the framework employed Bayesian optimization to achieve the optimal design of a representative volume element that met the specified
macroscopic elastic moduli requirements. Adapted with permission.[76] 2020, Elsevier.
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Figure 20. The implementation of a reverse engineering method using both μCT scan and SEM images of the model. The tool-path details are extracted
by employing an RNN with LSTM architecture, which identifies the fiber orientation within each layer. This approach enabled the reconstruction of the
model’s toolpath based on the available imaging data. Reproduced with permission.[78] 2020, Elsevier.

butadiene styrene filaments for 3D printing specimens, which
were then reverse-engineered using micro-computed tomogra-
phy (μCT) scans and scanning electron microscopy (SEM) im-
ages. The tool-path information was extracted by identifying fiber
orientation in each layer using an RNN with LSTM architecture.
The results showed high accuracy in predicting printing orien-
tation (error of 0.5°) and achieved high dimensional accuracy
in the reverse-engineered models. The research demonstrated
the potential to reverse engineer high-quality replicas of compos-
ite parts by leveraging the capabilities used for designing high-
performance composites.

Researchers are advancing the field by integrating ML into AM
processes for automating customization, optimizing parameters,
improving part quality, and facilitating design rule development.
These advancements enable efficient and cost-effective produc-
tion, while also promoting collaboration and innovation within
different research groups.

An optimization method for complex mechanical structures
was demonstrated by combining the RSM and multi-objective
genetic algorithm (MOGA).[79] After conducting experimental
modal analysis and FEA on the inkjet printer, the method iden-
tified weak points and performance aspects of the structure. The
central composite design (CCD) method was deployed to select
sample points for numerical simulations and the initial second-
order RSM, which focused on the printer’s first-order natural fre-
quency, weight, and maximum deformation of the inkjet head,
was established. The approximation optimization of the RSM was
then carried out using MOGA, resulting in a Pareto optimal so-
lution set. The method demonstrated increased computational
efficiency compared to conventional optimization methods and
was good for multi-objective optimization of complex structures
printed by the inkjet printer. The optimized solution increased
the printer’s first-order natural frequency by 36.3%, reduced the

maximum deformation of the inkjet head by 33%, and lowered
the printer’s weight by 19.5%. There was a trade-off between com-
puting costs and accuracy, hence it is necessary to discover the
optimal balance for future research.

The synergy of ML with design and topology optimization for
3D printing holds the promise of pushing boundaries, that al-
lows creating efficient and sustainable designs for specific appli-
cations. As we delve deeper into this intersection, we will explore
the mechanisms through which ML augments the design pro-
cess, addresses the challenges, and opens the horizons in the dy-
namic world of 3D printing (Table 4).

3.4. Microstructure Analysis

The microstructure of metal printed parts is critical for deter-
mining their mechanical, thermal, and functional properties.
However, there are several challenges in characterizing the mi-
crostructure in AM parts. The AM process introduces unique
complexities such as rapid solidification and cooling rates, which
results in distinct microstructural features compared to con-
ventional manufacturing methods. Moreover, spatial variations
within a single part and the need for non-destructive evalu-
ation further complicate microstructural analysis. To address
these challenges, advanced imaging techniques such as electron
backscatter diffraction (EBSD), X-ray CT, and high-resolution mi-
croscopy have emerged as powerful tools for microstructural
characterization in metal printing. These techniques enable the
visualization and quantification of grain morphology, crystallo-
graphic orientations, and defects. However, analyzing the vast
amounts of data obtained from these techniques requires so-
phisticated data analysis methods. This is where ML and DL
algorithms come into play, offering automated approaches to
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extract meaningful microstructural descriptors and establish
quantitative relationships between processing parameters and
microstructure variations.

The choice of ML approach for microstructure analysis in AM
is dependent on the specific objectives and the nature of the mi-
crostructure data. Microstructure analysis in AM involves exam-
ining the internal structure of 3D-printed parts to understand
their properties and quality. Supervised learning is suitable when
there is labeled microstructure data with corresponding informa-
tion about the specific microstructure characteristics or proper-
ties, while unsupervised learning is suitable for discovering pat-
terns, clusters, or anomalies in microstructure data without hav-
ing pre-defined labels. A combination of supervised and unsuper-
vised techniques may be beneficial for microstructure analysis in
AM; the initial use of unsupervised learning to discover patterns
in the data, followed using supervised learning to predict specific
microstructure based on those patterns. More discussion on the
use of different ML techniques for microstructure analysis in AM
will be provided in the subsequent sections.

Optimization of AM processes can be performed by leverag-
ing ML models to correlate processing parameters with specific
microstructural characteristics. A DL framework for the quanti-
tative analysis of microstructural variations in metals fabricated
through additive friction stir deposition technique was developed
to predict the grain size, grain orientation, and grain bound-
ary morphology.[82] Microstructural descriptors were extracted
by utilizing EBSD patterns and were used to represent the dif-
ferences in microstructures under different processing condi-
tions. A regeneration neural network was employed to predict
new microstructures within the reduced representation domain.
The framework was validated using samples produced through
additive friction stir deposition, known for equiaxed microstruc-
tures. The study addressed challenges in high-dimensional data
processing and the identification of principal microstructure de-
scriptors that aligned with specific problem goals. The results
demonstrated the effectiveness of the framework in capturing
salient changes within microstructures and accurately regener-
ating them. The physical insights in microstructure descriptors
obtained through mapping the regenerated microstructures pro-
vided valuable understanding. The study establishes a foundation
for quantifying processing-microstructure linkages in metal AM
and holds promise for applications in materials science, includ-
ing heterogeneous material design and optimization. Figure 21
provides a summary of the applications of ML in AM for the pre-
diction of various microstructure-related properties.

3.4.1. Powder Bed Fusion

Determining the mechanical properties of 3D-printed metal
parts is crucial for ensuring their reliability, functionality, and
safety. However, there are unique challenges in determining the
mechanical properties of 3D-printed metal parts. The microstruc-
ture and defects in the printed material can significantly affect
its properties, making it essential to consider factors like poros-
ity, grain structure, and residual stresses. Furthermore, the com-
plex geometry and layer-by-layer fabrication process of 3D print-
ing make it difficult to perform standardized testing. ML tech-
niques offer a promising solution to address the associated chal-
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Figure 21. Graphical overview depicting the applications of ML in the field
of AM for predicting various properties related to microstructure.

lenges. By analyzing diverse datasets, ML algorithms can predict
mechanical properties based on geometrical and microstructural
features, reducing the need for extensive experimental testing.
These algorithms can also identify correlations between printing
parameters and mechanical properties, optimizing the printing
process. ML aids in defect detection and classification, enhancing
quality control and it enables more efficient and effective charac-
terization of 3D-printed metal parts by leveraging the power of
AI.

Various ML techniques such as NN,[83] gradient boosting
regression,[84] SVM,[85] and GA[86] have been utilized for pre-
dicting the mechanical property of 3D-printed metal parts with
a good coefficient of determination (R2: 0.84–0.98). The me-
chanical properties that were explored include the ultimate
tensile strength, the maximum elongation, the fatigue life,
and the microhardness of the 3D-printed metal parts. The
inputs were dependent on the type of mechanical proper-
ties (static or dynamic). Inputs for static mechanical prop-
erties include process parameters, parts and build orienta-
tions, surface roughness, relative density, and crystal orienta-
tion, while the inputs for dynamic mechanical properties in-
clude stress, build orientation, defect size and depth, and loading
conditions.

For most cases, the mechanical properties of 3D-printed ma-
terials are assessed at the specimen level, employing a range of
standardized testing methodologies to ensure consistency, reli-
ability, and comparability of results. The American Society for
Testing and Materials (ASTM) provides several standards that
are widely adopted in evaluating the mechanical properties of
materials produced by additive manufacturing processes. These
standards help in defining the procedures for preparing speci-
mens, conducting tests, and interpreting the results for mate-
rials such as metals, polymers, and composites. ASTM F2971-
13,[87] ASTM E8/E8M,[88] and ASTM E9[89] are some notable
ASTM standards used in the testing of 3D-printed materials.
Utilizing these ASTM standards in testing 3D-printed materi-
als ensures that the mechanical properties are measured ac-
curately and consistently, facilitating the comparison of data
across different studies and applications. It also helps in vali-
dating the performance of 3D-printed parts against traditional
manufacturing methods, aiding in the broader acceptance and
adoption of additive manufacturing technologies. These stan-

dards guide the testing of uniformly prepared specimens that
are assumed to represent the material’s overall characteristics.
The results, such as tensile strength, elongation, compressive
strength, and flexural modulus, are considered to reflect the av-
erage or bulk properties of the material across the entire speci-
men. This assumption is valid under the premise that the spec-
imen is homogeneous, and the material properties are uniform
throughout the specimen. In 3D printing, however, the layer-by-
layer manufacturing process and the potential variability in mi-
crostructure across different regions of a part may challenge this
assumption.

The repeatability of LPBF-printed metal parts was investigated
using ML models (Figure 22a).[90] The mechanical properties
of the printed metal parts (standard deviation of yield strength,
tensile strength, and maximum elongation) were used to quan-
tify the repeatability. The study showed that the DT method
was the most efficient method to classify and predict the qual-
ity of the part, achieving an F1 score of 95%. While most ML
models are trained with homogenized properties, derived from
standardized testing of uniform specimens, their application
extends beyond simple predictions to encompass the complex
and varied nature of arbitrary 3D-printed parts. This potential
is rooted in the ability of these models to analyze and predict
based on diverse inputs, offering a nuanced understanding of
material behavior. For instance, the ML models can be trained
on a dataset that captures a wide range of mechanical proper-
ties, geometries, materials, and print parameters, allowing the
model to recognize patterns and correlations that apply across
different printing scenarios. By extracting detailed features of
an arbitrary part, including its geometry, material composition,
and print settings, ML models could potentially predict its lo-
calised mechanical properties so that designers can rapidly iter-
ate on designs by incorporating predictive insights into mechan-
ical properties, effectively tailoring parts to specific performance
criteria.

The adaptation of new printers requires a lot of effort due
to the high variability of 3D printers in determining the opti-
mal process window to fabricate AM parts with good mechanical
strength. The main challenge involves the collection of a large
dataset which can be time consuming and costly. Notably, this
can be solved using ML models to predict the performance of the
printed parts that are fabricated by a new printer using a small
dataset via a transfer learning technique. The published data of
LPBF Ti-6Al-4 V parts was used for the model training to predict
process parameters for different hardness-porosity property com-
binations (Figure 22b).[86] The challenges of predicting process-
property relationship include 1) adopting a new printer model
from the same manufacturer, 2. adopting a printer from differ-
ent manufacturers but with similar technology, and 3) adopt-
ing a printer from a new manufacturer with different technol-
ogy. Bayesian optimization models were found to be effective
in modeling process-property relations and outperformed other
models. The framework demonstrated the feasibility of cross-
machine knowledge transfer and multi-property optimization ex-
periments. The work highlights that data mining-assisted ML ef-
forts can accelerate the development and optimization of metal
3D printing processes, emphasizing the need for standardized re-
porting of data and the creation of a comprehensive metals AM
database.
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Figure 22. a) Schematic showing the workflow of ML technique for predicting the mechanical property of 3D-printed metal parts. Reproduced with
permission.[90] 2021, Elsevier. b) Schematic showing the workflow for training an ML model for predicting the performance of the 3D-printed parts from
a new printer. Reproduced with permission.[86] 2021, Elsevier.

3.4.2. Material Extrusion

A study demonstrated prediction of mechanical properties in
3D FDM-printed parts. This was addressed by developing a
data-driven predictive model using LSTM networks for FDM
processes.[91] The model took into account the layer-by-layer
printing process and related cyclic layer thermal history to im-
prove accuracy and reliability. Layer-wise activities were captured
using sensors (IR sensor, thermocouple, and accelerometer) and
their data were incorporated into the LSTM network. The LSTM-
based predictive model outperformed traditional ML techniques
such as support vector regression (SVR) and RF by 9.8% and
24.3% respectively. Key findings of the study included signifi-
cant improvements in prediction performance by incorporating
in-process sensing data, high relevance of infrared sensor and
accelerometer data for tensile strength prediction, and substan-
tial contributions of process parameters to tensile strength pre-
diction. The LSTM model demonstrated the effectiveness of se-
quential layer-by-layer modeling of the FDM process, paving the
way for improved microstructure analysis in AM applications.

To address the issue of poor part strength in extrusion-based
additive manufacturing processes, another study developed an
ANN model to predict the tensile strength of 3D-printed parts.[92]

The ANN model considered various input variables such as layer
thickness, orientation, raster angle, nozzle temperature, bed tem-

perature, room temperature, air gap, and barrel temperature
and showed higher accuracy and lower errors compared to ex-
isting response surface methodology (RSM) models with root-
mean-square-error (RMSE) values for ANN and RSM models
at 0.49 and 0.90, respectively. This approach offers significant
improvement in predicting part strength, enabling better opti-
mization of manufacturing process conditions and cost-effective
additive manufacturing. Another study utilized RF and ANN
(known for their ability to capture nonlinearity) to predict the dy-
namic strength of 3D-printed continuous ramie fiber reinforced
biocomposites (CRFRC) under various conditions (varying layer
thicknesses, hatch spacings, and strain rates).[93] The ANN model
outperformed RF in prediction accuracy (5% error compared to
9% error) and provided insights into the importance of differ-
ent factors. ML proved advantageous in accurately predicting CR-
FRC’s dynamic strength, optimizing printing parameters, and
understanding the influence of microstructural characteristics
on composite performance.

A comparative analysis of selected ML algorithms (ANN, SVM,
and RF) was performed for construction printing to evaluate
the interlayer bonding in layered cementitious composites using
non-destructive testing and measurements.[94] The objective was
to simplify the mathematical models by reducing the number of
input parameters, making it more practical for implementation
in real-world scenarios. The study concluded that ANN yielded
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the most accurate results in predicting interlayer bond strength,
yielding a linear correlation coefficient R2 of 0.883 and RMSE of
0.341 MPa. The ANN model was trained using data from various
mixtures and it effectively predicted the interlayer bond strength
and determined the optimal printing parameters for obtaining
strong interlayer bonding.

ML models were used to classify 3D-printed boron-based
geopolymer samples based on their compressive strength.[95] Su-
pervised ML algorithms such as recursive-partitioning functions
rpart and ctree, were used to build separate classification models.
The models were compared in terms of simplicity and cumu-
lative accuracy. The rpart function demonstrated slightly better
performance, with a cumulative accuracy of 70% as compared to
the ctree function’s 63% accuracy. Furthermore, the rpart func-
tion required fewer parameters for prediction. The study high-
lighted the importance of the slag content and the ratio of boron
ions in determining the compressive strength of samples. The
application of machine learning significantly reduces the error in
predicting compressive strength, demonstrating its potential for
developing a guide or standard for classifying 3D-printed boron-
based geopolymer samples based on compressive strength.

Another study proposed a hybrid approach combining the
multi-objective grasshopper optimization algorithm (MOGOA)
and ANN to predict the compressive strength of 3D-printed
concrete.[96] The MOGOA was used to optimize the architec-
ture of the ANN model, considering the number of hidden lay-
ers and neurons in each layer. The results showed that the hy-
brid MOGOA-ANN model achieved accurate predictions (mean
absolute percentage error (MAPE) of 92%) of the compressive
strength, even with simplified neural network architectures. This
approach can reduce computational complexity and enable faster
predictions in the material design process (Table 5).

3.5. Material Formulation

Material formulation is a pivotal process in achieving desired
properties for various applications. Two key considerations in this
endeavor are processability and the targeted end-use properties.
Achieving this balance can be intricate due to the multifaceted
nature of material behavior and the interplay between different
parameters. Processability entails ensuring that the material can
be effectively and reliably processed into the desired form. On the
other hand, tailoring materials to exhibit specific properties such
as mechanical strength, thermal conductivity, or electrical resis-
tivity is crucial for meeting the demands of diverse applications.
However, this pursuit is often a delicate balancing act. Enhancing
one aspect may inadvertently impact another. For instance, in-
creasing mechanical strength might result in reduced flexibility.
Moreover, this trade-off is complicated by the multitude of factors
at play, including chemical composition, processing conditions,
and material microstructure. This is where ML steps in as a pow-
erful tool. By ingesting and analyzing vast datasets encompassing
various material compositions and their corresponding proper-
ties, ML algorithms can identify complex relationships and pat-
terns that might elude traditional analysis. This enables the for-
mulation of predictive models that guide the selection of optimal
material compositions to achieve desired properties, while also
considering processability constraints.

Figure 23. A graphical overview summarizing the applications of ML in
material formulation for AM.

The choice of ML approach for material formulation in AM is
dependent on the specific goals and challenges associated with
the material development process in AM. Material formulation
in AM involves designing and optimizing the materials with de-
sired properties for 3D printing. Supervised learning is suitable
when there is labeled data that associates material compositions
with specific material properties or performance metrics, while
unsupervised learning is suitable for discovering patterns, clus-
ters, or similarities among materials or their properties without
pre-defined labels. A combination of supervised and unsuper-
vised techniques may be beneficial for material formulation in
AM; the initial use of unsupervised learning to discover complex
relationship in the data followed by using supervised learning
to build predictive models for specific material properties. More
discussion on the use of different ML techniques for material
formulation in AM will be provided in the subsequent sections
(Figure 23).

3.5.1. Powder Bed Fusion

Alloy selection profoundly influences the entire AM process,
spanning from the initial energy-source-material interactions to
the final component characteristics. The degree to which lasers
are reflected or absorbed by a powder bed is contingent upon
the powder’s makeup.[100] Both the internal and external gran-
ular densities of the feedstock contribute significantly to the
density of the end products.[101] Moreover, the thermal proper-
ties of the selected alloy partially dictate the conduction path-
ways in the molten state.[102] Variations in solidification rates
among alloys can result in significantly diverse post-manufacture
microstructures.[103] Certain AM-related challenges, such as the
evaporation of elemental constituents due to intense thermal
changes, can be attributed to material composition. This can af-
fect the stoichiometry of the melt pools and ultimately the qual-
ity of the finished product.[104] Furthermore, some research has
probed the influence of feedstock attributes, like particle size dis-
tribution and shape, on process outcomes.[100b,105] Yet, the exact
effects remain to be fully elucidated.

Databases offering a myriad of alloy attributes serve as indis-
pensable tools in the realm of materials science. Notably, the
International Crystal Structure Database (ICSD) hosts crystallo-
graphic structures of countless materials, while the Linus Paul-
ing files extend from atomic specifics, such as radii and electron
valence, to more advanced crystallographic information.[106] Con-
temporary platforms like Aflow[107] and the Materials Project[108]

empower users with sophisticated search functionalities across
diverse alloy datasets. The efficacy of data mining in advanc-
ing AM alloy development has been underscored by several
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studies. A study employed this method to optimize the chemistry
of aluminum alloys for enhanced processing during LPBF.[102]

The printed Al alloys historically faced challenges such as lim-
ited grain nucleation, resulting in the coalescence of expansive
grains and concomitant intergranular stresses, predisposing the
material to hot-cracking. To mitigate this, a study sought po-
tential grain inoculant compounds, generated via chemical re-
actions during LPBF, which could refine grain properties. A
notable solution emerged when silicon and carbon reactions
birthed SiC particles, promoting more uniform grain nucleation.
However, the lattice disparities between certain compounds and
the aluminum alloy could induce substantial stresses at their
interface, perpetuating cracking issues. Consequently, the fo-
cus shifted to identifying inoculants with lattice parameters
aligning with the primary aluminum alloy. Through the de-
ployment of a search algorithm probing around 4500 poten-
tial nucleants, hydrogen-stabilized Zr emerged as the optimal
candidate.

The challenges of data mining from existing literature in-
clude missing values from isolated studies of individual pa-
rameters or properties. A database linking process parameters
and material properties in SLM-fabricated Ti6Al4V alloys was
developed.[109] Various data imputation methods such as K-NN,
multivariate imputation by chained equations, and graph im-
putation neural network (GINN) were explored to fill missing
data. The K-NN model excelled in process parameters, whereas
GINN model excelled in material properties. The imputation
quality was enhanced by using the median of the values from the
three models, and a self-organizing map provided visualization
of the relationships between process parameters and material
properties.

3.5.2. Material Extrusion

One key area of focus in material formulation for material extru-
sion technique is the rheological properties of the extrudate to
ensure good flowability and extrudability. A study was conducted
to investigate the effects of various admixtures on the rheologi-
cal properties of cement paste for 3D printing applications.[110]

An empirical formula was proposed to analyze the relationship
between dynamic yield stress and mini-slump. ANN model was
used to predict dynamic yield stress and mini slump based on ad-
mixture proportions. The model was validated by simulating new
mixes, and the results demonstrated a high level of effectiveness
in predicting the correlation between mini-slump and dynamic
yield stress. This work opens avenues for future research to con-
sider the time factor in ANN models for predicting printability
over time.

A novel ML algorithm called gene expression programming
(GEP) was used to develop mathematical models that predict the
rheological properties of concrete such as yield stress and plas-
tic viscosity.[111] A comprehensive database was built using pre-
vious experimental results and the significant input parameters
that influence concrete rheology (cement, sand, water, small and
medium-sized coarse gravels, and superplasticizer) were identi-
fied. The GEP models, which use simple arithmetic expressions
to describe the relationships between the input parameters and
the rheological properties, exhibited a strong correlation with ex-

perimental data (R2 of 0.998 for yield stress and R2 of 0.978 for
plastic viscosity). The models demonstrated high efficiency and
predictability, with performance index factors indicating their
accuracy. Various statistical parameters and external validation
checks further confirmed the precision and generalization capac-
ity of the GEP models in predicting the rheological properties of
fresh concrete.

Another study focused on predicting the static yield stress
(𝜏Sn) of blended cement pastes containing supplementary ce-
mentitious materials (SCMs) using ML models.[112] A dataset
from previous experimental work was collected and eight input
parameters, including SCM properties, cement reactivity, mix-
ture design parameters, and resting time were identified. A com-
parison of different ML models (MLP, RF, and SVR) was con-
ducted and the MLP model demonstrated the highest accuracy
with low RMSE and high coefficient of determination (R2). The
study revealed that 𝜏Sn was primarily influenced by the amount
of pseudo-contact points, while the amount of cement replace-
ment by SCM had the least effect by analyzing the importance of
different input parameters using Shapley-value and permutation
feature importance analysis. These ML models show promise in
improving mix design for innovative concrete technologies that
require better workability control such as concrete printing or
self-consolidating concrete.

Apart from the rheological properties, ML has also been used
to predict the optimal composition of additives for the feedstock
material. A study investigated the 3D-printing of polylactic acid
(PLA) composites reinforced with chopped long carbon fiber us-
ing an FDM printer.[113] The study employed gaussian process
modeling, an ML technique suitable for small dataset, to predict
the optimal carbon fiber content for the composites The model
predicted the best mechanical performance at 6.7 wt.% carbon
fiber, closely aligning with the experimental result of 5 wt.% car-
bon fiber. The use of ML demonstrated its advantages in accu-
rately predicting material properties and optimizing composite
performance, potentially saving time and resources in the man-
ufacturing process.

3.5.3. Material Jetting

Material design plays a crucial role in 3D printing of electronics,
as it directly influences printability and the final properties of the
printed traces (conducting, semi-conducting, or insulating). Ad-
ditives such as surfactants or binders are typically added to the
functional materials to ensure good printability of the functional
inks. The proportion of different solvents is important in deter-
mining the printability and the final deposition pattern for cer-
tain inks. Important factors such as particle loading, and particle
size can influence the printability and final electrical property of
the printed structures. It can be a daunting task in identifying
the optimal parameters and ratios for the materials. Therefore,
researchers are increasingly turning to ML techniques to predict
the performance of the final printed electrical circuits and com-
ponents, streamlining the process, and improving overall out-
comes.

A study introduced a strategy that leveraged ML models to
guide the 3D printing process of Cu anode scaffolds directly
onto solid-state NASICON-type Li1+xAlx

3+M2−x
4+(PO4)3 (LATP)

Adv. Mater. 2024, 2310006 2310006 (41 of 56) © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202310006, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 24. Illustration showing the ink formulation optimization using RSM to improve the electrical resistivity and line quality. Reproduced with
permission.[115] 2023, Nature Portfolio.

electrolytes, thereby addressing obstacles associated with lithium
batteries.[114] A sequential learning method based on mixture
design was employed to refine the formulation of the printing
ink, the rheological parameters, and the operational conditions of
the 3D printing process. The method streamlined experimental
work by systematically enhancing the design variables through
a sequence of experiments, resulting in a sturdy methodology
for ink characterization. The printed hierarchical scaffold and
copper oxide (CuO) interlayer substantially decreased overpo-
tential in comparison to unadorned lithium anodes, which was
achieved by improving interfacial contact to mitigate the forma-
tion of lithium dendrites and inhibit side reactions. In summary,
the research introduced a novel methodology for swiftly explor-
ing anode geometries and 3D printable inks for lithium batter-
ies, exploiting both experimental design and machine learning
techniques.

A hybrid multi-objective optimization technique was used to
identify the best functional ink composition for aerosol jet print-
ing technology and obtain low electrical resistivity and good
printed line quality (Figure 24).[115] The suggested method sys-
tematically examined the causal relationship between several ink
components (ethanol, nanoparticle silver ink, and carbon nan-
otube (CNT) ink) and printing outcomes. Two RSM were created
based on the analysis of variance; a non-dominated sorting ge-
netic algorithm III (NSGA-III) was then merged with these mod-
els to provide a more reliable optimization in the 3D mixture de-
sign space. This data-driven methodology extended the process
of creating materials with multi-component and multi-property
in aerosol jet printing technology, resulting in higher electrical
performance and broader applications in the field of printed elec-
tronics (Table 6).

4. Outlook

4.1. Advanced ML Models

Large Language Models (LLMs) are revolutionizing the ML land-
scape, showcasing broad applicability across domains due to
their profound understanding of language and context. These ad-
vanced AI systems are designed to comprehend, generate, and
interact with human language at scale, excelling in tasks like
writing, translating, summarizing, and question-answering. Fu-
elled by DL techniques and the transformer architecture, ex-
emplified by OpenAI’s GPT series, LLMs process and generate
coherent, contextually relevant text. “MechGPT”, developed by
Buehler’s group, exemplifies their prowess in modeling mechan-
ics and materials, showcasing the model’s proficiency in knowl-
edge retrieval, hypothesis generation, and bridging disparate ar-
eas for understanding and predicting material behavior and fail-
ure mechanisms.[116]

Recent efforts have also focused on enhancing the efficiency of
in-context learning for LLMs through active learning strategies,
specifically targeting the optimization of demonstration selection
for few-shot learning tasks.[117] By employing methods such as
uncertainty sampling, diversity sampling, and similarity-based
selection, the study identifies the most informative examples that
significantly improve LLM performance. The principles from this
research can be adapted to 3D printing in several ways – 1. opti-
mizing printing parameters through active learning to enhance
the quality of 3D-printed objects while minimizing resource use,
2. accelerating the design iteration process through active learn-
ing to facilitate rapid prototyping of models based on feedback
and predicted outcomes, 3. developing new printable materials
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through active learning to prioritize the exploration of material
compositions to yield novel properties and expedite innovation
in material science within the 3D printing domain.

Moreover, LLMs, with their vast knowledge base, prove valu-
able in troubleshooting 3D printing issues by offering language-
based solutions. They can understand descriptions of issues en-
countered during the 3D printing process and provide relevant
solutions or suggestions for parameter adjustments. Their ca-
pacity to learn from diverse data sources enables them to offer
guidance on a wide range of problems, from hardware malfunc-
tions to software glitches and material issues, making them valu-
able tools for both novice and experienced users seeking to opti-
mize their 3D printing workflows. For instance, ChatGPT was ex-
plored to optimize the G-code generation process in AM, partic-
ularly focusing on fused filament fabrication (FFF) with thermo-
plastic polyurethane (TPU) as the feedstock.[118] It assesses Chat-
GPT’s capabilities in addressing common 3D printing challenges
such as warping, bed detachment, and stringing by optimizing
printing parameters. The study demonstrates ChatGPT’s effec-
tiveness in generating optimized G-code, leading to improved
print quality and material savings. It highlights the potential of
integrating AI tools like ChatGPT in additive manufacturing to
enhance efficiency, reduce trial and error, and accelerate innova-
tion in material science.

Incorporating generative AI into design workflows holds
promise for transforming 3D modeling and printing. This vi-
sion entails a collaborative experience where designers articu-
late ideas in natural language, and AI translates them into tan-
gible 3D models. The iterative cycle of feedback and refinement
between human designers and AI could significantly accelerate
the design process, allowing for rapid prototyping and optimiza-
tion, thereby blurring the lines between imagination and mate-
rialization in the realm of 3D printing. A method was proposed
for generating 3D architected materials from natural language
inputs using a combination of a vector quantized generative ad-
versarial network (VQGAN) and contrastive language-image pre-
training (CLIP) neural networks.[119] This approach translates
natural language descriptions into 2D images, which are then
converted into 3D models for printing, applying both to mate-
rials with varying rigidity and to molecular dynamics modeling
of nano-architectures. This innovative method allows for the di-
rect materialization of concepts derived from language, offering
new pathways for complex design workflows in 3D printing by
leveraging human-readable inputs to drive the creation and opti-
mization of 3D models and materials. Despite their capabilities,
these models face challenges such as bias, interpretability, and
adaptability in novel situations.

4.2. Advanced Sensors

Various sensors, ranging from image-based to sensor signal-
based types, are utilized to monitor and detect defects in
AM, providing comprehensive insights into the processes.[120]

Image-based sensors, capturing visual and sequential images
through cameras, offer a detailed representation of the print-
ing process.[121]Sensor signal-based techniques, including acous-
tic emission with fibre Bragg grating (FBG) sensors,[122] op-
tical emission with multispectral sensors[123] and X-ray com-

puted tomography,[124] and infrared signal-based sensors like
pyrometers[125] and high-speed infrared cameras, focus on differ-
ent aspects of monitoring. Notably, multi-sensor signal integra-
tion, combining accelerometers, acoustic emission sensors, and
optical emission spectrometers with CCD cameras, enhances si-
multaneous monitoring.[126] Employing ML models alongside
the various existing sensors aids in detecting macroscale or
mesoscale defects. However, a trade-off exists between the speed
of processing 1D data and higher information density for 2D or
3D data, posing a challenge in balancing processing speed and
information richness in AM defect detection strategies.

In the dynamic realm of AM, the integration of advanced sen-
sor technology with ML models presents a transformative oppor-
tunity to push the boundaries of innovation. Looking ahead, the
adoption of three-dimensional data acquisition, particularly us-
ing stereoscopic cameras, emerges as a significant advancement
over traditional two-dimensional imaging methods.[127] These
cameras capture the manufacturing process in three dimensions,
unlocking a previously inaccessible depth of data. This enhance-
ment allows ML algorithms to predict the quality and perfor-
mance of the final product more precisely, shifting from a flat per-
spective to a comprehensive, volumetric analysis that could revo-
lutionize quality assessment practices. Expanding the data spec-
trum for ML models, the incorporation of advanced measuring
techniques such as scanning electron microscopy (SEM),[128] sur-
face roughness measurement,[129] and in situ computed tomog-
raphy (CT) scans provide abundant information on both micro-
and macro-scales.[130] SEM offers insights into microstructural
integrity crucial for predicting mechanical properties, surface
roughness serves as a direct quality metric, and CT scanning
non-destructively verifies internal structure and dimensional ac-
curacy. The convergence of these diverse data streams holds the
potential to create a comprehensive dataset for ML models, capa-
ble of transforming process optimization, and real-time quality
control in AM.

The concept of data fusion is particularly promising in this
context, holding the potential to establish robust, predictive ML
models providing comprehensive insights into the AM process.
By amalgamating data from various sources, such as stereoscopic
images, SEM analyses, surface topology, and CT scans, a more
nuanced view of the printing process emerges. ML models can
be trained on datasets reflecting the complexity of AM, enabling
more accurate predictions and the ability to proactively iden-
tify and address potential failures. Furthermore, the use of aug-
mented and virtual reality (AR/VR) technologies can potentially
enhance this advanced sensory ecosystem, offering an immersive
interface for design and decision-making.[131] When integrated
with ML, AR/VR creates a virtual testing ground for refining de-
signs and simulating manufacturing outcomes, pre-empting po-
tential issues and optimizing parameters for optimal results.[132]

Informed by both virtual simulations and real-time sensory data,
ML models guide users through the design-to-production jour-
ney, suggesting modifications that enhance the end product’s
functionality and design fidelity.

The integration of these technologies into AM not only ele-
vates the precision and reliability of the manufacturing process
but also represents a stride toward a fully integrated, intelligent
manufacturing system. These advancements signal the potential
for a new era of “smart” AM, where machines evolve beyond tools
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of creation to become design partners capable of learning, adapt-
ing, and optimizing in real-time, ensuring the delivery of prod-
ucts meeting the highest standards of quality and performance.

4.3. ML Applications in Emerging AM-Related Fields

In the vibrant landscape of AM, 3D printing has taken center
stage, metamorphosing various industries by offering unprece-
dented customization, precision, and efficiency. As this trans-
formative technology continues to evolve, the integration of ma-
chine learning emerges as a compelling frontier, promising to
amplify the capabilities of 3D printing across diverse AM-related
research areas. In this section, the unique applications of ML in
various fields such as metal printing, polymer printing, bioprint-
ing, construction printing, drug printing, and electronic printing
will be discussed.

4.3.1. Bioprinting

Over the years, the widespread adoption of 3D bioprinting tech-
nologies (including extrusion-based,[133] jetting-based,[134] vat
photopolymerization-based)[135] in tissue engineering, regener-
ative medicine, and biomedical applications can be attributed
to its remarkable ability to accurately deposit multiple types of
living cells and bio-inks at pre-defined positions. This capabil-
ity facilitates the fabrication of biomimetic 3D tissue-engineered
constructs.[136] The pivotal functional units in 3D bioprinted tis-
sue constructs are the living cells, and ML proves to be a po-
tent tool for unraveling the complexities of cellular behavior. It
achieves this by handling large datasets, identifying patterns, and
making predictions at various stages of the bioprinting process
(Figure 25).

Cell expansion is a crucial step in the bioprinting process to at-
tain sufficient and well-characterized cell populations for the de-
velopment of functional and viable tissue constructs. A study im-
plemented an innovative ML approach, employing just-in-time
learning to calibrate Raman spectroscopic models. This enabled
real-time predictions of critical cell culture performance param-
eters for optimal cell growth.[137] ML has also been applied to
differentiate healthy from apoptotic cells based on cell size and
granularity information.[138] Flow cytometry-based analysis of cell
size and granularity, combined with ML, offers an automated, re-
liable, and stain-free classification of healthy and apoptotic cells.
ML plays a pivotal role in optimizing cell proliferation and se-
lecting healthy cells for the fabrication of 3D biomimetic tissue
constructs.

Numerous publications discuss the use of ML for optimiz-
ing printability in bioprinting[36,139] and a comprehensive under-
standing of the influence of printing parameters is essential to
enhance the viability of the printed cells. Various factors such
as shear stress, nozzle size in extrusion-based bioprinting,[140]

shear stress, droplet impact velocity, droplet volume and poly-
mer concentration in jetting-based bioprinting[141] and the wave-
length and intensity of light, exposure time, type and concen-
tration of photo-initiators and presence of unreacted free rad-
icals in vat photopolymerization-based bioprinting[142] signifi-
cantly affect the cell viability post-printing. Recent studies have

demonstrated the use of ML approaches to predict cell viability
during the bioprinting processes with high accuracies.[143] Vari-
ous parameters were evaluated in the extrusion-based bioprint-
ing system[143a] and vat photo-polymerization bioprinting,[143b]

and the live-dead assays provided the dataset for ML training
to predict cell viability post-printing. Additionally, a recent study
demonstrated the ability to predict the number of printed cells
in inkjet-based bioprinting based on the droplet velocity profile
captured using a high-speed camera.[144] The ability to precisely
predict the number of printed cells is important for fabrication
of 3D tissue constructs in a scalable and reproducible manner.

Finally, the tissue maturation process plays a vital role in cell
proliferation and differentiation over time, ultimately resulting in
3D tissues/organs with some degree of functionality. This intri-
cate process involves critical biochemical cues that regulate cellu-
lar behavior within 3D-bioprinted tissue constructs. Biomechan-
ical conditioning, including mechanical conditioning,[145] elec-
tromechanical stimulation,[146] macromolecules,[147] air-liquid
interface cultivation,[148] or short-term hypoxic conditions,[149]

has been explored to expedite the maturation of 3D-bioprinted
constructs into vascularized, functional tissues. ML approaches
have been applied to assess the differentiation potential of
cells using morphological-based prediction by measuring gene-
expression profiles and various biomarkers of undifferentiated
cells.[150] Furthermore, a recent study utilized mineral apposition
rate and mineralizing surface area as input loading parameters
in a DL model to predict and accelerate loading-induced osteo-
genesis during the bone remodeling process.[151] The interplay
between advanced ML models with detailed biological parame-
ters promises to revolutionize the ability to predict and influence
tissue maturation, marking a significant stride toward the real-
ization of functional, bioprinted tissues.

4.3.2. Bioelectronics

The convergence of bioprinting and electronics printing in bio-
electronics printing marks a revolutionary development, ush-
ering in a new era of advancements in healthcare and related
domains.[152] This technology fundamentally revolves around
creating a platform that combines biomaterials with electronic
components, paving the way for a spectrum of devices, from
portable benchtop platforms to wearable or implantable plat-
forms. These devices seamlessly interact with biological systems,
holding transformative potential in areas such as regenerative
medicine, neural interfaces, biosensors, and in-vitro diagnos-
tic tools for medical assessments and drug testing. The advent
of 3D multi-material printing technology has enabled the fu-
sion of diverse materials, spanning biomaterials to functional
electronic inks. This synergy provides unparalleled integration,
design flexibility, and functionalities that traditional platforms
struggle to achieve. Nevertheless, bioelectronics printing encoun-
ters challenges, including the development of biocompatible con-
ductive inks (demanding meticulous selection and optimization
of conductive biomaterials) and maintaining high cell viability
during printing (requiring careful selection of techniques and
precise calibration of parameters). Effectively addressing these
challenges involves navigating a complex optimization prob-
lem, balancing factors such as electronic material conductivity,
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Figure 25. An overview of ML application in typical bioprinting processes. ML can be used to a) generate high-resolution images, b) perform image
segmentation, c) control cell quality, d) optimize printing parameters, e) monitor and correct bioprinting process, f) optimize co-culture medium, and
g) optimize external stimuli for tissue conditioning process. Reproduced with permission.[136a] 2020, Taylor & Francis.
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Figure 26. A) Schematic illustration of the material extrusion-based 3D printing that features highly customizable inks based on versatile materials
to construct all main building blocks of the wearable electronic (e3)-skin with multimodal sensing and power management capabilities. B) Schematic
illustration of material extrusion printing procedures to prepare 2D and 3D architectures. Top right inset, typical rheological properties of printable
inks; bottom, optical images of as printed 2D and 3D MXene architectures. G0, storage modulus; G00, loss modulus. Scale bars, 2 mm. C) A machine
learning framework for multimodal e3-skin. (D and E) Figure showing the 3D-printed electronic skin. F–M) On-body evaluation using e3-skin for real-
time health surveillance and ML-powered health condition prediction. F) Multiplexed multimodal physiological monitoring of a subject after consuming
an alcoholic beverage with different doses. G) Workflow of the cued Go/No-Go task for quantitative measurements of the deviation in reaction time
(RT) and commission errors (%) for the degree of impairment (DI) for inhibitory control due to the influence of alcohol. H–M) The actual performance
versus ML-predicted RT-H (J) and Error-V (L), and the corresponding SHAP decision plot explaining how each regression model arrives at final task
performance outcome of RT-H (K) and Error-V (M). Reproduced with permission.[153] 2023, American Association for the Advancement of Science.

platform printability, biocompatibility, and cell survival rates. A
recent demonstration showcased the potential application of ML
in bioelectronics printing (Figure 26).[153] ML emerges as a pow-
erful tool, assisting researchers in identifying patterns among
various parameters and guiding decision-making to optimize
performance in bioelectronics platforms.[154]

4.3.3. Construction

ML finds application in diverse facets of construction printing, in-
cluding architectural design, structural analysis, structural health
monitoring, and durability.[155] In the realm of architectural de-
sign, ML plays a pivotal role in generating both 2D and 3D
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innovative layouts. ML models excel in classifying architectural
styles and recognizing building components from drawings. A
recent study showcased the utilization of the House-GAN model,
demonstrating its capacity to explore new designs by learning
from existing data, generating diverse house layouts based on in-
put sketches.[156] Additionally, techniques such as semantic seg-
mentation and CNNs are employed to analyze architectural draw-
ings, identify space usage, and simulate interior layouts.[157]

In the domain of structural analysis, ML algorithms are in-
strumental in predicting structural behavior (such as seismic re-
sponse, buckling, and fatigue analysis). Neural networks are em-
ployed to predict material properties and assess structural com-
ponents, contributing to the safety and stability evaluation of ex-
isting structures.[158] Furthermore, ML, coupled with vibration-
based data, facilitates the detection, localization, and quantifica-
tion of damage in steel beams.[159] Notably, ML can also be ap-
plied to structural health monitoring for 3D-printed buildings,
evaluating the condition of structures over time, detecting de-
fects, deterioration, and potential failures.[160] ML algorithms an-
alyzed sensor data from strain gauges and accelerometers to pre-
dict structural health, identify anomalies, and provide recom-
mendations for maintenance or repairs.[161] Durability assess-
ment, considering factors like material properties, environmen-
tal exposure, and load-bearing capacity, benefits from ML by pre-
dicting the lifespan of structures and optimizing their design for
longevity.

Despite notable progress, challenges such as data quality,
model interpretability, and real-world implementation necessi-
tate careful consideration. The ongoing evolution of ML is poised
to have a profound impact on the construction industry, reshap-
ing the entire lifecycle of structures from conceptual design to op-
erational maintenance. ML-driven innovations are ushering in a
revolution in construction, facilitating the creation of safer, more
efficient, and sustainable built environments.

4.3.4. Drug

To date, 3D printing technology has garnered increasing atten-
tion within the pharmaceutical sector, revolutionizing drug man-
ufacturing. One of the key advantages of drug printing lies in
its ability to facilitate production in small batches, offering un-
precedented flexibility in customized dosages, geometries, di-
mensions, and controllable drug release profiles. This break-
through in manufacturing capability leads to the on-demand fab-
rication of personalized medicines. Remarkably, drug printing
finds applications across the entire spectrum of the drug devel-
opment process, ranging from preclinical drug development and
human clinical trials to the actual intake of medicines.[162]

Numerous studies have reported the use of ML to optimize the
printing parameters in the drug printing process.[163] Notably, an
intriguing application of ML involves predicting the drug dissolu-
tion behavior of 3D-printed medicine based on the drug’s compo-
sition. Several studies have demonstrated the capability to predict
drug dissolution profiles by considering various input parame-
ters, including material composition, glass transition tempera-
ture, melting temperature, molecular weight, infill pattern, den-
sity, and surface area-to-volume ratio.[164] This predictive mod-
eling proves invaluable in understanding how different factors

influence the release of drugs over time, contributing to more
informed and efficient drug development processes.

Furthermore, another captivating application is the optimiza-
tion of loading efficiency for 3D-printed drugs through the uti-
lization of ML models and advanced Design of Experiments
(DOE) techniques.[165] By leveraging ML algorithms and sys-
tematic experimentation, researchers can fine-tune the param-
eters influencing loading efficiency, ensuring that the maximum
amount of drug is effectively incorporated into the 3D-printed
structure. The marriage of 3D drug printing and ML models
holds immense promise for the future of pharmaceutical re-
search and development, paving the way for more personalized
and efficient drug therapies.

4.3.5. Electronics

3D-printed electronics have emerged as a ground-breaking fron-
tier in AM, introducing novel opportunities for integrating cir-
cuits, sensors, and devices directly within printed structures.[166]

ML plays a dual role in this domain: 1) optimizing the printing
processes and detecting anomalies during fabrication, 2) process-
ing data collected from the 3D-printed sensors. These printed
sensors, enhanced by ML algorithms, can exhibit adaptive behav-
iors, dynamically responding to their environment and ensuring
optimal performance in end-use applications. The synergy be-
tween 3D printing and ML thus presents a unique avenue for
creating intelligent electronics that are both fabricated and func-
tionally enhanced by advanced computational techniques.

The advances in additive nanomanufacturing of flexible wear-
able electronics have been presented, showcasing the potential
of printed bioelectronic systems for portable healthcare, human-
machine interfaces, and advanced wearable technologies.[167]

Aerosol jet printing was used to fabricate soft electromyogra-
phy (EMG) electrodes for recording signals from the skin and
CNN was applied for pose-prediction. The results achieved over
97% accuracy in classifying six muscle activities, enabling real-
time, wireless control of external machines. In another work, a
graphene-based electrode was fabricated, and a similar ML tech-
nique was applied for pose prediction (Figure 22). It demon-
strated about 99% accuracy in detecting seven classes of fin-
ger motions, facilitating wireless control of a robotic hand. Both
studies emphasize the reliability, mechanical flexibility, and high-
fidelity recording capabilities of the printed bioelectronic sys-
tems. The integration of ML algorithms enhances classification
accuracy and ensures precise control and continuous monitoring
in wearable devices. These quantitative findings validate the fea-
sibility and effectiveness of these technologies in revolutionizing
healthcare and human performance.

A novel wearable biosensing system that used surface EMG
and hyperdimensional computing for real-time hand gesture
recognition was demonstrated.[168] The device comprised of a
screen-printed, conformal electrode array and custom-designed
application-specific integrated circuit and it incorporated adap-
tive learning and inference capabilities within the sensor. It
classified 13 hand gestures with 97.12% accuracy and main-
tained high accuracy (92.87%) even when expanded to 21 ges-
tures. The device facilitated real-time updates of its ML models
to adapt to changes such as different arm positions or sensor
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replacement, recovering accuracy by 9.5% without needing addi-
tional external computation. The system offers potential advance-
ments in human-machine interface applications, allowing fast
initial training and on-the-fly adaptation, and future work could
consider additional situational contexts and gesture transitions,
potentially improving classification performance. The low-cost,
low-complexity design could also be adapted for other physio-
logical signal processing applications, like electrocardiography or
electroencephalography (Figure 27).

4.3.6. Food

In recent years, the global food industry has been at the fore-
front of a transformative paradigm shift, responding to press-
ing challenges such as environmental sustainability, animal wel-
fare, and the escalating demand for protein-rich diets. This shift
has given rise to the innovative concept of 3D cultivated meat,
often referred to as lab-grown or cell-based meat. This cutting-
edge approach to meat production is currently in its infancy,
with researchers working intensively to surmount technical, cost,
and regulatory hurdles. The ultimate goal is to provide a sus-
tainable and ethical alternative to conventional meat produc-
tion, addressing the growing concerns associated with traditional
practices.[169]

Notably, the incorporation of ML offers a myriad of advan-
tages to produce 3D-printed cultivated meat. These advantages
span from the meticulous fabrication of 3D meat-like struc-
tures to the precise regulation of food texture and the cus-
tomization of nutritional profiles, ushering in a new era of
precision and customization.[170] Recent studies have already
demonstrated the use of ML in various aspects of 3D-printed
cultivated meat, showing its potential for optimization and en-
hancement. These applications range from the optimization of
culture medium formulation,[171] to the prediction and regula-
tion of food flavor,[172] and even quality control measures.[173]

A pivotal stage in cultivated meat production lies in cell pro-
duction within bioreactors, and ML is proving to be a valu-
able tool for real-time adjustments. Parameters such as temper-
ature, pH, oxygen levels, and nutrient circulation can be dynam-
ically optimized through ML, facilitating optimal cell growth.
A recent study showcased the application of ML to sustainably
optimize serum-free media development, identifying the opti-
mal combination of media ingredients that strike a balance be-
tween yield, environmental impact, and cost for cultivated meat
production.[171a]

Furthermore, ML also plays a pivotal role in various facets of
3D-cultivated meat production. ML contributes to the develop-
ment, optimization, and scale-up of the entire process. By ana-
lyzing data on different cell types, ML can identify the most suit-
able type of cells for cultured meat production based on factors
such as growth rate, nutrient requirements, and flavor profile to
achieve the best-quality cultured meat products.[174] In essence,
ML proves to be an invaluable tool in the development of 3D-
printed cultivated meat, aiding researchers in overcoming chal-
lenges related to cell selection, bioreactor control, product qual-
ity, and nutritional requirements. The role of ML has become in-
creasingly pivotal in shaping the future of sustainable and ethical
meat production.

5. Concluding Remarks

The integration of ML in AM processes has attracted increasing
attention due to its superior performance for various AM-related
applications; the ML models can recognize complex patterns
from large, curated datasets and elucidate the complex relation-
ships among different parameters to improve decision-making
during the AM process. Some common ML applications in AM
research include quality control, process optimization, design op-
timization, microstructure analysis, and material formulation.
The implementation of ML in AM helps to enhance the efficiency
and reliability of AM processes. Quality control involves the col-
lection of signals from in situ sensors to train ML models for
monitoring process stability and detecting defects within printed
layers. Process optimization relies on large datasets from previ-
ous printing runs for the prediction of optimal process parame-
ters under a given set of conditions. The incorporation of ML in
design optimization enables training on a myriad of design varia-
tions, learning from previous iterations, and providing real-time
feedback during the design phase. Advanced imaging techniques
were used to collect vast amounts of data which can be processed
and extracted easily using ML algorithms to decipher the rela-
tionships between the processing parameters and microstruc-
ture variations. ML algorithms can be used to guide the selection
of optimal material compositions to achieve desired properties
within the processability constraints. Furthermore, ML applica-
tions in emerging AM-related fields such as bioprinting, bioelec-
tronics, construction printing, drug printing, electronics print-
ing, and food printing were highlighted.

In AM, even seemingly straightforward calibration can be sub-
ject to a multitude of variable factors, including environmental
conditions, equipment wear and tear, and batch-to-batch material
inconsistencies. ML, particularly adaptive algorithms, can contin-
uously learn from new data to adjust for these variations, thereby
maintaining and even improving the calibration over time with-
out manual re-calibration. The AM landscape is rapidly evolving,
with the development of new materials and complex geometries
that present high-dimensional challenges suitable for advanced
ML techniques. In these scenarios, ML can be integral not just for
calibration, but for optimizing printing strategies for novel ma-
terials, predicting mechanical properties of printed objects, and
enabling real-time quality control for intricate structures that are
beyond the capabilities of traditional manufacturing processes.

While current DL research indeed focuses on complex do-
mains such as image and language processing, the principles
and models developed in these domains can be adapted to the
high-dimensional aspects of AM. For example, CNNs, primarily
used for image data, can be repurposed to analyze topological fea-
tures of printed layers, and recurrent neural networks can model
time-series data from the printing process to predict and com-
pensate for potential defects. The intersection of AM with high-
dimensional data becomes evident in the pursuit of customiz-
able manufacturing, such as for medical implants or aerospace
components, where bespoke designs are the norms. Here, ML
can navigate the vast design space to optimize for specific perfor-
mance criteria, considering individualized constraints and objec-
tives. The application of ML in AM is not limited to simple cal-
ibration problems but extends to tackling the intrinsic complex-
ity and evolving challenges of the field. The potential for ML to
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Figure 27. Schematics showing the application of ML to process the output signals from the printed electrodes and sensors. Reproduced with
permission.[167b] 2020, Nature Portfolio.
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contribute to AM is vast and varied, and we anticipate further in-
tegration of advanced ML techniques as the technology and ma-
terials of AM continue to advance.

Lastly, establishing a unified data community could serve as
a catalyst for overcoming current bottlenecks in ML-driven 3D
printing research. By ensuring that data and insights are freely
shared, researchers can build on each other’s work, accelerating
the path from experimental prototypes to practical applications.
Additive Manufacturing Materials Database (AMMD) is an ini-
tiative that fosters data sharing and collaboration within the AM
community.[175] The AMMD enables users to browse and search
for specific datasets, facilitating easy access to a wealth of infor-
mation regarding AM materials and processes. For users who
have data but lack a framework to structure it, AMMD provides a
data schema and a tool called “Curate Data” to assist in organiz-
ing their information according to standardized practices. The
database is built upon the National Institute of Standards and
Technology’s Material Data Curation System (MDCS), utilizing a
structure defined by NIST’s AM schema. This suggests a robust,
standards-driven approach to data curation in the field of additive
manufacturing. Nonetheless, currently available databases con-
sist primarily of data extracted from powder bed fusion process
and more effort from the AM community to contribute to the
development of the database. We strongly believe that ML is an
indispensable tool in realizing the full potential of AM, paving
the way for unprecedented innovation and efficiency in AM pro-
cesses. The integration of ML in AM processes would signifi-
cantly enhance its efficiency and reliability and amplify the 3D
printing capabilities across various AM-related research areas.
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