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Abstract 

Pharmaceutical tablet formulation and process development, traditionally a complex and multi-

dimensional decision-making process, necessitates extensive experimentation and resources, 

often resulting in suboptimal solutions. This study presents an integrated platform for tablet 

formulation and manufacturing, built around a Digital Formulator and a Self-Driving Tableting 

DataFactory. By combining predictive modelling, optimisation algorithms, and automation, this 

system offers a material-to-product approach to predict and optimise critical quality attributes 

for different formulations, linking raw material attributes to key blend and tablet properties, 

such as flowability, porosity, and tensile strength. The platform leverages the Digital 

Formulator, an in-silico optimisation framework that employs a hybrid system of models – 

melding data-driven and mechanistic models – to identify optimal formulation settings for 

manufacturability. Optimised formulations then proceed through the self-driving Tableting 

DataFactory, which includes automated powder dosing, tablet compression and performance 

testing, followed by iterative refinement of process parameters through Bayesian optimisation 

methods. This approach accelerates the timeline from material characterisation to development 

of an in-specification tablet within 6 hours, utilising less than 5 grams of API, and 

manufacturing small batch sizes of up to 1,440 tablets with augmented and mixed reality 

enabled real-time quality control within 24 hours. Validation across multiple APIs and drug 

loadings underscores the platform’s capacity to reliably meet target quality attributes, 

positioning it as a transformative solution for accelerated and resource-efficient pharmaceutical 

development. 
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1 Introduction 

A wave of Artificial Intelligence (AI) enabled 1,2 technologies for drug discovery and clinical 

trials are transforming the way new medicines are discovered and evaluated for efficacy and 

safety. AI-native drug discovery companies generated an average annual drug pipeline growth 

rate of around 36% from 2010 to 2021 3, showing an exponential rise of candidates coming to 

clinical trials. Most global pharmaceutical companies partner with AI technology providers to 

accelerate drug discovery and clinical research to exploit emerging digital technologies in drug 

target identification4,5, generative molecular design6, automating discovery7, clinical study 

protocol optimisation8, selection of optimal subpopulations9, dose optimisation 10, therapeutic 

drug monitoring and dynamic personalised therapy11, and reducing adverse drug reaction 12. It 

is estimated that these scientific advances can shorten drug development timelines from 

approximately 12-15 years to 3-4 years 13. The significant scientific and industrial progress in 

drug discovery and clinical research repositions the main bottleneck in bringing new medicines 

to patients efficiently. Specifically they position the development processes for Chemistry, 

Manufacturing, and Controls (CMC), essential for securing regulatory approval for a new drug, 

on the critical path for registration of new medicines. CMC includes the development of 

manufacturing routes and processes, formulation, scale-up and a robust control strategy that 

reliably provides quality products to patients. This development process involves numerous 

dependent decisions to transform a new drug candidate into a final product that can be 

manufactured at scale and meets the target product profile (TPP). From a drug product for first 

in human (FIH) clinical trials to commercialisation, the financial and time penalties of changing 

a decision rise exponentially over the course of development using current procedures 14. CMC 

development processes must therefore adapt to follow the advances in drug discovery and 

clinical research and ultimately shorten timelines while ensuring product quality and safety. 

Digitalisation of CMC processes by the utilisation of digital tools such as Big Data generation, 

predictive modelling and artificial intelligence (AI), automation and robotics can help speed 

drug development timelines by reducing the experimental burden and increasing lab efficiency.   

Roughly two-thirds of medicines are administered orally, and approximately half of these 

medications are in the form of a tablet 15. Small molecule drugs continue to represent the 

majority of the pipeline with 52% drugs (29 out of 55) approved by the U.S. Food and Drug 

Administration (FDA) in 2023 classified as small molecule16, in line with the five year average 

for this modality17. Most small molecule active pharmaceutical ingredients (APIs) coming 

through the pipeline lack desirable raw material characteristics such as good flowability, 

compressibility, compactability and solubility that are necessary for ease of manufacture and 
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meeting the TPP targets 18,19. This puts additional pressure on making informed decisions on 

formulation, manufacturing route and processes.  

Process and formulation design follows a cycle of hypothesis generation, experimental design, 

lab testing, and data interpretation to understand effects of various formulation and process 

factors and design a consistent high-quality product. Yet, this process is often inefficient, 

repetitive, and time-consuming, potentially spanning months to years. Recent advancements in 

predictive modelling have been applied across CMC activities, with a particular focus on direct 

compression (DC) of pharmaceutical tablets, due to its simplicity, cost-effectiveness, and 

suitability for heat- and moisture-sensitive APIs 20. DC eliminates the need for granulation steps, 

thereby reducing production time and preserving the integrity of sensitive compounds 21. 

However, formulators often consider granulation due to DC’s high dependency on the material 

properties of the API and excipients (e.g. flowability, compressibility, and compactability). 

This challenge can be addressed through an autonomous, resource-efficient approach using 

industrial digital technologies (IDTs) aligned with the Manufacturing Classification System 

(MCS) 18,22,23 to proactively scope the likelihood of using DC as a viable processing option for 

given a formulation to meet the TPP.  

Mechanistic models – including first-principle and empirical 24-27 – have been utilised to predict 

tablet formulation and processing parameters. While these models provide valuable insights 

into the underlying physical and chemical processes, they require extensive experimental data 

and in-depth physics-based knowledge of the problem to estimate their parameters accurately, 

demanding significant effort in preparing and calibrating formulations and tablets with often 

partial domain knowledge. Data-driven models, leveraging machine learning 28-31, deep 

learning, and computer vision 32-35, offer alternative approaches by identifying complex patterns 

within experimental data. However, the data processing and training/testing pipelines often lack 

generalisability. This highlights the need for a hybrid approach that integrates mechanistic 

understanding with data-driven techniques, minimising experimental burdens while predicting 

the drug product properties directly from raw material attributes 36. 

Another critical aspect in the development process is the systematic optimisation of decision 

parameters, including formulation compositions and process configurations, to achieve the 

desired TPPs. This requires researchers to navigate the complex interplay of variables, making 

informed decisions that balance quality attributes, regulatory requirements, and manufacturing 

efficiencies 37,38. Bayesian optimisation methods powered by Gaussian processes have been 

tested in pharmaceutical process engineering due to their computational efficiency 39,40, 

however, they are typically used for process optimisation cases with a limited number of 
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decision parameters and may not effectively handle larger-scale problems with numerous 

variables and different types of input features 41,42. Therefore, advancing modelling decision-

making strategies by combining current methodologies with more robust approaches such as 

gradient-based 43,44 and gradient-free 45,46 optimisation methods is crucial for addressing the 

correlation between different types of decision variables in tablet formulation and 

manufacturing processes. 

Self-driving labs have gained significant attention in recent years for their potential to 

revolutionise material discovery 47,48. These labs leverage robotics, automation, machine 

learning, and AI to accelerate discovery and development processes while reducing human error. 

The closed-loop workflow in a self-driving lab is generally a dynamic operation that cycles 

through a design, make, test and analyse (DMTA) workflow 49-53. Relevant examples include a 

fully autonomous solid-state powder X-ray diffraction (PXRD) workflow using multipurpose 

collaborative robots [41], self-driving synthesis 54, discovery of heterogeneous catalysis 

materials 55, and an AI-Chemist platform capable of autonomously performing chemical 

research tasks, including literature review, experiment design, execution across 14 workstations, 

and data analysis using machine learning and Bayesian optimisation 56. 

Despite this rise in self-driving laboratories and predictive systems for molecular and material 

discovery, the development of formulations and process conditions for oral drug products 

remain a largely manual process requiring a significant time investment of subject matter 

experts 47,57-59. The emerging era of drug discovery envisions an automated landscape, where 

workflows encompassing biological assays, chemical synthesis, and data analysis are 

seamlessly interconnected through versatile, mobile, and modular hardware 60.  

In this article, we present a platform that integrates in-silico optimisation using a hybrid system 

of models and a self-driving Tableting DataFactory (i.e. a digitally integrated cyber-physical 

infrastructure for tablet manufacturing and testing that systematically collects, processes, and 

manages data from diverse sources throughout its lifecycle) for accelerated and material-

sparing development of the formulation and process conditions of pharmaceutical tablets for a 

given API. The platform (Figure 1) realises a digital workflow aligned with Quality by Digital 

Design (QbDD) principles. It begins with the TPP of a “New Drug (API) Candidate” that 

defines a specific target drug loading and manufacturability criteria, and proceeds through 

several distinct, yet integrated, computational modelling and digitally automated stages to 

achieve rapid development and manufacture of tablets: 

• Material Characterisation: The process starts by characterising the material's 

fundamental properties, including particle size, shape, true density, and bulk density, 
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combined with computed API properties such as particle informatics descriptors, 

ensuring that the raw material is well-described before proceeding to the in-silico 

optimisation. 

• Digital Formulator: Using a hybrid system of material-to-product models, an in-silico 

optimiser identifies the best formulation (excipient selection and mass fractions) and 

initial process conditions that maximises the flowability of the material while meeting 

manufacturability criteria, specifically porosity and tensile strength.  

• Self-driving Tableting DataFactory: Once the optimised formulation is established, 

the Tableting DataFactory employs physics-informed and multi-output Bayesian 

optimisation to refine process conditions and develop knowledge about the impact of 

process conditions on quality attributes of the tablets. The development pathway, 

encompassing material characterization, digital (in silico) formulation optimisation, and 

Bayesian process optimisation using model driven experiments delivered on the 

Tableting DataFactory, is completed in within six hours. 

• Manufacturing: The Tableting DataFactory operates in a manufacturing mode capable 

of producing 1,440 tablets within 24 hours. While the current setup is not designed for 

Good Manufacturing Practice (GMP) compliance, it serves as a proof-of-concept for 

applications such as early-phase clinical trials, dose titration studies, or personalised 

healthcare, where flexibility and adaptability are critical61-63. Real-time process 

monitoring is facilitated by augmented and mixed reality (AR/MR) visualisation tools, 

enabling parameter monitoring and adjustment to ensure high-quality output in real-

time scenarios 64. 

The platform was tested with nine different drug loadings across six APIs, demonstrating its 

ability to rapidly and efficiently develop formulations and processes for DC of tablets. This 

approach has the potential to significantly reduce the time from initial material characterisation 

to clinical supply.  
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Figure 1: Overview of the platform that integrates material characterisation, in-silico tablet 

formulation and process development, a self-driving Tableting DataFactory to refine process 

conditions, and manufacturing of small batches with AR/MR-enabled real-time quality 

control. 

2 Digital Formulator  

2.1 Hybrid System of Models 

A dataset comprising 113 tablet formulations (653 data points collected at varying compression 

pressures; Table S3 in Supporting Information) was employed to develop two material-to-

product models predicting porosity and tensile strength of tablets from raw material attributes, 

formulation descriptors, and process conditions (Figure 2). The system of models is comprised 

of two connected steps: 1) mixture models 65, 2) process models. The mixture models predict 

the true density, bulk density, tapped density, particle size distribution, aspect ratio distribution 

and flow function coefficient (FFC) of a blend of materials with a given formulation (API, 

excipients and mass fractions) from the raw material’s true density, bulk density, particle size 

distribution and aspect ratio distribution. The process models utilise the output of the mixture 

models with additional input features about the API (i.e. the particle informatics descriptors and 

API concentration) and the compaction pressure.  

The predictive performance of three modelling approaches was compared, showing the superior 

performance of the Deep Neural Networks (DNNs) in predicting the porosity and tensile 

strength of tablets containing previously unseen APIs. This comparison was initially performed 

without using the particle informatic descriptors (Figure S1 and Table S5 in Supporting 

Information) followed by using all parameters in Table 3 as input parameters for process models 

(Figure 3). The distribution of training data overlaid on the DNN predictions indicates that 

higher standard deviations are associated with regions where fewer training data points were 
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available66. Despite these uncertainties, both models demonstrated reasonably low estimated 

standard deviations in predicted data points for porosity and tensile strength.  

 

 

Figure 2: Schematic overview of the Digital Formulator comprised of the hybrid system of 

models and in-silico optimisation framework. 

 

 

Figure 3: Prediction performance of (a) porosity and (b) tensile strength DNN models using 

the full set of input parameters, including calculated particle informatics descriptors. The 

scatter plots compare the predicted versus measured values, while the colour bars represent 

the standard deviation of predictions. The histograms above each scatter plot show the 

distribution of training data points for porosity (left) and tensile strength (right).  
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2.2 In-silico Optimisation 

The Digital Formulator uses the hybrid system of models in an optimisation framework (Figure 

2) to find the optimal set of excipients, their mass fractions (concentrations), and the initial main 

compression pressure for unseen APIs and a given target drug loading. The objective is to 

maximise the FFC (i.e., minimise the negative of the objective function) subject to 

processability constraints. The ensemble learning strategy used to train DNNs allows the 

prediction of the uncertainty (i.e. standard deviation of predicted values over the ensemble of 

models) of future predictions offering valuable insights into the trade-off between exploration 

(i.e., maximising model accuracy) and exploitation (i.e., optimising the target outcome) during 

the optimisation process. This has been considered by incorporating the uncertainty associated 

with the predicted porosity and tensile strength in the processability constraints imposed during 

the optimisation.  

For this study, we developed the system using common DC formulations consisting of five 

components: API, excipient 1, excipient 2, lubricant, and disintegrant, along with their 

corresponding mass fractions. We selected a sub-set of the excipients (see Table 1 in Supporting 

Information) for the optimisation which align with standard industry practices to ensure 

findings are relevant to real-world applications 67,68. It should be noted that the hybrid system 

is inherently flexible and can readily accommodate an expanded list of excipients as appropriate, 

underscoring its adaptability to a wide range of formulation requirements. 

To reduce the complexity of the problem, the lubricant and disintegrant were assumed to be 

constant, magnesium stearate (MgSt; lubricant) and croscarmellose sodium (CCS; disintegrant) 

with mass fractions of 0.035 (3.5% w/w) and 0.01 (1% w/w), respectively. Table 6 in 

Supporting Information summarises the decision parameters and their values/ranges. The 

formulation optimisation cases were repeated for different APIs and target API mass fractions.  

The APIs investigated include SP (16% w/w), SP (18% w/w), SP (20% w/w), SP (22% w/w), 

AS (20% w/w), DM (20% w/w), GR (20% w/w), IM (20% w/w), MH (20% w/w), as per listed 

in Table 1 in Supporting Information. For each API and target drug loading, an optimisation 

problem was run to optimise the selection and mass fraction of excipients 1 and 2 as well as the 

initial main compression pressure that maximises the FFC at a constant consolidation pressure 

(1.6 kPa in this study).  

The heatmap (Figure 4) illustrates the optimal concentration profiles of various excipients 

across the range of formulation optimisation cases. MCC Avicel PH102 emerges as the 

predominant excipient in several optimal solutions, particularly at higher API loadings of SP, 

where its mass fraction increases from 49.1% w/w (SP 16% w/w) to 73.5% w/w (SP 22% w/w).  
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In all cases (except GR 20% w/w where LAC FastFlo 316 has the higher concentration), single 

or multiple grades of MCC dominate the optimal solutions, demonstrating its significant role 

in achieving the required tensile strength and porosity within the imposed constraints, attributed 

to its superior compressibility and binding properties 68,69. Conversely, other excipients such as 

LAC Granulac 200M and MAN Pearlitol 200 SD are either minimally utilised or entirely absent 

from the optimal formulations, indicating their limited contribution to maximising the FFC 

under the given compressibility constraints. The sporadic, concentration-dependent inclusion 

of LAC FastFlo 316 and MCC Avicel PH101 suggests that their presence in the formulation is 

highly sensitive to the specific API and its loading.  

There are, however, multiple other factors that needs to be further considered when optimising 

the formulation. For example, the proportion of MCC can be potentially restricted due its 

insoluble nature, which can affect the tablet's dissolution rate and API bioavailability 70. It also 

has a high moisture content, posing stability issues for moisture-sensitive APIs 71. Moreover, 

MCC is strain rate sensitive, leading to inconsistencies in tablet hardness during high-speed 

manufacturing 72. Therefore, despite its advantages, it's important to balance MCC's use by 

considering these factors and potentially exploring alternative excipients to address these 

challenges. Another parameter is the impact of lubricant and disintegrant on the 

manufacturability and performance (e.g. disintegration, dissolution) criteria, which remains a 

promising topic to be studied in a future work. 

The comparison between predicted and measured FFC values across different API loadings 

further validates the optimisation process (Figure S2 in Supporting Information). The predicted 

FFC values generally trend higher than the measured values, particularly for APIs such as AS 

(20% w/w) and GR (20% w/w), where the predictions overestimate the FFC. This discrepancy 

may initially be attributed to the conservative nature of the robust optimisation approach, where 

the imposed constraints and uncertainty factors lead to an over-prediction of the FFC to ensure 

that the formulation meets the processability criteria under a range of potential conditions. 

Furthermore, the error bars on the measured FFC values indicate that the discrepancy between 

measured and predicted values tends to occur when the uncertainty of measurement is higher, 

suggesting that the measurement of flowability in these cases is more challenging. Despite 

being lower, the measured FFC values of all optimal formulations, except DM (20% w/w) and 

GR (20% w/w) cases, successfully meet the required flowability threshold ( 𝐹𝐹𝐶 > 4 ), 

validated through the preparation and characterisation of the respective blends. This consistency 

suggests that, while the predictive model may underestimate values on the side of caution (i.e. 
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predicting poorer flowability indices than the actual one), it effectively guides the formulation 

process towards producing robust and viable tablets. 

 

 

Figure 4: Summary of results from formulation optimisation cases. The 𝑥-axis represents 

different case studies with target APIs and their corresponding mass fractions (w/w) as 

percentages. The 𝑦-axis lists the excipients used in the formulation optimisation process with 

their respective optimised concentrations (w/w) shown as percentages. The colour scale 

indicates the concentration (w/w) of each excipient. The ‘0.0’ indicates that this excipient was 

not chosen by the Digital Formulator for the given API, objective and constraints.  

3 Tableting DataFactory  

The experimental setup integrates commercially available devices with several customised 

features as shown in Figure 5a. All instruments are digitally interfaced with a LabVIEW-based 

supervisory control unit (SCU). Robotic arm 1 (R1) is employed for material transport and to 

physically interconnect all devices. Each iteration of the tablet production begins with the 

autonomous acquisition of a near-infrared spectroscopic dark scan and a reference scan, using 

a 99% reflectance disc permanently attached to the R1 gripper as shown in Figure 5a. The SCU 

captures the reference scan once R1 positions the disc on the near-infrared spectrometer (NIRS). 

Subsequently, R1 proceeds to the dosing unit to acquire the dose for a single tablet. The dosing 

unit, preloaded with a premixed powder blend, dispenses the precise amount of powder required 
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for one tablet into a customised 3D-printed transportation unit (TU) that is placed on a balance. 

(Figure S3 in the Supporting Information). 

The first decision point (D1) concerns the weight of the obtained powder, measured in real-

time (Figure 1C). Any dose deviating by more than ±5% from the target is rejected and 

subsequently recycled. The powder dose that satisfies the weight thresholds moves on the NIRS 

stage where the spectrum is acquired by placing the TU on the NIRS. The acquired spectrum is 

used to monitor the blend homogeneity. The assessment of blend homogeneity was performed 

qualitatively using Hotelling’s T2 analysis, which evaluates the multivariate distance of each 

spectrum from the principal component analysis (PCA) model centre to identify any deviations 

between iterations. This approach validates the blend subsamples do not deviate significantly 

from one another, supporting the assumption that the blend is homogeneous. Currently, powder 

doses are neither diverted to waste nor reused in cases of blend inhomogeneity. However, any 

produced tablets that do not meet given content uniformity criteria can be identified and 

discarded if necessary. The absence of frequent outliers or variations between subsamples 

further indicated a consistent distribution of components within the blend (Supporting 

Information 3.7.2). R1 then transports the TU to the compaction simulator, depositing the 

powder into a 9 mm die. Tablets formed in the compaction simulator are conveyed to an 

automated tablet tester via a customised chute. The automated tablet tester conducts destructive 

testing on selected tablets, measuring weight, thickness, diameter, and breaking force to 

determine tablet porosity and tensile strength. The number of tablets undergoing destructive 

testing is set in the experimental protocol by the researcher. The remaining tablets undergo non-

destructive testing, which measures all parameters except breaking force. A customised tablet 

separator (TS) then segregates the damaged from the undamaged tablets (Fig S6 in the 

Supporting Information).  

The second decision point (D2) assesses whether tablets should be discarded if they fail to meet 

quality standards such as tablet weight, porosity and tensile strength beyond acceptable 

variations (± 5%). Undamaged tablets are collected by the robotic arm 2 (R2) using customised 

gripper fingers and stored in designated containers. Finally, to prevent cross-contamination with 

other blends, a customised 3D-printed cleaning unit (CU) is used to thoroughly clean the tube 

and casing of the TU (Figure S7 in Supporting Information). 
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Figure 5: Overview of the Tableting DataFactory. a) The workflow detailing the operation of 

the automated system alongside the automated data management and experimental agent. D1 

is the first decision point to either discard the powder dose or take it forward based on weight 

of the dose. D2 is the second decision point to either discard the damaged or unacceptable 

tablets or move them to storage. B) Top view of the setup indicating the location of each 

instrument on the table. Video 1 in Supplementary Information demonstrates the operation of 

the Tableting DataFactory.  

3.1 Benchmarking and Validation 

Benchmarking and validation of the system focused on assessing 1) the powder and tablet 

weight, and any related powder loss caused by the powder handling and transportation, and 2) 

the consistency of repeated experiments.  

The primary objective in the design of the TU was to discharge the powder precisely while 

keeping the powder loss in a consistent range across different formulations. Therefore, powder 

loss between the powder obtained, measured by the balance, and the final tablet weight was 

assessed across ten different blends (B10 – B19) and three different target tablet weights (200, 

300 and 400 mg) (Section 3.7 in Supporting Information). The total powder loss during 

transportation, including losses from powder dosing and spillage when opening the TU gate in 

tablet press, consistently stays within 10 - 22 mg across different formulations and dose weights 

(Figs. S9-S12 in Supporting Information). Material is primarily lost in bulk rather than 
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selectively, the ratio of API to excipients remained stable throughout the process (Section 3.7.1 

in Supporting Information). Moreover, the relative standard deviation in powder obtained and 

the tablet weight remains below 3%. In the self-driving tableting mode, the mean deviation 

from target tablet weight and the porosity for the blends B1-B9 was kept below 4% and 1%, 

respectively, demonstrating an acceptable consistency across these parameters. 

4 Experimental Agents for Self-driving Tableting DataFactory 

The optimum formulations from the nine case studies (Table 2 in Supporting Information) were 

used in two real-time optimisation frameworks realising a self-driving Tableting DataFactory 

(Figure 6): 

• Physics-informed Bayesian optimisation (PIBO) framework: PIBO optimises the main 

compression pressure to meet the target porosity and tensile strength while taking the 

existing physics-based (PB) correlations between the input and objectives into account, 

leading to faster convergence and reduced number of experiments required to generate 

the compressibility and compactability profiles. 

• Multi-output Bayesian optimisation (MOBO) framework: MOBO is set up in 

exploration mode to develop a model that connects multiple intercorrelated process 

parameters (pre-compression pressure, main compression pressure, and dwell time) and 

objectives (tablet porosity, tensile strength, and elastic recovery). 

Both optimisation frameworks were digitally integrated with the Tableting DataFactory through 

a local call mechanism between LabVIEW and Python scripts.  
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Figure 6: Schematic representation of the two closed-loop DMTA process optimisation 

workflows for the self-driving Tableting DataFactory. (a) PIBO workflow based on a 

Gaussian Process Regression (GPR) model and Physics-based (PB) models. To incorporate 

the compaction behaviour captured by empirical models into the BO process, constraints are 

set to reduce the error between the two (GPR and PB) models, with the system iteratively 

suggesting the next experiment and registering new data points, followed by model updates. 

(b) MOBO workflow with an additional focus on minimising elastic recovery. The 

optimisation process begins with an initial Design of Experiments (DoE), and subsequent 

experiments are suggested to develop predictive models for the desired quality attributes. New 

data points are continuously registered, and the GPR models are updated accordingly. MOBO 

is terminated when a user-defined number of iterations is reached. 

4.1 Physics-informed Bayesian Optimisation (PIBO) 

The PIBO framework aims to optimise the main compression pressure to achieve the target 

porosity and tensile strength while satisfying the underlying physics-based (empirical) 

compressibility and compactability models that provide prior information about the relationship 

between main compression pressure, porosity, and tensile strength. The PIBO framework was 

tested with the Tableting DataFactory across the nine formulations identified by the Digital 

Formulator (Figure 4 in Section 3 and Table 2 in Supporting Information) to achieve target 

porosity of 0.15, i.e. minimising 𝐸𝑟𝑟(𝜀𝑜 , 𝜀𝑇), which is the error between 𝜀𝑜 , the observed 

porosity, and 𝜀𝑇, the target porosity by optimising the main compression pressure (see section 

7.3.2 for detailed mathematical formulation of the problem). Note that the tensile strength is 

subsequently assessed as it is a function of porosity and breaking force. Figure 7 shows the 

variation of tuning parameters of physics-based models during the optimisation process, where 
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all four tuning parameters converge to a plateau after a few iterations, showing the successful 

performance of the PIBO in general. Moreover, the termination criteria have been activated 

during different iterations based on the speed of convergence in each case study. The 

termination of optimisation is followed by a validation experiment at the target porosity, where 

a compression pressure is suggested based on the calculated tuning parameters and physics-

based models.  

The measured porosity is compared with the predicted target to evaluate the accuracy of 

calibrated models. The hybrid system of models, on average, overestimated the porosity by 

0.26% and underestimated the tensile strength by 0.63 MPa (see Table 1 for the case-by-case 

absolute error). The comparison between the initial prediction by the system of models and 

calibrated models after PIBO demonstrates that the initial predictions (Figure 8 and 9 in 

Supporting Information), made with historical data73,74, are reasonably close to the final 

calibrated models. Both process models capture the overall trends of porosity (i.e. exponentially 

decreasing as the main compression pressure increases, following the Kawakita model in Eq. 

3) and tensile strength (i.e. exponentially decreasing as porosity increases, following 

Ryshkewitch-Duckworth model in Eq. 4) of optimised formulations even before performing 

any experiments. While the PIBO calibration process further refines the predictions, the 

adjustments required for the initially predicted profiles by the system of models require only 6 

experiments for the case studies investigated in this work, underscoring the reliability of the 

DNN-based process models in making a close-to-optimum first-time prediction of tablet 

attributes from raw material properties. The general underestimation of the initial predictions 

is due to the conservative definition of the objective function to justify the optimisation in 

scenarios where extensive experimentation may not be feasible and a right-first-time 

formulation optimisation is required.  
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Figure 7: Variation of normalised values of tuning parameters of (a: 𝜀0, b: 𝐵) Kawakita and 

(c: �̂�, d: 𝑘𝑏) Ryshkewitch-Duckworth models during the PIBO cases for different optimised 

formulations. Each tuning parameter is normalised to the range of 0 and 1 using the minimum 

and maximum values observed across all iterations. 
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Table 1: Prediction Error 1: The absolute error between initial model-based prediction (using 

digital formulator) and experimental result at optimal compression pressure. Prediction Error 

2: The absolute error between post-calibrated gaussian process regression model in the PIBO 

and the experimental result at the optimal compression pressure (validation point). Negative 

values indicate underestimation, while positive values represent overestimation. Colour 

intensity indicates deviation from zero: white for values near zero and progressively deeper 

colours for values further from zero. The red and orange colour scales are independently 

scaled for porosity and tensile strength values, respectively. 

 
 

4.2 Multi-output Bayesian Optimisation (MOBO) for Rapid Scale-up Assessment 

During scale-up, process parameters can behave differently due to increased speeds and forces, 

requiring careful consideration of intercorrelation between multiple process parameters 75. A 

scale-up, multi-output Bayesian framework was designed to minimise elastic recovery while 

achieving target porosity and tensile strength by optimising key process parameters such as 

main compression pressure, precompression pressure, and dwell time. Minimising elastic 

recovery is critical, as it is closely associated with tablet defects such as lamination, capping, 

and air entrapment, particularly when scaling up from compaction simulators to rotary tablet 

presses 76,77. 

The proposed MOBO was tested on two formulations, SP (20%) and AS (20%), which were 

identified using the Digital Formulator. The MOBO was set for exploration, allowing for the 

collection of sufficient data to effectively train the GP models across a large parameter space 

(Figure 10 in the Supporting Information). Three individually trained GP models can then be 

used to predict elastic recovery, tensile strength, and porosity across varying precompression, 

main compression pressures, and dwell times. This predictive knowledge space is refined to 

identify a manufacturability region, where tensile strength exceeds 2 MPa and porosity remains 
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above 0.15 (Eq. 8 and 9), as shown in Figure 8. Within this region, the optimal main 

compression and precompression pressures can be determined to minimise elastic recovery 

while meeting porosity and tensile strength constraints. 

 

 

Figure 8: Heatmaps generated by self-driving Tableting DataFactory using MOBO approach. 

The heatmaps show elastic recovery (top row), tensile strength (middle row), and porosity 

(bottom row) based on the variation of precompression and main compression pressure at 

three different dwell times (50, 150, 300 ms) for (a) SP (20%) and (b) AS (20%) case study. 

For each case study, in the bottom row, the regions filled within the dashed lines correspond 

to the porosity ≥ 0.15. In the middle row, the arrows in the middle-row figures indicate 

regions (i.e. above the dashed line) where specific criteria are met, such as the area at the top 

satisfying tensile strength ≥ 2 MPa. In the top row, the region filled within the dashed lines 

corresponds to the area that both porosity and tensile strength constrains are satisfied.  

5 Manufacturing with Extended Reality (XR)-enabled Process Monitoring  

The Tableting DataFactory can be operated in a manufacturing mode to deliver a consistent 

batch of tablets that meet the quality standards. Considering the current speed of the system, it 

can deliver 1,440 tablets within 24 hours with real-time monitoring of each tablet produced. 

The system generates multi-dimensional data for every single tablet necessitating novel 

approaches to support human-driven, data-centric quality monitoring and decision-making. 

This was achieved by integrating XR technology, specifically augmented reality (AR) and 

mixed reality (MR) into the Tableting DataFactory to connect physical assets, data and the 

researcher in an intuitive, accessible and effective manner. AR is a technology that overlays 

digital content onto the real world, enhancing the user's perception of their environment. MR is 

the blend of physical and digital worlds where virtual objects interact with real-world elements 
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in real time. However, MR is an umbrella term encompassing AR and MR covering all 

immersive technologies that merge digital and physical experiences. Both AR and MR 

platforms visualise a dashboard with the key quality parameters, specifically tablet weight, 

porosity, and tensile strength in real-time, whilst also streaming real-time data of individual 

instruments (Figure 9).  

AR is utilised in the lab to overlay real-time data directly onto individual instruments. This 

allows researchers and operators to access crucial information, such as performance metrics, 

operational statuses, and diagnostic data, without the need to refer to external displays.  

The MR version is specifically designed to allow users to visualise experimental data in real-

time outside of the laboratory environment. The MR hologram of the Tableting DataFactory 

provides an immersive, 3D representation of the whole system in operation. This holographic 

visualisation allows users to virtually observe the production process, inspect the parameters 

from individual instruments, and troubleshoot potential issues from a remote location. The 

integration of MR technology thus extends the accessibility and control over the system, 

significantly improving collaboration, training methods and oversight in a distributed work 

environment and provides further opportunities for user training. Future work aims to integrate 

real-time quality control (QC) using extended reality (XR), leveraging the existing holographic 

infrastructure. 

The AR and MR applications in the Tableting DataFactory are demonstrated in the 

supplementary Videos 2 and 3, respectively. These examples demonstrate continuous 

production of 100 tablets. The immersive overlaid diagrams in both AR and MR are designed 

to highlight the acceptable (green) and unacceptable (red) data points. The acceptable range for 

each of these parameters is ±5% of defined target. The progress of the overall manufacturing 

stage is shown by visualising the total tablets produced, stored and analysed.  

  

Figure 9: (Left) AR – real-time experimental data overlaid on corresponding equipment 

during experiment. (Right) MR – Real-time display of holographic equipment for remote 

laboratory access. 
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6 Conclusions 

The Digital Formulator, a model-based optimisation framework, integrates data-driven and 

mechanistic models to predict and refine optimal formulation settings. The physics-informed 

Bayesian optimisation framework driving the Tableting DataFactory effectively adjusted 

process parameters with minimal experimentation, typically fewer than six iterations, while 

multi-output Bayesian optimisation offered data-driven models to consider interdependencies 

among key process parameters for scale-up. Further developments in the automated system are 

envisaged to enable the simultaneous optimisation of formulation and process settings through 

the adaptive improvement of system of models. 

Benchmarking of the Tableting DataFactory demonstrated consistency in both powder and 

tablet weight, and in minimising powder loss during automated handling, as well as 

repeatability in manufacturing under fixed process conditions. This automated approach 

minimises manual intervention, ensuring accuracy, precision, and consistency throughout the 

production stages. Additionally, augmented and mixed reality integration within the Tableting 

DataFactory facilitated data-centric quality monitoring and informed decision-making. Table 2 

summarises key performance metrics, contrasting the Self-Driving Tabletting DataFactory’s 

operational efficiency with conventional methods, thereby highlighting its potential to reshape 

pharmaceutical manufacturing. 

Combining the Digital Formulator with a Self-driving Tableting DataFactory, delivers 

optimised tablet formulation and process conditions in under 24 hours while requiring less than 

5 grams of API. This study presents a transformative approach to tablet formulation and process 

development, establishing a resource-efficient and accelerated pathway for formulation and 

process development of pharmaceutical tablets.  

 

Table 2: Summary of performance metrics of the Digital Formulator with the Tableting 

DataFactory and comparison with the state of the art (conventional) method, following 

performance metrics outlined by 78. The state-of-the-art methods in pharmaceutical industry 

involve batch processing, manual interventions and do not include automated formulation 

optimisation as detailed in 79,30,26. 

 Digital Formulator and 

Self-driving Tableting 

DataFactory  

State of the Art Method 
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Throughput / productivity 

gain 

72 tablets per hour including 

all the different stages such 

as powder quality 

monitoring, tablet 

manufacturing, testing, 

storage and data handling. 

10 tablets per hour (manual 

filling) 

20 tablets per hour (shoe 

feeder) 

Material use < 5 gr for optimisation of 

compaction pressure (PIBO) 

and < 27 gr for the 

manufacturing of 100 tablets 

including all the powder 

losses. 

20 gr for optimisation of 

compaction pressure (based 

on minimum blend size) 

200 gr for manufacture of 

100 tablets (based on blend 

size) 

 

Human resources 6 hours using PIBO with 

Tableting DataFactory, 

including:  

• Material 

characterisation: 4 hours 

• Digital Formulator 

(Predictive system of 

models and in-silico 

formulation 

optimisation): 0.5 hours  

• Blend preparation: 1 h 

• Tableting DataFactory 

with PIBO: 0.5 hour 

14 hours including: 

• Material 

characterisation and 

API compression 

characterisation 80,26: 

9 hours 

• Predictive tools to 

enable product 

development 79: 2.5 

hours due to manual 

data handling 

• Blend preparation: 

same: 1 hour 

• Optimise compaction 

pressure: 1.5 hours 

Degree of autonomy Human intervention is 

required only for preparing 

the blend and filling the 

hopper of the dosing unit . 

Not applicable 

Operational lifetime Dosing unit’s hopper may 

require refilling every 100 

Not applicable 
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tablets as the smaller powder 

particles may start gathering 

around the base of the hoper 

resulting in inaccurate 

powder dosing. Cleaning of 

compaction punch may also 

be required every 1000 

tablets. 

Experimental precision < 5% of targeted tablet 

weight. 

Not applicable 

Accessible parameter 

space 

Dose weight, pre and main 

compaction pressure, dwell 

time, compaction profile, 

selection of methods for 

NIR and tablet tester. 

Not applicable 

Optimisation efficiency The PIBO framework 

converged to the optimal 

point after 5-6 iterations. 

The MOBO method 

required pre-defined number 

of experiments for the initial 

DoE (15) and subsequent 

iterations (25) to develop 

predictive models for the 

porosity, tensile strength, 

and elastic recovery. 

Not applicable 

 

7 Methods 

7.1 Materials 

APIs used to produce quaternary and quinary mixture tablets are paracetamol (SP; Standard 

6375, Mallinckrodt), acetylsalicylic acid (AS; Molekula), dexamethasone (DM; Powder, 

Molekula), griseofulvin (GR; Molekula), indomethacin (IM; Molekula), metformin 

hydrochloride (MH; Molekula). The tablet quaternary and quinary formulations incorporated 
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several filler components, including microcrystalline cellulose with different grades (Avicel 

PH-101 and Avicel PH-102, DuPont Nutrition) and lactose (FastFlo 316, Foremost Farms 

USA). Additionally, a specific disintegrant, croscarmellose sodium (CCS) (AcDiSol, FMC 

International), was added into the formulation. To aid in the compression process, magnesium 

stearate (Hyqual 5712, Mallinckrodt) was used as a lubricant. Details regarding the 

characteristics of the excipients and API can be found in Table S1 in Supporting Information. 

These excipients were chosen to reflect some of the most commonly used materials in DC 

formulation in industry. 

7.2 Digital Formulator 

7.2.1 Hybrid System of Models 

Principal component analysis was performed to reduce the predicted particle size and aspect 

ratio distributions into two sets of three principal components 81. The API descriptors include 

its concentration to explicitly model the effect of drug loading on tablet attributes, and the 

crystallographic and Particle informatics descriptors represent properties relevant to the 

processing and mechanical behaviour of the API (Table S4 in Supporting Information)82. Table 

3 summarises the input features used to train process models. For the tensile strength model, 

the response variable was log-transformed (i.e., the natural logarithm of tensile strength, ln(𝜎𝑡)) 

to incorporate knowledge on the exponential relationship between compression pressure and 

tensile strength 80. 

The formulations feature various APIs (explained in section 7.1), and placebo blends. To 

evaluate the models' ability to generalise to new APIs, a leave-API-out approach was employed 

in splitting the dataset into training and test sets. Specifically, 16 formulations containing SP 

and GR (amounting to 149 data points) were excluded from the training data and reserved as 

test data. This strategy was designed to assess the models' performance in predicting tablet 

attributes for APIs not seen during training.  

At the initial stage of model development (Version1), all input parameters except for 

informatics descriptors (i.e., parameters in Table S4) were utilised to train data-driven models 

using three approaches: Deep Neural Network (DNN), Random Forest (RF), and Support 

Vector Regression (SVR). These approaches were selected to encompass a diverse range of 

ML-based modelling techniques, where DNN represent deep learning-based approaches 

capable of capturing complex nonlinear relationships83, RF is an ensemble-based method 

known for its robustness and interpretability84, SVR is a kernel-based approach well-suited for 

capturing intricate patterns in smaller datasets85. This allowed for a comparative analysis of 

their predictive performance. Following the ensemble learning methodology outlined in 
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Salehian, et al. 66, an ensemble of DNNs (with 20 models per ensemble in this study) was trained 

in different random seeds, with the final output for porosity or tensile strength being the average 

of the individual models' outputs. This ensemble modelling strategy enhances the robustness of 

the DNN by mitigating the effects of random initialisation on training performance and enabling 

the estimation of the standard deviation for future predictions – an important measure for 

assessing the model's prediction quality for new data points. All DNNs were trained using the 

same dataset and model architecture, which consisted of two hidden layers with 128 units, each 

followed by a ReLU activation function. 

Given the DNN's superior performance over Random Forest (RF) and Support Vector 

Regression (SVR), the DNNs were retrained incorporating all parameters listed in Table 3, 

including the crystallographic and particle informatics descriptors 86,87, to examine the impact 

of considering API crystal structure on prediction accuracy (Version2). The comparative 

analysis of prediction performance between the initial version (Version1 in Figure S1 in 

Supporting Information) and expanded input features (Version2 in Figure 3) demonstrates an 

improvement in the accuracy of the DNNs following the inclusion of CSD particle data in the 

input parameters. This enhanced version of the models has been adopted as the final version 

and will be utilised in the formulation optimisation framework. 

Table 3: Input features for the process models. 

ID Parameter  Size Descriptor Source 

1 Mixture true density  1 Blend property Mixture model 

2 Mixture bulk density 1 Blend property Mixture model 

3 PCs of particle size 

distribution 

3 Blend property Mixture model 

4 PCs of aspect ratio 

distribution 

3 Blend property Mixture model 

5 Tapped density 1 Blend property Mixture model 

6 Flowability (FFC) 1 Blend property Mixture model 

7 Main compression pressure 1 Process condition Process settings 

8 API concentration (drug 

loading) 

1 Formulation Formulation 

9 Informatics  descriptors* 9 Calculated particle 

properties 

CSD Python API 87 

*The list of informatics descriptors are provided in Table S4 in supporting information.  
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7.2.2 In-silico Optimisation 

The in-silico formulation and process utilising the hybrid system of models is defined as: 

𝐽
𝑥∈ℝ𝑁𝑥

𝑚∈ℝ𝑁𝑚

(𝑥, 𝑚) = −𝐹𝐹𝐶 

Subject to: Eq. 1 

𝜃�̂� − [𝐸(�̂�) − 𝛼 × 𝛿�̂�] < 0 

𝜃�̂� − [𝐸(𝜖̂) − 𝛽 × 𝛿�̂�] < 0 

where 𝑥  is the 𝑁𝑥  dimensional vector of decision variables; 𝑚  is the 𝑁𝑥  dimensional state 

vector of raw component properties (e.g. particle size and aspect ratio distribution, true density, 

bulk density); 𝐸(𝜖̂) and 𝐸(�̂�) are the expected mean value of the predicted porosity and tensile 

strength, respectively; 𝜃 is the user-defined threshold for processability conditions (𝜃�̂� = 2 

MPa and 𝜃�̂� = 0.15  in this study), 𝛿�̂�  and 𝛿�̂�  are the standard deviation of the predicted 

porosity and tensile strength, respectively; 𝛼 and 𝛽 are user-defined constants (both are set to 

0.2 in this study) to define the allowable level of risk in the robust optimisation process. Notably, 

higher values of these risk factors result in a more conservative optimisation, thereby reducing 

the likelihood that the formulation will fail validation.  

Non-dominated Sorting Genetic Algorithm II (NSGA-II)88 was used as the optimisation 

algorithm due to its proven capability in global search and independence from calculating the 

gradient . The population size and the number of iterations were set to 30 and 50, respectively. 

7.3 Tableting DataFactory 

7.3.1 Hardware 

The Tableting DataFactory setup (Figure 5) was built on an M6 tapped table spanning 200 x 

200 cm2. R1 and R2 has a reach of 850 mm and 820 mm and can carry up to 5 kg and 14 kg of 

load, respectively. The FlexPTS (DEC Group, Switzerland) technology is used to dose the pre-

mixed powder blend. The quantity of the powder discharged from the dosing unit is volumetric 

based where the volume can be adjusted by setting the height of a piston altering the powder 

chamber height. The dosing unit collects the powder in the chamber using a vacuum, the powder 

is discharged using compressed air. The controller of the dosing unit has the capability to 

change the duration of the vacuum pump and the pressure of the compressed air to dispense 

powders with different physical properties, e.g. to consider variations in density, and particle 

size/shape.  

The R1 gripper releases the TU on the weighing balance (Cole-Parmer PA-224I, United States) 

that is placed under the dosing unit. The tube that carries the powder in TU has the capacity of 

3000 mm3 (Figure S3 in Supporting Information) A sliding gate operated through a linear 
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solenoid is used to hold and then release the powder dosed from the dosing unit. To perform 

NIR measurements for blend homogeneity assessment, the gate of the TU incorporates a 1-mm 

thick sapphire glass window with 10 mm in diameter. The round tube that holds the powder has 

a diameter of 8 mm. As this small tube can pose a challenge when discharging adhesive and 

cohesive materials, the inside of the tube was coated with PTFE to create a non-stick surface 

and a motorised vibrator, which is activated upon the opening of the gate. Two customised 3D 

printed fingers are mounted on the robotic gripper that grasp the TU from the back to transport 

the powder to the different stations (Figure S4 in Supporting Information). As the mass of the 

powder discharged into the TU is weighed prior to tablet manufacturing, the electronic devices 

in the TU need to be electrically connected with fingers through metallic touchpoints to allow 

the TU to remain connection-free and standalone when it is placed on the weighing balance. 

Through this connection, the electric solenoid and the vibrator are operated by an external and 

customised electronic control unit. The control unit for the TU receives the control commands 

from the SCU via serial communication and operates the solenoid and vibrator based on an 

external power supply. The SCU also acquires the initial weight of the TU before getting the 

dose and subtracts this weight from the final weight to determine the true value of powder 

obtained in that iteration. 

A NIR spectrometer (Micro NIR PAT-W, VIAVI, United States) is incorporated in the 

workflow to assess blend homogeneity. NIR is a widely adopted technique in the 

pharmaceutical sector for swift, non-invasive, and non-destructive analysis, without the need 

for sample preparation 89. As changing ambient conditions may influence the NIR measurement, 

new dark and the reference scans need to be acquired over time. Therefore, the 99% reflectance 

disc is attached to R1 to take the reference scan at the beginning of each iteration. 

Tablets are produced using a tablet press (STYL’One Nano, MEDELPHARM, France). The 

door of the tablet press was replaced by a laser curtain to provide the robotic arm R1 easy access 

to the compaction die for powder discharge. Control system of the tablet press waits until the 

laser curtain is interrupted by R1 to fill the die and move away before initiating the powder 

compaction process. The tablet chute is kept within the boundaries of the laser curtain and 

linked with the tablet tester through a side wall to avoid any process interruption.  

A fully automated tester (AT50, SOTAX, Switzerland) is used to measure breaking force, 

weight, diameter, and thickness of the tablets. The testing process starts as a tablet enters the 

feeder of the tester, then moving through various stations to assess its properties. A bespoke 

tablet separator (TS) is used to differentiate between damaged and undamaged tablets. The flow 

of tablets is controlled by adjusting the position of a motor-driven barrier (Figure S5 in 
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Supporting Information). To ensure proper alignment of the undamaged tablets, a linear 

solenoid pushes them onto their flat surface. Bespoke robotic fingers (Figure S5 in Supporting 

Information) are mounted on the R2's robotic gripper to accurately grip the tablet for transport. 

The CU is attached to a high-power vacuum cleaner that is operated by an external control unit. 

Operation of CU is signalled by the SCU, and it only runs when the TU requires cleaning. 

The SCU can control and monitor all instruments remotely (Section 3.6 in Supporting 

Information). Each instrument is assigned a dedicated computer for two main reasons: 1) to 

provide local access for users who may need to operate the instrument separately for other tasks, 

and 2) to standardise diverse communication protocols into a unified protocol for seamless 

communication with the SCU (as illustrated in Figure S8 in Supporting Information).  

7.3.2 Real-time Process Optimisers 

For the PIBO, the compressibility model developed by Kawakita 90,91 and the compactability 

model developed by Ryshkewitch-Duckworth 92,93 were used as the physics-based models due 

to their proven capability in capturing the compression profile 27: 

𝜀(𝑃) =
𝜀0

1 + (
𝑉∞
𝑉0

)𝑏𝑃
=

𝜀0

1 + 𝐵𝑃
 

Eq. 2 

𝜎(𝜀) = �̂�𝑒−𝑘𝑏𝜀 Eq. 3 

where 𝜀 is the porosity of the tablet, 𝜎 is the tensile strength of the tablet, and 𝑃 is the main 

compression pressure. For the Kawakita model, 𝜀0 is the initial powder bed porosity, 𝑉∞ is the 

net volume of powder, 𝑉0 is the initial apparent volume of powder, and 𝑏 is a tuning parameter 

which is hypothesised to reflect the resistant and cohesive forces of the particles 94. Following 

27, the ratio of volumes 
𝑉∞

𝑉0
 and the constant 𝑏 were grouped into the single tuning parameter 𝐵 

to simplify the fitting process. For Ryshkewitch-Duckworth model, �̂� is the strength at zero 

porosity and 𝑘𝑏  represents the material’s bonding capacity. The acquisition function in the 

classic (black-box) Bayesian optimisation is constrained such that: 

𝐸𝑟𝑟(𝑓K(𝑋), 𝒟𝑛) ≤ 𝐸𝑟𝑟(𝑓K(𝑋), 𝒟𝑛−1) Eq. 4 

𝐸𝑟𝑟(𝑓R−D(𝑋), 𝒟𝑛) ≤ 𝐸𝑟𝑟(𝑓R−D(𝑋), 𝒟𝑛−1) Eq. 5 

where 𝑓𝐾 and 𝑓R−D are the Kawakita and Ryshkewitch-Duckworth models, respectively; 𝒟𝑛 

refers to the dataset of collected experimental observations at iteration 𝑛 ; 𝐸𝑟𝑟(𝑓(𝑋), 𝒟𝑛) 

denotes the error (root mean squared error in this study) between the physics-based model and 

the collected data at iteration 𝑛. These constraints mean that while minimising the acquisition 

function from black-box BO, the optimisation trajectory is confined to reduce the error between 

the collected data and physics-based models. The optimisation is terminated if the change in 
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the tuning parameters of physics-based models within the last two iteration falls below a user-

defined minimum threshold (in this study, set to be less than 20% change in the tuning 

parameter as compared to the previous iteration). These criteria were established to ensure the 

tuning parameters of compressibility and compactability profiles are calculated with sufficient 

accuracy, enabling reliable prediction of the profile across a continuous range of input 

parameters. 

For the MOBO , a Design of Experiments (DoE) using the Latin Hypercube Sampling (LHS) 

method was initially employed to generate a diverse set of experimental conditions to pre-train 

the process models 95. LHS is used due to its space-filling features to generate training datasets 

that are evenly distributed over the design space to ensure good coverage. This was followed 

by a classic black-box optimisation approach to iteratively refine the decision parameters space. 

Three independent GP models were trained during MOBO to individually predict elastic 

recovery, porosity, and tensile strength based on the input parameters. The target was set to 

minimise the elastic recovery while meeting the porosity (𝜀 ≥ 0.15) and tensile strength (𝜎 ≥

2 MPa) constraints. The LHS was run for 15 experiments followed by 25 iterations of Bayesian 

optimisation. The optimisation process was terminated after the predetermined number of 

experiments. 

7.4 Extended Reality 

An immersive digital twin of the Tableting DataFactory was implemented using a real-time 

development platform (Unity) targeting Microsoft’s HoloLens 2 mixed reality devices. 3D 

models of the Tableting DataFactory equipment were constructed with Autodesk’s 3D Studio 

Max using 3D CAD files, brochures, photos and measurements taken on site. The 3D lab 

models were then imported into the Unity environment for uploading to the HoloLens devices. 

To gather the data from the Tableting DataFactory, a REST API (allowing systems to exchange 

data over the internet) was implemented to take advantage of the integration capabilities of 

LabVIEW. The HoloLens can access the experimental data in real-time as long as it is 

connected online. This enables the user to view real-time experimental data using either the AR 

digital twin at the lab (data overlaid onto real lab equipment), or the MR digital twin (laboratory 

hologram) while working remotely.  

The AR version of the digital twin aligns all the overlaid data onto the associated equipment 

within the Tableting DataFactory. This is achieved using a single QR code that the HoloLens 

detects and uses as a reference to calibrate the entire scene.  

The MR version of the digital twin can be used in any location. It uses surface (floor) detection      

enabling the user to place a scalable Tableting DataFactory hologram into any suitable location. 
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The digital twin enables users to receive real-time updates to the lab's holographic 

representation and data overlays, even when they are located remotely from the physical lab.  
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1 Materials and Formulations 
Four distinct quinary blends (B1 to B4), exhibiting varying concentrations of paracetamol at 
16%, 18%, 20% and 22%, and 20% w/w, respectively, were formulated as presented in Table 
S1. All the blends were prepared using a laboratory powder blender (PharmaTech Multiblend 
MB015). The blending process was performed at a blender speed of 20 rpm and an agitator 
speed of 200 rpm over a duration of 20 minutes to ensure homogeneity. In addition to the 
formulation process, all blends were lubricated with 1% w/w of magnesium stearate, a 
procedure implemented to improve the flow properties of the blends. This lubrication step was 
executed by allowing the blend to mix for an additional 5 minutes, thus ensuring a uniform 
distribution of the lubricant without overlubricating the mixture. In our study, we also prepared 
five quinary blends (B5 to B9) using different APIs, as illustrated in Table S2, each planned to 
include a fixed concentration of the API (20% w/w), croscarmellose sodium (3.5% w/w) and 
magnesium stearate (1%). These blends were designed to have varied filler ratios to broaden 
the knowledge space. The filler combinations utilised included different grades of 
microcrystalline cellulose and lactose. The combination and concentrations of fillers were 
optimized using models. Consistency was maintained in the formulation process across the 
blends, employing the same laboratory powder blender (PharmaTech Multiblend MB015) with 
fixed settings of a 20-rpm blender speed and a 200-rpm agitator speed, operating over a 
duration of 20 minutes. A detailed overview of the precise formulations and the corresponding 
concentrations (% w/w) of each filler in each blend prepared are illustrated in Table S1. 
  



Table S1: Characteristics of excipients and active pharmaceutical ingredient used in the tablet 
formulations. Information includes the material grade, and supplier, and physical properties 
like Bulk, Tapped, and True Density (measured in mg/mL), the Flow Function Coefficient 

(FFC), and volume-based particle size percentiles (d10, d50, d90, in μm). 

Material 
(ID) 

Grade Supplier Bulk, 
Tapped, 

True Density 
(mg/mL) 

FFC 
@ KPa 

d10, d50, 
d90 

VB (μm) 

Paracetamol 
(SP) 

Standard 
6375 

Mallinckrodt 0.34, 0.55, 
1.18 

1.04  
@ 0.30   

24.47, 
88.18, 
205.00 

Aspirin 
(AS) 

Powder Molekula 0.77, 0.86, 
1.394 

9.29 
@0.81  

68.76, 
148.2, 
322.7 

Dexamethasone 
(DM) 

Powder Molekula 0.322, 0.411, 
1.385 

1.34 
@0.80 

9.73, 
25.18, 
176.6 

Griseofulvin 
(GR) 

Powder Molekula 0.36, 0.52, 
1.58 

2.00 
@0.29 

14.47, 
29.67, 
99.01 

Indomethacin 
(IM) 

Powder Molekula 0.36, 0.52, 
1.58 

2.98 
@0.29 

45, 93.02, 
165.2 

Metformin 
Hydrochloride 

(MH) 

Powder Molekula 0.67, 0.764, 
1.347 

3.91 
@0.80 

22.23, 192, 
352.5 

Microcrystalline 
Cellulose 
(MCC1) 

Avicel®PH-
101 

DuPont 
Nutrition 

0.33, 0.45, 
1.56 

- 44.51, 
86.33, 
153.20 

Microcrystalline 
Cellulose 
(MCC2) 

Avicel®PH-
102 

DuPont 
Nutrition 

0.34, 0.44, 
1.56 

3.91 
@0.79 

27.5, 
53.48, 104 

Microcrystalline 
Cellulose 
(MCC3) 

Microcel 302 Roquette 0.45, 0.51, 
1.53 

4.44 
@0.80 

25.46, 
62.36, 152 

Lactose (LAC1) Fastflo®316 Foremost 
Farms USA 

0.63, 0.74, 
1.54 

5.55 
@1.06 

55.10, 
104.70, 
188.40 

Lactose (LAC2) Granulac 
200M 

Meggle 
pharm 

0.52, 0.76, 
1.55 

- 22.42, 
59.67, 
107.30 

Manitol (MAN) Pearlitol 200 
SD 

Roquette 0.54, 0.59, 
1.48 

12.07 
@1.06 

68.78, 
115.10, 
191.10 

Dibasic Calcium 
Phosphate 

(DCPA) 

Anhydrous 
Emcompress 

JRS Pharma 0.71, 0.87, 
2.98 

8.27 
@0.80 

 

77.81, 
203.1, 
281.8 

Croscarmellose 
Sodium (CCS) 

AcDiSol FMC 
International 

0.54, 0.74, 
1.60 

3.6 
@0.80 

30.39, 
51.58, 
82.14 



Magnesium 
Stearate (MgSt) 

Hyqual 5712 Mallinckrodt 0.28, 0.35, 
1.30 

1.44 
@0.30 

7.02, 
16.12, 
41.01 

 
  



Table S2: Composition of the tablet blends used for benchmarking and validation of Tableting 
DataFactory. The data in the table represents the percentage weight by weight (w/w) of each 
ingredient in the formulation. The blend ID describes the unique identifier for each blend, 
followed by the concentration of disintegrant, filler 1, filler 2, and lubricant in the blend, 

respectively 

Blend ID API (% 
w/w) 

Disintegrant  
(% w/w) 

Filler 1 (% 
w/w) 

Filler 2 (% 
w/w) 

Lubricant (% 
w/w) 

B1 SP (16%) CCS (3.5%) LAC1 (30.4%) MCC2 
(49.1%) 

MgSt (1%) 

B2 SP (18%) CCS (3.5%) LAC1 (23%) MCC2 
(54.5%) 

MgSt (1%) 

B3 SP (20%) CCS (3.5%) LAC1 (2.7%) MCC2 
(72.8%) 

MgSt (1%) 

B4 SP (22%) CCS (3.5%) - MCC2 
(73.5%) 

MgSt (1%) 

B5 AS (20%) CCS (3.5%) LAC1 (27.7%) MCC2 
(47.8%) 

MgSt (1%) 

B6 DM (20%) CCS (3.5%) MCC1 
(57.3%) 

MCC2 
(18.2%) 

MgSt (1%) 

B7 GR (20%) CCS (3.5%) LAC1 (41.3%) MCC3 
(34.2%) 

MgSt (1%) 

B8 IM (20%) CCS (3.5%) LAC1 (57.3%) MCC2 
(18.2%) 

MgSt (1%) 

B9 MH (20%) CCS (3.5%) LAC1 (30.5%) MCC2 (45%) MgSt (1%) 
B10 SP (1%) - LAC1 (98%) - MgSt (1%) 
B11 SP (5%) - LAC1 (94%) - MgSt (1%) 
B12 SP (10%) - LAC1 (89%) - MgSt (1%) 
B13 SP (15%) - LAC1 (84%) - MgSt (1%) 
B14 SP (20%) - LAC1 (79%) - MgSt (1%) 
B15 - CCS (5%) MAN (30%) DCPA (64%) MgSt (1%) 
B16 - CCS (5%) MAN (30%) LAC1 (64%) MgSt (1%) 
B17 - CCS (5%) MAN (64%) LAC1 (30%) MgSt (1%) 
B18 - CCS (5%) MCC (30%) DCPA (64%) MgSt (1%) 
B19 - CCS (5%) MCC (64%) DCPA (30%) MgSt (1%) 
 
  



2 Digital Formulator 
2.1 Hybrid System of models 
 

 
Figure S1: Prediction performance of (top) porosity and (bottom) tensile strength models 

using DNN, RF, and SVM. Particle informatics descriptors are excluded from input 
parameters. The histograms on top of DNN show the frequency distribution of training data. 

The colour bars show the estimated standard deviation of predicted test data.  

 
Table S3: Summary of tablet data 

 Drug loading 
(-) 

Porosity (-) Tensile 
Strength 
(MPa) 

Main 
Compression 

Pressure (MPa) 
API Min. Max. Min. Max. Min. Max. Min. Max. 
Placebo 0 0 0.032 0.386 0.031 13.916 5.533 565.004 
SP 0.010 0.315 0.043 0.404 0.041 8.177 12.276 489.029 
GR 0.300 0.300 0.095 0.173 3.026 3.435 157.190 157.190 
BZ 0.350 0.350 0.063 0.811 0.874 4.519 54.696 398.001 
LOV 1.000 1.000 0.064 0.432 0.066 2.294 12.051 326.327 
IBU 0.010 0.529 0.028 0.363 0.043 3.093 11.647 369.397 
MF 0.050 0.464 0.063 0.375 0.029 4.481 13.801 367.573 

 
  



Table S4: List of crystal structure and Particle Informatics descriptors used for data-driven 
prediction of porosity and tensile strength. 

API  Packing 
Coeffici
ent 

Avera
ge 
Hydro
gen 
Bond 
Donor 
Densit
y 

Avera
ge 
Hydro
gen 
Bond 
Accep
tor 
Densit
y 

Avera
ge 
Rugos
ity 

Avera
ge 
Surfac
e 
Charg
e 

Short-
to-
Mediu
m 
Axis 
Lengt
h 
Ratio 

Mediu
m-to-
Long 
Axis 
Lengt
h 
Ratio 

Hydro
gen 
Bond 
Dimen
sionali
ty 

SP 0.727 0.046 0.043 1.826 -0.196 0.868 0.835 2 
GR 0.703 0 0.069 1.659 -0.356 1 0.554 -1 
IBU 0.676 0.009 0.018 1.768 -0.212 0.424 0.864 0 
IM 0.703 0.012 0.055 1.643 -0.479 0.697 0.425 0 
BZ 0.713 0.026 0.053 1.265 -0.302 0.478 0.927 0 
LO
V 

0.702 0.005 0.033 1.547 -0.058 0.864 0.467 1 

MF 0.691 0.040 0.061 1.729 -0.372 0.454 0.838 0 
 
 
Table S5: Validation accuracy (R2 and RMSE) of process models with and without including 

CSD parameters. 

 Without CSD parameter With CSD parameters 
 Porosity Tensile 

Strength 
Porosity Tensile 

Strength 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
DNN 0.90 0.024 0.86 0.28 0.95 0.019 0.90 0.25 
RF 0.89 0.031 0.72 0.40 - - - - 
SVM 0.83 0.048 0.67 0.44 - - - - 

 
  



2.2 In-silico Optimisation 
 

Table S6: List of decision parameters and their values/ranges in the formulation optimisation 
cases. 

Decision parameter Value/Range 
API (-) SP, AS, DM, GR, IM, MH 
API mass fraction (-) 0.16, 0.18, 0.2, 0.22  
Excipient 1 (-) Choice from MCC (3 grades), LAC (2 grades), MAN (1 

grade) 
Excipient 1 mass fraction (-
) 

[0 – 1] 

Excipient 2 (-) Choice from MCC (3 grades), LAC (2 grades), MAN (1 
grade) 

Excipient 2 mass fraction (-
) 

[0 – 1] 

Lubricant (-) MgSt 
Lubricant mass fraction (-) 0.035 
Disintegrant (-) CCS 
Disintegrant mass fraction 
(-) 

0.01 

Compression Pressure 
(MPa) 

[70 – 450] 

 
 

 
Figure S2: Validation of FFC values against the measured data at consolidation pressure of 

1.6 KPa. The error bars show the standard deviation from multiple measurements.   

 



3 Tableting DataFactory 
3.1 List of instruments 
 

Table S7: List of all the instruments used and their digital interfaces 

Process Instrument Digital interface 
Powder dosing DEC Flex PTS Profinet 
NIR spectroscopy  VIAVI Micro NIR OPC UA 
Powder compaction MEDELPHARM STYL'One Nano Websocket 
Tablet tester Sotax AT50 OPC DA 
Robot 1 Universal UR5e TCP/IP 
Robot 2 Kuka LBR iiwa 14 UDP 
Weighing balance Cole-parmer Serial Communication 

 
3.2 Powder transportation unit (TU) 
The custom-built transportation unit consists of a tube that contains powder for transport and 
analysis as shown in Figure S3. The tube’s inlet has a width of 20 mm, allowing sufficient 
space for powder dosing. The outlet, however, is 8 mm wide, which is just below the 9 mm 
diameter of the tablet press die where the powder will be discharged. Powder flow is regulated 
by a sliding gate driven by an electronic solenoid, while an electric vibrator ensures smooth 
powder flow through the tube. A clear sapphire disk, 10 mm in diameter, is placed above the 
sliding gate to allow for NIR scanning. A robotic arm (R1) performs pick-and-place tasks by 
holding the transportation unit from the back and supplying power to the vibrator and solenoid. 

 
 

(a) Front side of the TU (b) Back side of the TU 

 
 

(c) Bottom side of the TU (d) Top side of the TU 
Figure S3: Design of transportation unit (TU) 



 
3.3 Robotic Fingers 
Figure S4 shows the design of customized 3D-printed fingers mounted on R1, which enable 
both the picking and placing of the TU as well as the provision of electrical energy through 
touchpoints. Figure S5 illustrates the design of customized fingers for R2, which are 
specifically made for tablet transportation. The fingers are engineered to securely pick up 
tablets from both horizontal and vertical orientations, ensuring that the tablets remain securely 
held without slipping. 

 
Figure S4: Fingers for the gripper of R1 to hold TU and to provide electrical power 

 



 
Figure S5: Fingers for the gripper of R2 to pick and place tablets 

 
3.4 Automated Tablet Separator  
The Automated Tablet Separator (ATS), illustrated in Figure S6, is designed to separate 
damaged tablets from undamaged ones. The ATS unit directs tablets into two distinct channels, 
with the flow into each channel regulated by a barrier driven by a servo motor. When an 
undamaged tablet arrives in the designated channel, a linear solenoid pushes it forward, making 
it more accessible for a robotic gripper to pick up. Position of the barrier to separate the 
damaged and undamaged tablet is determined based on the method (destructive/non-
destructive) that was used to test the tablets. 
 



 
Figure S6: Tablet separator for damaged and undamaged tablets 

3.5 Cleaning unit for TU 
The customized cleaning unit (CU) is designed to clean the TU from front, top and bottom 
from any powder residue. This CU is attached to a high-powered vacuum cleaner that is 
operated by an external control unit as shown in Figure S7. Operation of this CU can be fully 
controlled from LabVIEW in real-time. 
 

 
Figure S7: Design of customised CU 

 

 
3.6 Digital Integration of Instruments 
Figure S8 shows how all the devices and instruments are digitally integrated from end to end 
with supervisory control unit. The dosing unit has its own dedicated programmable logic 
controller (PLC) and does not require additional software for control. It communicates with the 
supervisory control unit (SCU) via the Profinet protocol, with each PLC tag 
(parameters/variables) predefined in the SCU for control purposes. The weighing balance is 
integrated with the SCU through serial communication. The SCU sends a read command to the 
balance, which then returns the current weight of the dose. The Micro NIR instrument is 



controlled via proprietary software (VIAVI Micro NIR), which offers remote access through 
the OPC interface. All configurations and method-related information are set up in this 
software. Once the method is created, the dark, reference, and sample scans can be managed 
through the SCU, with spectra acquired via OPC communication protocol. The tablet press is 
operated using proprietary Alix software, which communicates with a remote computer 
through a WebSocket interface. The tablet press’s communication interface allows for greater 
flexibility in adjusting parameters remotely without relying on its proprietary software. 
Similarly, the tablet tester is managed through Q-doc, a proprietary software installed on a 
device-specific laptop. All necessary parameters for creating destructive and non-destructive 
profiles are predefined in Q-doc, which can send and receive data remotely through an OPC 
interface. The R1 and R2 robots are integrated with the SCU via TCP and UDP socket 
interfaces, respectively. R1’s control system uses block-based programming, where each block 
represents a specific function, while R2 is programmed using Java-based scripting. Both robots 
move between instruments based on pre-defined waypoints, with their movements triggered by 
instructions from the SCU. Finally, all the bespoke units, including TU, CU and TS are 
integrated with SCU through embedded controller and serial communication. The embedded 
controller receives the specific instruction from SCU and then performs the actions on bespoke 
units. 
 

 
Figure S8: Digital integration of instruments with SCU. 

 
  



3.7 Validation of Tableting DataFactory 
Figure S10 (a) reveals that powder loss during transportation, encompassing powder dosing, 
adherence to the TU tube, and spillage when opening the TU gate, remains consistently below 
22 mg for various formulations. Despite the challenges posed by poor flowability in some 
Paracetamol formulations, TU maintains a consistent powder loss across various formulations. 
The formulations B6 and B8 exhibit the least powder loss due to their suboptimal flowability, 
resulting in minimal spillage during powder dosing and release from TU. Figure S10 (b) 
indicates that there is no significant influence of dose weights on powder loss, with the powder 
loss consistently staying below 22 mg for all dose weights.  
In Figure S11 (a), the repeatability of both powder dose and tablet weight is depicted for 
different formulations. The standard deviation in the powder obtained from the dosing unit 
directly corresponds to variations in tablet weight data. As shown in Figure S11 (b), the relative 
standard deviation in the powder data and tablet weight decreases as the dose weight increases, 
indicating that the dosing system performs more effectively with higher dose weights. 
 
 

                                                  
(a) (a) 

Figure S9: Comparison of tablet weight with powder obtained with (a) different 
formulations (b) different dose weights. 

 

  
(a) (b) 

Figure S10: Assessment of powder loss in dosing, transportation, and release with (a) 
different formulations (b) different dose weights 

 



  
(a) (b) 

Figure S11: Repeatability of powder obtained and tablet weight with (a) different 
formulations (b) different dose weights 

 
(a) 

 
(b) 

 
(c) 

Figure S12: Assessment of variability in tablet a) weight b) porosity c) tensile strength 
over time. 

 

 



3.7.1 Assessment of Powder Loss on Content Uniformity 
Blends were prepared in a Turbula T2GE mixer to achieve formulations containing 5, 6, 7, 7.5, 
8, 9, 10, 12.5, 15, 20 and 25 % w/w paracetamol (APAP), alongside 5% croscarmellose sodium 
(CCS), 1% magnesium stearate (MgSt), and 50:50 mixture of microcrystalline cellulose 
(MCC) and lactose (LAC) as the remaining excipients making up the %. Pre-lubrication mixing 
settings were 50 rpm for 10 minutes. Lubrication mixing settings were 50 rpm for 2.5 minutes. 
Each blend was then subsampled in duplicate for High Performance Liquid Chromatography 
(HPLC) analysis. The samples were analysed on a Thermo Fisher Vanquish Core system using 
an Agilent Zorbax Eclipse Plus C18 column (250 mm x 4.6 mm, 5 μm) maintained at 30°C. 
The mobile phase consisted of 30% acetonitrile and 70% water (v/v) delivered at a flow rate 
of 1.0 mL/min, and the total run time was set to 10 minutes. Each sample was dissolved, 
filtered, and diluted (working concentration: 0.15 mg/mL) appropriately. The injection volume 
set on the instrument method was 2 μL, the autosampler temperature was held at 5°C and the 
detection wavelength was set to 243 nm. 
Following HPLC analysis, five subsamples of each blend were processed through the 
automated tablet development DataFactory. Each subsample was dosed in the 3D-printed 
Transportation Unit (TU), analysed by Near InfraRed Spectroscopy (NIRS), and then 
compacted into a tablet. Each tablet was then subsequently analysed again by NIRS using a 
similar 3D-printed Unit which enabled accurate tablet placement. 
The blend NIR data were pre-processed by wavelength trimming (1100-1450 nm), standard 
normal variate (SNV) transformation and smoothed via a Savitzky-Golay (SG) second 
derivative (polynomial order 2, window length 5). A partial least squares model (LV = 2) was 
produced to correlate the spectra with the reference HPLC measurements. K-fold cross-
validation, each fold containing five samples, was applied to evaluate predictive performance, 
see Figure S13A.  
The collected NIR spectra for both blends and tablets were subjected to wavelength trimming 
(1100-1450 nm), SNV transformation and smoothed via a SG second derivative (polynomial 
order 2, window length 5). Direct standardisation (DS) was then applied to correct blend 
spectra into the tablet spectral domain. For each fold in a 5-fold cross-validation set up, a subset 
of blend-tablet pairs was chosen as the training set, and the remaining pairs formed the test set. 
A least squares procedure was applied to the training set to solve: 

𝐗!"#$%! = 𝐗#$%&' ∙ 𝐀 
where, Xblend and Xtablet represent the blend and tablet spectra, respectively, and A is the 
transformation matrix that corrects the blend spectra to more closely resemble the tablet 
domain. The matrix A computed was then multiplied by the corresponding blend spectra in 
both training and test sets to produce DS-corrected blend spectra. 
Following this, a partial least squares (PLS) regression model (LV =2) was fitted on each 
training fold using the DS corrected blend spectra and the average HPLC measurements from 
the original blends. The model was then applied to the DS corrected test spectra to predict 
content uniformity, yielding predictions which were compared to the HPLC measurements. 
After collection of all 5-fold predictions, every five subsamples corresponding to the same 
blend were grouped to measure the mean predicted values and standard deviations (Figure 
S13B). 
The DS corrected outputs (R² = 0.92, RMSE-CV = 2.01) indicate a robust correlation and low 
error, comparable to those obtained using the original blend NIR spectra (R² = 0.97, RMSE-
CV = 0.84), as illustrated in Figure S13. Despite unavoidable uncertainties introduced by 
sample preparation for HPLC, HPLC instrument variability, differences in NIR sampling of 
powders versus tablets, prediction error from PLS regression, and direct standardization (DS) 
errors, these findings strongly suggest that any powder losses during processing did not alter 



the overall composition of the blends. Material was lost in bulk rather than selectively, the ratio 
of paracetamol to excipients remained stable throughout the process. 
 

 
Figure S13: Depicted are the NIR PLS-CV regression results using (A) the original blend 
spectra and (B) the DS corrected blend spectra targeting the tablet domain. Average NIR 
predicted vs. HPLC measured paracetamol content (% w/w) for blend samples processed 

through the automated tablet development DataFactory. Each data point represents the mean 
of five replicate NIR predictions, with error bars indicating standard deviation. The red 

dashed line indicates the perfect one to one relationship between NIR predicted and HPLC 
measured values. Notably, obtaining individual HPLC references for each subsample would 

further enhance PLS regression accuracy. 

 
3.8 Process Analysis with Near-infrared (NIR) Spectroscopy 
3.8.1 Background  
Near-infrared (NIR) spectroscopy is a rapid, non-destructive analytical technique and widely 
used for process monitoring and control in pharmaceutical applications. NIR spectra capture 
key chemical and physical properties of samples, providing valuable information about many 
critical parameters, such as blend homogeneity. However, raw NIR spectra often suffer from 
baseline shifts, scattering effects, and noise, necessitating robust pre-processing and 
dimensionality reduction techniques to ensure reliable analysis. 
This study incorporates trimming, standard normal variate (SNV) transformation, and 
Savitzky-Golay (SG) filtering for pre-processing. Principal component analysis (PCA) is used 
for dimensionality reduction, while Hotelling’s T² analysis is employed for outlier detection 
and quality assessment of the spectral dataset. 
3.8.2 NIR Spectra Pre-processing 
Wavelength Reduction:  

The raw spectra were trimmed to the range 1050-1450 nm, where relevant chemical 
information to paracetamol was present.  

Standard Normal Variate (SNV) 
Each spectrum (𝐗#$%&') was normalised to minimise scattering effects and baseline shifts. 
The transformation was applied as: 



𝐗#$%&'( =
𝐗#$%&' − 𝐗#$%&',*%"&

𝐗#$%&',+!'.'%-
 

Savitzky-Golay Smoothing and Derivation 
A SG filter was applied to compute the first derivative of each spectrum, enhancing spectral 
features and reducing noise. Parameters used include: 

• Window = 8 
• Polynomial Order = 2 
• Derivative Order =1 

3.8.3 Principal Component Analysis (PCA) 
PCA was applied on the pre-processed spectra to reduce dimensionality and extract key 
patterns. The PCA transformation is described by: 

𝐓	 = 	𝐗#$%&'( ∙ 𝐏 
where T represents the scores, P represents the loadings, and 𝐗#$%&'(  is the pre-processed 
spectra matrix.  
The first three principal components were retained, capturing 95% of the total variance in the 
spectral dataset.  
3.8.4 Hotelling’s T2 Analysis 
Hotelling’s T2 statistic was used to evaluate the multivariate distance of each spectrum from 
the PCA model centre. The T2 value for each sample was calculated as:   

𝑇./ =*+
𝑡.0/

𝜆0
.

1

023

 

where, tij is the score of the i-th spectrum on the j-th PC, λj is the variance of the j-th PC, and k 
is the number of retained components (here, k = 3). 
The control limit was determined based on chi-squared (χ2) distribution at a 99% confidence 
level: 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝐿𝑖𝑚𝑖𝑡 = 𝜒4.55,1/  
For k = 3, the control limit was 11.34. Spectral outliers were identified where 𝑇./ > 11.34. 
Detected outliers occurred at the following iterations: 3, 36, see Figure S15. 
 
3.8.5 Integration with the Tableting DataFactory 
NIR data collection and pre-processing were digitally integrated into the experimental 
workflow, enabling real-time spectral analysis. Spectra from 100 consecutive samples were 
recorded and processed, with visualisations generated for both raw and pre-processed data, see 
Figure S14. This allowed for the efficient detection of potential anomalies and enhanced 
confidence in the experimental outcomes. 



 
Figure S14: (A) Raw near-infrared (NIR) spectra collected from 100 consecutive samples, 

plotted as absorbance (mAU) across the wavelength range of 908–1676 nm. Each spectrum is 
colour-coded by its iteration number, with earlier samples shown in purple and later samples 
transitioning to yellow. (B) Pre-processed spectra of the same samples, following trimming to 
1050–1450 nm wavelength range, standard normal variate (SNV) correction, and Savitzky-

Golay smoothing and derivation. The colour coding corresponds to the same iteration 
numbers as in (A).  

 
 



 
Figure S15: Hotelling's T2 chart for 100 consecutive samples, calculated using the first three 
principal components from the pre-processed NIR spectra. Each data point represents the T2 
statistic for an individual sample, quantifying its multivariate distance from the PCA model 
centre. The red dashed line indicates the control limit at the 99% confidence level (T2 > 11.34).  

 

4 Real-time Process Optimisers 
4.1 Background of Bayesian Optimisation 
Bayesian optimisation (BO) is a framework for optimising expensive-to-evaluate functions, 
particularly in high-dimensional or non-convex spaces where traditional optimisation methods 
may fail [1]. BO leverages a probabilistic surrogate model, often a Gaussian Process (GP), to 
model the objective function ℓ(𝑋), where 𝑋 is the state vector of input parameters. Given this 
prohibitively expensive objective function, the uncertainty of the objective ℓ(∙) across not-yet-
evaluated input points is modelled as a probability distribution. BO models ℓ(∙) as a GP, which 
can be evaluated relatively cheaply and often with reasonable accuracy [2]. At each iteration 
the GP model is used to select the most promising candidate 𝑋∗ for evaluation. The costly 
function ℓ is then only evaluated at ℓ(𝑋∗) in this iteration. Subsequently, the GP updates its 
posterior belief ℓA(∙) with the new data pair (𝑋∗, ℓ(𝑋∗)), and that pair is added to the known 

experiment set 𝒟7 = DE𝑋. , ℓF𝑋.GHI
.23

7
. This iteration can be repeated to iterate to an optimum. 

The critical step is the selection of the candidate point 𝑋∗ , which is performed via an 
acquisition function that enables active learning of the objective ℓ(∙) [3]. The acquisition 
function 𝛼(𝑋) guides the selection of the next evaluation point 𝑋783 by quantifying the utility 
of evaluating ℓ(𝑋) at a given point, typically formulated as: 
 

𝑋783 = argmax
9

𝛼(𝑋|𝒟7)  

This iterative process continues until convergence criteria are met. Common acquisition 
functions include the Expected Improvement (EI), Upper Confidence Bound (UCB), and 
Probability of Improvement (PI) [4]. In this study, EI is used the acquisition function due to its 
proven efficiency in balancing between the exploration and exploitation [5]. 
 



4.2 Digital integration  
Both optimisation frameworks, PIBO and MOBO, were digitally integrated with the Tableting 
DataFactory through a local call mechanism between LabVIEW and Python scripts. LabVIEW 
triggered the Python scripts to execute the optimisation routines, ensuring seamless 
communication and data flow between the control system and the optimisation algorithms. 
Each experiment was repeated three times for enhanced consistency, with the average value 
from three tablets used in the optimisation workflow.  
 

 
Figure S16: Initial and calibrated prediction of compressibility and compactability profiles 



before (using the system of models) and after the calibration with PIBO. 

 

 



Figure S17 (Cont’d): Initial and calibrated prediction of compressibility and compactability 
profiles before (using the system of models) and after the calibration with PIBO. 

 
Figure S18: Representation of compactability profile of SP (20%) (a) and AS (20%) (b) 

formulations using the collected data points during MOBO.  

  



 

 
(a) 

 
(b) 

 
(c) 

Figure S19: Validation of optimized target a) weight b) porosity c) tensile strength of 
tablets with different APIs and concentration. 
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