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Abstract

Roller compaction is a key unit operation in a dry granulation line for pharmaceutical tablet 
manufacturing. During product development, one would like to find the roller compactor (RC) 
settings that are required to achieve a desired ribbon solid fraction. These settings can be determined 
from the compression profile of the powder mixture being compacted and a mathematical model that 
interprets it. However, establishing compression profiles in an RC requires relatively large amounts 
of powder, which are expensive and may not be available during drug development. As a cost-
effective alternative to an RC, a compactor simulator (CS) can be used, which is a small-scale 
equipment that uses minimal amounts of powder to build the compression profile. However, since 
the working principles of a CS and an RC are different, the compression profiles obtained from the 
two devices for a given powder are also different. In this study, we propose a transfer learning 
approach that allows the RC compression profile of a given powder to be easily predicted from the 
compression profile obtained in a CS for the same powder. Based on the well-known Johanson model 
and on the mass correction factor theory, we examine the compaction behavior of six formulations, 
two of which including active ingredients, and we find that the mass correction factor does not depend 
significantly on the powder being compacted. We develop a simple, generalized correlation (transfer 
model) that allows the mass correction factor to be predicted solely as a function of the pressure at 
which the compaction is carried out. By using the proposed transfer model, the prediction of the RC 
compression profiles for the validation powders is significantly improved over the case where a 
constant value of the mass correction factor is used. 

Keywords: roller compaction; tablet manufacturing; transfer learning; Johanson model; compactor 
simulation; mass correction factor; pharmaceutical tablets

1 Introduction

Roll compaction is a continuous dry granulation method used to produce solid oral-dosage forms 
from powder blends (Leane et al., 2015; Bano et al., 2022). This process is employed to induce 
pressure-driven agglomeration within the pharmaceutical blend, resulting in the formation of granules 
that exhibit enhanced homogeneity in the distribution of components and particle size, and better 
flowability (Guigon et al., 2007; Reynolds, 2019; Kleinebudde, 2022). The use of this technique has 
become increasingly popular over wet granulation, as it eliminates the need for solvents or liquid 
binders, as well as the subsequent drying procedure to remove the latter. This is particularly 
advantageous for heat- and moisture-sensitive active pharmaceutical ingredients (APIs) (Adeyeye, 
2000; Kleinebudde, 2004).

In roll compaction, the powder blend is moved between two adjustable counter-rotating rollers, which 
apply pressure to compress and densify the powder, resulting in the formation of a consolidated mass 
known as the ribbon. The latter is subsequently milled into granules that undergo additional blending 
and lubrication before being compressed into tablets. The ribbon solid fraction (SF) is a critical 
quality attribute, since it significantly impacts the downstream properties of the granules and, 
subsequently, the finished tablets (Gavi and Reynolds, 2014; Sun and Kleinebudde, 2016). The ribbon 
SF is mainly determined by the frictional properties and compressibility behavior of the feed powder 
material, as well as by the roller compactor (RC) geometry and operating parameters (Hassan et al., 
2023).

To quantitatively describe the interplay between materials properties, machine parameters and ribbon 
SF in roll compaction, a mathematical model is required (Dec et al., 2003; Muthancheri et al., 2024). 
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Johanson (1965) introduced a mechanics rolling theory for granular solids which can provide 
predictions of the roll normal stress distribution, roll torque, and ribbon density at the minimum roll 
gap as a function of the powder properties, RC geometry and RC operating parameters. Despite its 
many simplifications and assumptions, the Johanson model has emerged as the most widely used one 
due to its remarkable prediction accuracy and straightforward computational approach 
(Bindhumadhavan et al., 2005). The parameters of the Johanson model are formulation-specific and 
can be estimated from compression profiles, namely profiles of ribbon SF at different values of the 
maximum pressure applied by the RC. However, determination of the compression profile in RC 
equipment requires considerable amounts of material, especially of API that is expensive and might 
be scarcely available at the drug development stage. Use of small-scale (pilot) RCs, instead of full-
scale ones, mitigates the problem, but does not eliminate it (Desai et al., 2024; Pérez Gago et al., 
2018).

Zinchuk et al. (2004) addressed this problem by developing a compactor simulator (CS), namely, a 
technique for simulating the compaction phenomena observed during roller compaction using 
uniaxial die compaction. In a CS, the sinusoidal displacement profile of two punches replicates the 
displacement of a specific point on the surface of the rollers. The primary benefit of a CS is its 
capacity to investigate and quantify compressibility and compactability using only one tablet’s worth 
of material for each single experiment repetition, therefore allowing for significant materials savings. 
However, the compression process in a die is characterized by a stress path that follows hydrostatic 
stress, which is not the same path exhibited by roll compaction, where shear stress prevails (Farber et 
al., 2008). This makes the compression profile obtained from a CS different from the one obtained 
from an RC for the same powder.

The transfer of compaction equipment across scales is a key issue in the development of solid oral 
dosage forms (Reynolds et al., 2010; Nesarikar et al., 2012; Rowe et al., 2017). Bi et al. (2014) 
introduced a Johanson model correction parameter, called the mass correction factor, which allowed 
the compression profiles obtained in an RC and in a CS to be related. They considered three different 
powder mixtures including the same API, and they found that the mass correction factor was sensitive 
to the powder material properties (i.e., to the powder composition); however, they were unable to 
provide a relation to predict the mass correction factor. So et al. (2021) determined the mass correction 
factor for three pharmaceutical excipients of diverse compressibility and concluded that the mass 
correction factor can be characterized by a unique value for the three excipients at any operating 
conditions. They proposed an approach called virtual RC, i.e., a predictive model that allows one to 
predict the ribbon SF in an RC given the roll force, the roll gap width, and the powder compressibility 
as measured from experiments conducted in a CS. However, whether or not their findings hold true 
also for other excipients or for mixtures including an API is still an open issue.

Amini and Akseli (2020) used CS compression profiles to infer compressibility information for the 
RC. The approach proved accurate for placebo and active ingredient formulations using minimal 
amounts of materials, but within a pressure range than may be affected by the powder mixture 
composition. Sato et al. (2024) developed a gray-box (first-principles + statistical) model that enabled 
describing the impact of process parameters and material attributes on ribbon density by using small-
scale uniaxial compression tests. However, the hybrid model is complex to design and does not 
perform well for mixtures with high compressibility; furthermore, only formulations not including 
APIs were used. Reimer and Kleinebudde (2019) proposed a hybrid methodology based on a 
correction factor that allows the experimental profiles obtained from small-scale and large-scale 
equipment to be correlated. They used the thin layer model to describe the CS experimental data, 
rather than the more popular Johanson model, and their results are limited to two excipients.

In this study, building on the studies of Bi et al. (2014) and So et al. (2021), we propose a workflow 
that exploits the concepts of mass correction factor and virtual RC to predict the RC compression 
profile for a given powder mixture by carrying out experiments solely on a CS. We analyze the 
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compaction behavior of six powder mixtures, two of which including API’s, and we develop and 
validate a simple, generalized correlation that is able to predict the mass correction factor for a powder 
mixture (also containing an API) at different operating conditions, thus allowing the compression 
profile obtained in a CS to be accurately transferred to an RC compression profile.

The remainder of this paper is organized as follows. Section 2 serves as a background source of 
information on roll compaction modeling. The powder mixtures considered in the study, the 
experimental procedures in the RC and CS and the procedure to estimate the Johanson model 
parameters are presented in Section 3. The proposed transfer methodology is illustrated in Section 4, 
with reference to its design/calibration, validation and usage steps. Section 6 presents and discusses 
the results of the study, and a final section presents the conclusions.

2 Background on roll compaction modeling

2.1 Johanson’s roller compaction model

According to Johanson (1965), the area between rolls is split into two portions: the slip region, where 
slip occurs along the roll surface, and the nip region, where a no-slip boundary condition applies. The 
transition from slip to nonslip region defines the nip angle 𝛼, i.e., the angular location along the roll 
surface at which the powder begins to move at the velocity of the roll, as illustrated in Figure 1. The 
zone beyond the minimum roll gap is usually defined as the release region in which the stresses are 
relieved, and the compacts are extruded from the system.

Figure 1. Schematic of the roller compaction process and its characteristic regions 

To describe the powder behavior in the slip region, Johanson developed a model on the basis of the 
Jenike and Shield (1959) criterion for steady-state particle flow in silos and hoppers. The roll 
compacted material is assumed to be isotropic, frictional, cohesive and compressible, and also to obey 
the effective yield function proposed by Jenike and Shield (1959). Given the boundary conditions, 
one can obtain a first-order approximation of the pressure gradient (d𝜎/d𝑥) in the slip region using 
the effective yield function as:

𝑑𝜎
𝑑𝑥|

𝑠𝑙𝑖𝑝
=

4𝜎
𝜋
2 ― 𝜃 ― 𝜈 tan 𝛿𝐸

𝐷
2 1 +

𝑆
𝐷 ― cos 𝜃 cot(𝐴 ― 𝜇) ― cot(𝐴 + 𝜇)

      , (1)
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where: 𝜃 is the angular position in radians, such that 𝜃 = 0 corresponds to the minimum gap; S and 𝐷 
represent the rolls gap and diameter respectively; 𝑥 is the vertical distance upstream from the roll gap; 
𝛿𝐸 is the effective angle of internal friction in degree; and the parameter 𝐴 is given by: 

𝐴 =  
𝜃 + 𝜈 + 𝜋

2
2       . (2)

In (1), 𝜇 represents the friction coefficient of the material, and is given by:

𝜇 =  
𝜋
4 ―  

𝛿𝐸

2       . (3)

In (1) and (2), 𝜈 represents the acute angle between major principal axis and tangent to roll surface, 
defined as:

2𝜈 = 𝜋 ― arcsin
sin 𝜙𝑊

sin 𝛿𝐸
― 𝜙𝑊   , (4)

where 𝜙𝑊 is the angle of wall friction. The decrease in available volume during the descent of the 
powder leads to an increase in friction between the surface and the powders, until the friction reaches 
a threshold where the powder aligns with the speed of the rollers. Because there is no slip along the 
roll surface in the nip zone, the powder must be compressed to the final roll gap dimension. 
Considering the mass continuity of compacted powder volumes and assuming that, based on 
empirical evidence, log density is a linear function of log pressure, Johanson (1965) formulated the 
pressure gradient in the nip region as:

d𝜎
d𝑥|

𝑛𝑖𝑝
=

𝐾𝜎 2 cos 𝜃 ― 1 ―
𝑆
𝐷 tan 𝜃

𝐷
2 (1 +

𝑆
𝐷 ― cos 𝜃) cos 𝜃

      , (5)

where 𝐾 is the compressibility constant, which is a property of the material. Following that, the nip 
angle is determined by finding the angle at which the pressure gradients for the slip and non-slip 
conditions were equal. Therefore, the nip angle can be determined by solving Eqs. (2) and (5) and 
solving for 𝜃 = 𝛼:

4𝜎
𝜋
2 ― 𝜃 ― 𝜈 tan 𝛿𝐸

𝐷
2 1 +

𝑆
𝐷 ― cos 𝜃 cot(𝐴 ― 𝜇) ― cot(𝐴 + 𝜇)

=
𝐾𝜎 2 cos 𝜃 ― 1 ―

𝑆
𝐷 tan 𝜃

𝐷
2 (1 +

𝑆
𝐷 ― cos 𝜃) cos 𝜃

   . (6)

The resulting SF of the ribbon obtained from the roll compaction process is determined by the 
maximum pressure applied, or the peak pressure (𝑃𝑚𝑎𝑥), which corresponds to the maximum pressure 
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exerted on the powder at the minimum roll gap when 𝜃 = 0, and can be related to the roller force (
𝑅𝑓), according to:

𝑃𝑚𝑎𝑥 =
2𝑅𝑓

𝑊𝐷𝐹   , (7)

where 𝑊 represents the rolls width, and 𝐹 is the force factor defined as:

𝐹 =
𝜃=𝛼(𝛿𝐸,𝜙𝑊,𝐾)

𝜃=0

𝑆
𝐷

1 +
𝑆
𝐷 ― cos 𝜃 cos 𝜃

𝐾

cos 𝜃 d𝜃      . (8)

Eq. (8) implicitly assumes that the contributions of the pressure on the rolls in the slip region and the 
release region are negligible. Once the peak pressure is known, it can be used to determine the SF (or 
relative density) that results from the applied pressure of the rolls.

Following the assumption of linear relation between log density and log pressure, the SF 𝛾𝑅 of the 
ribbon can be estimated from the peak pressure as follows: 

𝛾𝑅 = 𝛾0𝑃1/𝐾
𝑚𝑎𝑥  , (9)

where 𝛾0 is referred to as the pre-consolidation SF, which depends on the powder material. Therefore, 
𝛾0 and 𝐾 represent the two materials-dependent parameters of the Johanson model. The pre-
consolidation SF 𝛾0 corresponds to the SF at a reference pressure of 1 MPa (Moroney et al., 2020). 
The power-law function expressed in Eq. (9) is referred to as the compression profile of the material 
under investigation.

In product development, one is interested to know which values of the machine settings (minimum 
roll gap and roll force) should be employed in an RC to obtain a ribbon of assigned SF. To this 
purpose, Eq. (9) can be used to return the value of 𝑃𝑚𝑎𝑥, from which the required machine settings 
can be obtained using Eqs. (7) and (8). A preliminary experimental campaign on the RC is required 
to obtain the powder compression profile, namely, a set of (𝛾𝑅; 𝑃𝑚𝑎𝑥) measurements from which the 
values of 𝛾0 and 𝐾 can be estimated for the powder under investigation. However, this dataset may 
be difficult or expensive to obtain at the product development stage, due to the lack and cost of 
materials (especially APIs), as well as to the cost of labor associated to the RC experiments.

2.2 Mass correction factor

In principle, the power law function (Eq. 9) used in the Johanson model may be applied to describe 
the compaction behavior of powder materials also on a CS, from which experimental data can be 
collected at a much lower cost. However, significant differences exist in the compression profiles of 
pharmaceutical blends obtained using rolls or uniaxial dies (Reimer and Kleinebudde, 2019; Reynolds 
et al., 2010). Namely, the compression profile obtained in a CS for a given powder typically 
underestimates the pressure required to achieve the same SF using an RC on the same powder. Stated 
differently, the compression profile parameters (𝛾0𝐶𝑆 and 𝐾𝐶𝑆) estimated from experiments carried 
out in a CS are typically greater than those (γ0RC and 𝐾𝑅𝐶) estimated from RC experiments for the 
same material (Toson et al., 2019). Reynolds et al. (2010) suggested the use of a common material-
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dependent compressibility (𝐾) value for both pieces of equipment, and to only estimate γ0RC to 
accommodate the differences between the two compactors (Reynolds et al., 2010). However, this 
approach may become unsatisfactory when the compressibility constant is small. Bi et al. (2014) 
accounted for the differences by introducing a correction parameter, which they called the mass 
correction factor, in the derivation of the Johanson model. According to this approach, a relation 
between the CS pressure (𝑃𝐶𝑆) and the peak pressure in the RC exists in the form:

𝑃𝐶𝑆 = 𝑓𝐾
0 𝑃𝑚𝑎𝑥  , (10)

where 𝑓0 represents the mass correction factor. In the derivation of Eq. (10), the mass correction 
factor is assumed independent of 𝜃. According to Bi et al. (2014), 𝑓0 does not depend on the roller 
force and minimum roll gap, and takes different values (smaller than 1) for three powders mixtures 
containing the same API in different proportions. So et al. (2021) determined 𝑓0 for three pure 
excipients and concluded that the mass correction factor is material-independent, and its value is 𝑓0
= 1 1.03 0.971. Validation of these findings on powder mixtures possibly including different APIs 
have not been reported so far.

3 Materials and methods

3.1 Materials

We considered six powder mixtures, consisting of different combinations of four placebo powders 
(Formulations 1 to 4) and two active compound powders (Formulations 5 and 6). Two different APIs 
were used, labelled as API1 and API2. Table 1 provides an overview of the materials and compositions 
of the formulations investigated.

Table 1. List of materials and their compositions (wt.% ) for each of the formulations 
considered in this study (MCC stands for microcrystalline cellulose).

Ingredient Formulation 
1

Formulation 
2

Formulation 
3

Formulation 
4

Formulation 
5

Formulation 
6

Lactose Anhydrous, 
SuperTab® AN21 70.0 50.0 30.0 - - 35.5

MCC, Avicel® PH102 29.0 49.0 69.0 49.0 13.1 35.5

MCC, Avicel® PH200 - - - - 23.5 -

MgSt 1.0 1.0 1.0 1.0 - 1.0

Mannitol, Peralitol® 
200SD - - - 50.0 28.5 -

Sodium starch glycolate, 
Glycolys® - - - - 6.0 -
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Sodium stearyl 
fumarate, Pruv® - - - - 3.0 -

Hydrophilic fumed 
silica, Aerisol® 200 - - - - 0.5 -

Croscarmellose Sodium - - - - - 3.0

API1 - - - - 25.4 -

API2 - - - - - 25.0

3.2 Materials characterization

To use the Johanson model discussed in Section 2.1, 𝛿𝐸 and 𝜙𝑊 must be determined for each 
formulation. These flowability properties were measured using a Brookfield powder flow tester 
(Brookfield Engineering Laboratories Inc., Middleboro, USA). The effective angle of internal friction 
was measured using the flow function test in the Brookfield tester, with a maximum consolidation 
pressure of 6.6 kPa. The wall friction test against stainless steel (smooth 2B finish) was carried out 
on fresh material at 3 levels of displacement with uniform spacing of 0.01 m, and 7 stress set points 
up to a maximum stress of 6.6 kPa. The measured values of the powder flow properties are reported 
in Table 2; in the same table, also the measured values of the true density 𝜌𝑡𝑟𝑢𝑒 of each formulation 
are reported (to be discussed in Section 3.5).

Table 2. Properties measured for each formulation.

Material 𝝓𝒘 (°) 𝜹𝑬 (°) 𝝆𝒕𝒓𝒖𝒆 (g/cm3)

Formulation 1 12.5 38.0 1.554

Formulation 2 9.0 37.5 1.563

Formulation 3 11.0 44.0 1.572

Formulation 4 16.0 51.0 1.547

Formulation 5 39.5 44.2 1.470

Formulation 6 23.2 46.8 1.530
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3.3 Roller compactor experiments

The RC experimental campaign was performed using the Gerties Mini-Pactor® (Gerteis Machinen + 
Process Engineering AG, Jona, Switzerland). The knurled rolls had a diameter of 250 mm and a width 
of 25 mm. The rim roll sealing system was installed in order to prevent materials leaking during the 
roll compaction process. The RC was operated in gap-controlled mode, wherein the roll force and 
roll gap were kept constant by regulating the input of feed material via the screw feeder. We 
conducted multiple runs with different machine settings to examine the behavior of compacted 
powder under varying levels of applied pressure. The rotational speed of the roll was maintained at a 
constant value of 2 rpm, while the specific roll force applied to the roll gap were adjusted accordingly 
for each experimental run. The summary of the entire RC experimental campaign is reported in Table 
3. Note that performing an experimental campaign at four different conditions (i.e., four runs) for a 
given formulation requires at least 2.5 kg of material, which is a considerable amount at the 
development stage, especially if APIs are to be used.

Table 3. Roll compaction experiments conducted for each material.

Material Specific roll force (kN/cm) Roll gap (mm) No. of runs

Formulation 1

3.0

6.0

9.0

12.0

4.2

2

2

2

2

4

1

1

1

1

1

Formulation 2

Formulation 3

Formulation 4

3.0

6.0

9.0

12.0

4.2

8.5

3.0

6.0

2

2

2

2

4

4

4

4

1

1

1

1

1

1

1

1

Formulation 5

4.0

6.0

8.0

5.0

2

2

2

3

2

11

8

2
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7.5

10.0

14.0

3

3

3

2

2

2

Formulation 6

3.5

5.5

10.0

6.5

2

2

2

3

1

7

1

1

3.4 Compactor simulator experiments

The CS experimental campaign was performed using the Phoenix® CS (Phoenix Calibration and 

Services Ltd, Brierley Hill, UK) equipped with round flat faced punches with tooling diameters of 10 
mm. In every trial, a mechanized procedure was employed to load the CS die with a predetermined 
quantity of the powder blend. The pressure was exerted by two punches moving in opposite directions 
with a sinusoidal displacement profile, according to the model proposed by Zinchuk et al. (2004). 
The experimental campaigns consisted of 35 to 40 experiments for each material, with the applied 
pressure ranging from 20 to 250 MPa. Approximately 250 mg of powder mixture is required for a 
single test with this setup. Therefore, for a full experimental campaign on the CS, ~10 grams of 
powder are required, which is considerably less compared to the amount used on the RC.

3.5 Solid fraction experimental determination

SFs were calculated for each ribbon from the measured values of the envelope density 𝜌𝑒𝑛𝑣 and 
mixture true density 𝜌𝑡𝑟𝑢𝑒 as:

𝛾𝑅 =
𝜌𝑒𝑛𝑣

𝜌𝑡𝑟𝑢𝑒
   . (11)

For each RC experimental run, three rectangular samples measuring 25 by 10 mm were collected 
from the produced ribbons to assess the envelope density. Three independent samples were collected 
from different segments of the ribbon to address the potential variability of SF across its width (Mazor 
et al., 2016). The envelope density of each sample was measured using a powder pycnometer 
Geopyc® either 1360 or 1365 (Micrometrics, USA). The measuring chamber of the powder 
pycnometer had a diameter of 25.4 mm, the consolidation force was set at 51 N, and the conversion 
factor was 0.5153 cm3/mm. A mean value of 𝜌𝑒𝑛𝑣 from triplicate envelope density measurements 
was calculated for use in (11). After the powder mixes were compacted using the CS, the samples 
were ejected from the die by the lower punch. The GeoPyc® 1360 powder pycnometer was used to 
measure the envelope density of the produced CS ribblets, following the previously stated procedure.

The true densities of all the components in the formulation were measured using a helium pycnometer 
(Accupyc® 1330, Micrometrics, USA). The true density of the blend was then calculated as the mass 
fraction weighted average of the true densities of the constituent components. The resulting 𝜌𝑡𝑟𝑢𝑒 for 
all the formulations are reported in Table 2.
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3.6 Johanson model parameter estimation

For a given formulation, calibration of the Johanson model parameters 𝛾0 and 𝐾 in Eq. (9) was carried 
out using a maximum-likelihood estimation approach; the approach was the same regardless of whether 
the datasets were obtained from an RC or a CS (with 𝑃𝐶𝑆 being used instead of 𝑃𝑚𝑎𝑥). Namely, the 𝛾0 
and 𝐾 estimates were determined in such a way as to minimize the following objective function (Bard, 
1974):

―𝓁 = +
𝑁
2 ln 2𝜋𝜎2 +

1
2𝜎2

𝑁

𝑖=1
(𝛾𝑒𝑥𝑝

𝑅,𝑖 ― 𝛾𝑐𝑎𝑙𝑐
𝑅,𝑖 )2   , (12)

where: 𝓁 is the log-likelihood function; 𝛾𝑒𝑥𝑝
𝑅,𝑖  is the experimental ribbon SF for experimental point 𝑖; 

𝛾𝑐𝑎𝑙𝑐
𝑅,𝑖  is the calculated ribbon SF for experimental point 𝑖; 𝑁 is the overall number of experimental 

points available for the given formulation; and 𝜎2 is  the variance of measurement errors, which are 
assumed to be normally distributed (Bard, 1974). The procedure was performed using the fminunc 
function in Matlab® R2023a. Upon estimation of the model parameters, their associated confidence 
intervals were also evaluated from the parameter variance-covariance matrix, as obtained by inversion of 
the Hessian matrix (Greene, 2011). 

4 Proposed transfer methodology

In this Section, we propose a methodology to establish a relation between the compression profile of 
a given material on a CS and the compression profile of the same material on an RC. We refer to this 
as to a (data) transfer methodology; from a general perspective, this type of activity is also referred 
to as “transfer learning” in the literature (Zhuang et al., 2021).

The proposed transfer methodology is based on the mass correction factor approach (Bi et al., 2014). 
The flow chart in Figure 2 illustrates the framework for i) design and calibration, ii) validation, and 
iii) usage of the transfer methodology. This study focuses on steps i) and ii). Once the methodology 
is validated, step iii) can be used to deploy the transfer methodology industrially by incorporating 
into the operating procedures that are in place for new formulations.
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Figure 2. Flow chart of the design/calibration, validation, and usage steps of the proposed CS-to-
RC transfer methodology based on the mass correction factor.

4.1 Design and calibration of the transfer model

Design and calibration of the transfer model was accomplished using datasets from Formulations 1, 
2, 3 and 4, which do not include APIs (see Table 3). This was done on purpose, because it is known 
that the presence of an API can significantly alter the flowability and compressibility properties of a 
powder blend (Megarry et al., 2019). Therefore, by using materials that do not contain APIs, we make 
the transfer model validation step more challenging. Next, we detail the procedure followed for each 
formulation (upper flow chart in Figure 2).

Using experimental data obtained from experimental campaigns conducted on the CS and the RC, 
the relevant compaction parameters (𝛾0𝐶𝑆 and 𝐾𝐶𝑆 for the CS, and 𝛾0𝑅𝐶 and 𝐾𝑅𝐶 for the RC) were 
obtained as discussed in Section 3.6. The compression profiles were then compared to assess the 
mismatch between the estimated 𝑃𝑚𝑎𝑥 resulting from the RC experimental data, and the pressure 𝑃𝐶𝑆 
required in the CS to obtain the same SF. The point values 𝑓0,𝑖 of the mass correction factor (i.e., the 
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values of 𝑓0 required for matching the pressures of both machines at each value of the SF for each 
RC experimental point 𝑖) were determined by inverting Eq. (10), namely:

𝑓0,𝑖 =
𝑃𝐶𝑆,𝑖

𝑃𝑚𝑎𝑥,𝑖

1
𝐾

   , (13)

with 𝐾 = 𝐾𝐶𝑆. The point values of 𝑓0 for all formulations were investigated to identify possible 
relationships of the mass correction factor with respect to the RC operating parameters and/or material 
parameters (Bi et al., 2014). In this step, we sought to find a function 𝑔(x,β) (called the transfer 
model) able to return a suitable value for 𝑓0 for a given (sub)set x of RC operating parameters and/or 
materials properties, where β are the transfer model parameters; stated differently, we looked for 𝑓0
= 𝑔(x,β), where the functional form 𝑔( ∙ ), as well as the elements of x and the values β of the 
parameters, were unknown. Once 𝑔(x,β) was found, estimation of the parameter set (together with 
the confidence interval of each parameter) concluded the calibration step.

4.2 Validation of the transfer model

The aim of the validation is to show how effectively the transfer model allows a compression profile 
obtained in a CS to be transferred to a compression profile valid for an RC for powder mixtures not 
used in the calibration step. To this purpose, data from Formulations 5 and 6 (which include APIs) 
were used. Next, we discuss the validation procedure for one given validation formulation (center 
flow chart in Figure 2).

First, the values of 𝛾0𝐶𝑆 and 𝐾𝐶𝑆 were estimated from CS experiments on the investigated 
formulation. Then, using these values and the transfer model, virtual Johanson model parameters for 
the RC (namely, 𝛾0𝑅𝐶 and 𝐾𝑅𝐶) were derived. Here, the attribute “virtual” denotes a Johanson model 
built for the RC using experimental data coming from the CS jointly with the mass correction factor 
𝑓0 calculated by means of the transfer model 𝑔(x,β). As a result, the Johanson model describing the 
behavior of this material on the RC could be established without the need for an experimental 
campaign on the RC itself. By using 𝛾0𝑅𝐶 and 𝐾𝑅𝐶, the Johanson model was then solved using the 
machine setting combinations (namely, 𝑅𝑓 and 𝑆) employed during the RC experimental campaign, 
thus determining the calculated values 𝛾𝑐𝑎𝑙𝑐

𝑅,𝑖  of the ribbon SF at those operating conditions 
(experimental point i). These values were finally compared to the relevant experimental values of 
𝛾𝑒𝑥𝑝

𝑅,𝑖  obtained using the same combinations of machine settings.

To evaluate the transfer results, the mean absolute error (MAE) and the mean relative error (MRE) 
were used as performance indicators:

MAE =
1
𝑁

𝑁

𝑖=1
|𝑦𝑐𝑎𝑙𝑐

𝑖 ― 𝑦𝑒𝑥𝑝
𝑖 |    , (14)

MRE =
1
𝑁

𝑁

𝑖=1

|𝑦𝑐𝑎𝑙𝑐
𝑖 ― 𝑦𝑒𝑥𝑝

𝑖 |
𝑦𝑒𝑥𝑝

𝑖
    ,

(15)

where 𝑦 = 𝛾𝑅.
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4.3 Usage of the transfer methodology

The investigation of a new powder mixture involves conducting an experimental campaign solely on 
the CS, as illustrated in the lower flow chart of Figure 2. The resulting experimental data can then be 
used to estimate the values of 𝛾0𝐶𝑆 and 𝐾𝐶𝑆, which can be used jointly with the transfer model to 
obtain the virtual Johanson model parameter values, 𝛾0𝑅𝐶 and 𝐾𝑅𝐶. These values enable using the 
Johanson model, in its inverse form, to determine the RC machine settings 𝑅𝑓

𝑐𝑎𝑙𝑐 and 𝑆𝑐𝑎𝑙𝑐 that are 
required to obtain the desired ribbon SF, 𝛾𝑑𝑒𝑠

𝑅 . Furthermore, knowing 𝛾0𝑅𝐶 and 𝐾𝑅𝐶 makes it possible 
to explore the design space of the RC for the given formulation, and therefore to analyze how the SF 
is affected by different combinations of machine parameters.

5 Results and discussion

5.1 Compression profiles for the calibration and validation formulations

Estimation of the Johanson model parameters for all formulations was obtained as outlined in Section 
3.6. With respect to the RC datasets, after obtaining the values of γ0RC and 𝐾𝑅𝐶 for a given 
formulation, the peak pressures 𝑃𝑚𝑎𝑥 were calculated for each experimental combination of roll gap 
and specific roll force. Table 4 presents the estimated values of the Johanson model parameters, along 
with their 95% confidence intervals and with the model 𝑅2 values.

Table 4. Compaction parameters, 𝛾0 and 𝐾, and relevant 95% confidence intervals 
estimated from experimental campaigns on the C and RC for calibration and 
validation formulations.

Roller compactor Compactor simulator

Material

𝛄𝟎𝐑𝐂 (-) 𝑲𝑹𝑪 (-) 𝑹𝟐 𝛄𝟎𝐂𝐒 (-) 𝑲𝑪𝑺 (-) 𝑹𝟐

Formulation 1 0.345 ±  
0.04 6.054 ±  1.05 0.93 0.422 ±  0.02 7.449 ±  

0.65 0.96

Formulation 2 0.242 ±  
0.02 4.199 ±  0.44 0.95 0.358 ±  0.02 5.973 ±  

0.46 0.98

Formulation 3 0.198 ±  
0.02 3.475 ±  0.31 0.98 0.326 ±  0.02 5.340 ±  

0.40 0.98

Formulation 4 0.233 ±  
0.02 4.120 ±  0.42 0.97 0.336 ±  0.02 5.611 ±  

0.45 0.98

Formulation 5 0.267 ±  
0.03 4.599 ±  0.55 0.83 0.363 ±  0.02 6.090 ±  

0.62 0.98

Formulation 6 0.343 ±  
0.10 6.223 ±  2.71 0.49 0.389 ±  0.02 6.477 ±  

0.58 0.96
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The values of the compression parameters derived from CS data are also reported in Table 4. 
Expectedly, increasing the composition of MCC (Formulations 1 to 3) results in decreased values of 
both γ0 and 𝐾. By comparing placebo Formulations 2 and 4, which exhibit comparable compaction 
behavior, we infer that lactose (Formulation 1) and mannitol (Formulation 4) have a similar impact 
on the compaction behavior. Finally, note that the RC data for Formulation 6 return wide confidence 
intervals for the Johanson model parameters, and a relatively small value of 𝑅2. This suggests that 
the available SF measurements for this formulation are affected by strong variability, probably due 
to fragile behavior of the ribbon samples.

For each formulation, Figure 3 shows the experimental data obtained in the RC and CS, together with 
the relevant compression profiles obtained by fitting the experimental data by means of the Johanson 
model.

  

(a) (b)

(c) (d)
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Figure 3. Comparison between RC compression profiles and CS compression profiles for: (a) 
Formulation 1, (b) Formulation 2, (c) Formulation 3, (d) Formulation 4, (e) Formulation 5, (f) 
Formulation 6. The compression profiles have been obtained by fitting of the related experimental 
data.

For all formulations (with the exception of Formulation 3 at large 𝑃𝑚𝑎𝑥 values), the compression 
profile obtained from CS experiments underestimates the pressure required to attain the same SF in 
an RC. This confirms that a Johanson model calibrated using parameters derived from CS data is 
unsuitable for direct characterization of roll compaction operations of pharmaceutical powders, 
consistently with the outcomes of Bi et al. (2014), Reynolds et al. (2010), So et al. (2021), and Toson 
et al. (2019). 

5.2 Design and calibration of the transfer model

Figure 4 illustrates how the mass correction factor, calculated for all the RC experimental points 
available for the calibration mixtures, changes with the RC peak pressure. We notice that, for a given 
formulation, 𝑓0 is not constant, but changes with 𝑃𝑚𝑎𝑥, with ln (𝑓0) increasing roughly linearly with 
ln (𝑃𝑚𝑎𝑥). This differs from the study of So et al. (2021), who used a constant value of 𝑓0 for any 
combination of machine settings, i.e., for any peak pressure. The increasing trend of 𝑓0 with 𝑃𝑚𝑎𝑥 is 
physically reasonable. In fact, 𝑓0 represents the fraction of material that is delivered at the minimum 
roll gap, and is affected by the particle velocity gradients. As the pressure exerted by the rollers 
increases, the powder particles become less loose in the nip region, resulting in a greater quantity of 
powder being conveyed to the minimal roll gap. On the other hand, no particular trends of 𝑓0 were 
observed with respect to other operating parameters of the RC or to the powder flow properties.

(e) (f)

  

(a) (b)
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Figure 4. Mass 
correction 
factor versus 
peak pressure 
in the RC, 
calculated from 
all RC 
calibration 
data for: (a) 
Formulation 1; 
(b) 
Formulation 2, 
(c) 
Formulation 3, 
(d) 
Formulation 4.

The transfer model 
was therefore 

designed as:

ln 𝑓0 = 𝛽1 + 𝛽2 ln 𝑃𝑚𝑎𝑥       . (16)

Using the notation introduced in Section 4.1 and in Figure 2, the transfer model can be written as:

𝑓0 = 𝑔(x,β) = 𝑒𝛽1𝑒(𝛽2ln𝑃𝑚𝑎𝑥)

= 𝑒𝛽1 ∙ 𝑃𝛽2
𝑚𝑎𝑥     ,

(17)

where x = [𝑃𝑚𝑎𝑥], and β = [𝛽1; 𝛽2]T. Notice that the transfer model is a generalized equation, 
meaning that it is mixture-independent, which is a considerable advantage from a product 
development perspective. The values of 𝛽1 and 𝛽2 were determined in such a way as to minimize the 
horizontal distance between the compression profiles obtained in the CS and RC at the SFs obtained 
from the RC experiments. As a result, the following values were obtained: 𝛽1 = ―0.248 ± 0.068  
and 𝛽2 = 0.042 ± 0.017. This turns the transfer model into:

𝑓0 = 0.7804 𝑃0.042
𝑚𝑎𝑥     . (18)

Figure 5 illustrates how the mass correction factor changes with the peak pressure for all available 
calibration points and according to the proposed transfer model (Eq. 18). The prediction uncertainty 
on 𝑓0 (with a confidence level of 95%) was determined using multivariate parameter sampling based 
on the parameter covariance matrix (Tong, 1990). The transfer model was benchmarked against a 
model in which a single, optimal value of 𝑓0 was used at all pressures. This value was estimated to 
be 𝑓0 = 0.958 ± 0.008; interestingly, it is close to (yet different from) the value 𝑓0 = 0.971 obtained 
by So et al. (2021) for three excipients that are different from the powders considered in this study 
(So et al., 2021); information about the uncertainty of the value found by So et al. (2021) was not 
reported in the original paper. 

  

(c) (d)
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Figure 5. Calibration results. Mass correction factor 𝑓0 as a function of the peak pressure 𝑃𝑚𝑎𝑥 
for three cases: i) as calculated for all calibration points (symbols); ii) as predicted by the proposed 
transfer model (18) (solid black line), with related 95% confidence interval; and iii) as a constant 
optimal value of 0.958 (broken red line), with related 95% confidence interval. 

Figure 5 clarifies that when pressure exceeds 100 MPa, the responses of the two models are not very 
different. However, at lower pressures the proposed transfer model (Eq. 18) returns values of 𝑓0 that 
are much closer to those that would imply perfect reproduction of the experimental RC compression 
profile.

To quantify the performance of the transfer models in calibration, each experimental point obtained 
in the RC (circles in Figure 3) was transferred onto the compression profiles obtained from 
experiments on the CS (dotted lines in Figure 3). Namely, for the value of SF obtained in the RC at a 
given peak pressure, the relevant CS pressure was calculated by determining 𝑓0 through (Eq. 18) or 𝑓0
= 0.958, and then 𝑃𝐶𝑆 through (Eq. 10). This calculated value was compared to the one obtained 
from the CS compression profile at the same value of SF. The results, in terms of MAE and MRE, 
are reported in Table 5. The results demonstrate that using the proposed model consistently yields 
lower MAEs and MREs in calibration for all formulations, suggesting that adopting a variable value 
of 𝑓0 significantly improves data transfer.

Table 5. Calibration results. Mean absolute and relative errors on CS pressure 
between the projection of the RC experimental data on the CS compression profile 
and the experimental data using two different models to calculate 𝑓0. 

𝑓0 = 0.7804 𝑃0.042
𝑚𝑎𝑥 𝑓0 = const. = 0.958 

Material

MAE (MPa) MRE (%) MAE (MPa) MRE (%)

Formulation 1 11.2 15.1 12.6 22.6

Formulation 2 8.3 18.0 13.1 37.1
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Formulation 3 10.0 18.6 13.3 37.7

Formulation 4 5.9 17.6 11.2 41.9

5.3 Validation of the transfer model

Following Eq. (9), the compression profile obtained in a CS can be expressed as:

𝛾 = 𝛾0𝐶𝑆𝑃1 𝐾𝐶𝑆
𝐶𝑆     . (18)

Substitution of Eq. (10) into Eq. (18) gives:

𝛾 = 𝛾0𝐶𝑆 𝑓𝐾𝐶𝑆
0 𝑃𝑚𝑎𝑥

1 𝐾𝐶𝑆     . (19)

Then, substitution of Eq. (17) into Eq. (19) gives:

𝛾 = 𝛾0𝐶𝑆 (𝑒𝛽1𝑃𝑚𝑎𝑥 
𝛽2)𝐾𝐶𝑆𝑃𝑚𝑎𝑥 

1 𝐾𝐶𝑆         . (20)

Upon algebraic manipulation, Eq. (20) can be reformulated as:

𝛾 = 𝛾0𝐶𝑆𝑒𝛽1 𝑃𝑚𝑎𝑥

𝛽2𝐾𝐶𝑆+1
𝐾𝐶𝑆        . (21)

The above power-law function represents the compression profile for the RC. Comparison of Eq. (16) 
with Eq. (9) allows one to formulate the virtual compression profile in an RC as the one obtained by 
transfer of the compression profile obtained in a CS:

𝛾 = 𝛾0𝑅𝐶𝑃1/𝐾𝑅𝐶
𝑚𝑎𝑥       , (22)

where 𝛾 is the ribbon SF as transferred from the CS, and the virtual Johanson model parameters 𝛾0𝑅𝐶 
and 𝐾𝑅𝐶 are defined as:

𝛾0𝑅𝐶 = 𝛾0𝐶𝑆𝑒𝛽1 = 0.780 𝛾0𝐶𝑆 < 𝛾0𝐶𝑆       , (23)

𝐾𝑅𝐶 =
𝐾𝐶𝑆

𝛽2𝐾𝐶𝑆 + 1 =
𝐾𝐶𝑆

0.042𝐾𝐶𝑆 + 1 < 𝐾𝐶𝑆        . (24)
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The proposed transfer model is therefore able to provide explicit algebraic equations to transfer both 
the pre-consolidation SF and the compressibility values obtained from CS experiments to the values 
valid for an RC. From this, a virtual RC compression profile (i.e., one obtained solely from 
experiments carried out in a CS) can be obtained straightforwardly.

Figure 6 proposes a visual comparison between the compression profiles obtained in the RC and the 
virtual ones obtained by transfer learning according to the proposed transfer model or to 𝑓0 = const. 
For Formulation 5, the proposed transfer model enables almost perfect overlap between the virtual 
compression profile and the true one; the overlap is still good (especially at medium-to-low pressures) 
for Formulation 6, for which the available experimental points are fewer and with greater uncertainty. 
Conversely, a simpler model (𝑓0 = const.) is less effective in data transfer.

 

 

(a) (b)

Figure 6. Validation results. Comparison between the compression profile obtained by regression 
of RC experimental data and the virtual RC compression profile obtained by transfer of CS data 
using the proposed model (17) and 𝑓0 = 0.958 for: (a) Formulation 5 and (b) Formulation 6.

Table 6 summarizes the validation results in terms of model parameters and SF estimations for all 
operating conditions for which an experimental value of the SF is available in the RC.

Table 6. Validation results. The Johanson model parameters are obtained by 
regression of RC data, by regression of CS data transferred using (18), and by 
regression of CS data transferred using 𝑓0 = 0.958. The errors refer to SFs. 

Johanson model 
parameter

Material Compression 
profile

𝛾0𝑅𝐶 or 𝛾0𝑅𝐶 𝐾𝑅𝐶 or 𝐾𝑅𝐶

MAE MRE 
(%) 𝑹𝟐
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from RC data 0.267 4.599 0.016 2.2 0.83

by transfer from 
CS data using 
(18)

0.283 4.857 0.017 2.4 0.80
Formulation 5

by transfer from 
CS data using 
𝑓0 = 0.958

0.347 6.090 0.036 5.2 0.24

from RC data 0.343 6.223 0.019 2.6 0.49

by transfer from 
CS data using 
(18)

0.298 5.100 0.020 2.8 0.47
Formulation 6

by transfer from 
CS data using 
𝑓0 = 0.958

0.366 6.477 0.032 4.6 -0.27

For Formulation 5, the Johanson model parameters obtained by regression of virtual data (i.e., of CS 
data transferred using the proposed transfer model) closely match the parameter values obtained by 
direct experimentation in a RC, and both MAE and MRE are comparable to those obtained by direct 
experimentation; on the other hand, using a constant value of 𝑓0 is unable to provide effective data 
transfer, leading to almost double values of MAE and MRE, and poor 𝑅2. For Formulation 6, the SF 
values returned by applying the proposed transfer methodology from CS data closely match those 
provided by direct experimentation on an RC (almost identical values of MAE and MRE); instead, 
the performance of a transfer model that uses a constant value of 𝑓0 is poor.

Having the proposed methodology been validated, one can use it to investigate the design space of 
the RC for any new developed formulation, as discussed in Section 4.3 and illustrated in the lower 
flow chart of Figure 2.

6 Conclusions

This study has analyzed the compaction behavior of pharmaceutical powders to be used in tablet 
manufacturing. The main issue investigated was the possibility of deriving the compression profile 
of a powder mixture in a roller compactor (RC) from the compression profile obtained for the same 
in a compactor simulator (CS). We based our investigation on the well-known Johanson model, which 
describes roller compaction, and on the mass corrector factor theory, which corrects the Johanson 
model when the compression profile of a powder is obtained from CS experiments.

We analyzed the behavior of six powder mixtures, two of which including active pharmaceutical 
ingredients, when compacted in an RC or in a CS. The experimental data confirmed that, for a given 
mixture, the RC and CS compression profiles are different. We found that accurate transfer of a CS 
compression profile to an RC compression profile requires the mass correction factor to be expressed 
as a function of the pressure, regardless of the powder being compacted. We developed a simple log-
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log linear correlation (which we called the transfer model) between the mass correction factor and 
pressure in the RC, which allows one to calculate the Johanson model parameters for an RC once the 
parameters in a CS are known. We showed that the RC compression profiles predicted by the 
proposed transfer learning methodology accurately reproduce those obtained by direct 
experimentation on an RC.

Our study improves on previous work on the same topic in the following respects: i) the number of 
powder mixtures investigated is larger; ii) we do not consider single-component powders, and we 
consider the presence of active pharmaceutical ingredients in some of the powders; iii) we show that 
using a variable mass transfer coefficient significantly improves the prediction of the RC compression 
profile over the case where the mass correction factor is constant; iv) we provide a straightforward 
equation to calculate the mass correction factor for any powder; iv) we provide calibration and 
validation results.

We believe that industrial deployment of the proposed transfer methodology has the potential to result 
in significant savings in resources, time, and cost.
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List of symbols

D Roll diameter

𝐹 Force factor

𝑓0 Mass correction factor

𝑔(x,β) Transfer model

i Generic experimental data

K Compressibility constant

𝐾𝐶𝑆 Compressibility constant estimated from compactor simulator experimental data

𝐾𝑅𝐶 Compressibility constant estimated from roller compactor experimental data

𝐾𝑅𝐶 Compressibility constant estimated using the mass correction factor transfer methodology

𝓁 Log-likelihood function

N Overall number of experimental data

𝑃𝐶𝑆 Maximum pressure applied by the compactor simulator

𝑃𝑚𝑎𝑥 Maximum roller surface pressure at the minimum roll gap

𝑅𝑓 Total roll force

S Roll gap

𝑊 Roll width

x Vector of roller compactor operating parameters and material properties
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Greek letters

𝛼 Nip angle

𝛃 Vector of transfer model parameters

𝛾 Solid fraction

𝛾0 Preconsolidation relative density

𝛾0𝐶𝑆 Preconsolidation relative density estimated from compactor simulator experimental data

𝛾0𝑅𝐶 Preconsolidation relative density estimated using the mass correction factor transfer 
methodology

𝛾0𝑅𝐶 Preconsolidation relative density estimated from roller compactor experimental data

𝛾𝑅 Ribbon solid fraction

𝛾𝑒𝑥𝑝 Experimental solid fraction 

𝛾𝑒𝑥𝑝
𝑅 Experimental ribbon solid fraction 

𝛾𝑐𝑎𝑙𝑐
𝑅 Calculated ribbon solid fraction

𝛿𝐸 Effective angle of internal friction

𝜃 Angular roll position

𝜇 Friction coefficient

𝜈 Acute angle between major principal axis and tangent to roll surface

𝜌𝑒𝑛𝑣 Envelope density

𝜌𝑡𝑟𝑢𝑒 True density

𝜙𝑊 Angle of wall friction
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Acronyms

API Active pharmaceutical ingredient

CS Compactor simulator

MAE Mean absolute error

MCC Microcrystalline cellulose

MgSt Magnesium stearate

MRE Mean relative error

RC Roller compactor

SF Solid fraction
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Highlights

• Developed a transfer learning approach to predict roller-compactor profiles from compactor-
simulator profiles.

• Proposed a generalized correlation to predict the mass correction factor.
• Tested the model on six formulations, improving roller-compactor profile prediction 

accuracy.
• The mass correction factor was found to be pressure-dependent, not powder-dependent.
• Significantly reduced powder use in early drug development by using a compactor 

simulator.
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