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ABSTRACT

As the global demographic shifts toward an aging society, the geriatric patient population is steadily
increasing. These patients often suffer from comorbidities and require numerous oral medications, which
can be especially challenging for dysphagic geriatric patients. Mucoadhesive buccal films (MBFs) seem
promising and could reduce pill burden, simplify administration, and enable individualized drug therapy.
This review aims to explore the age-related changes in the oral cavity and their impact on MBF delivery,
including potential strategies to overcome these age-related barriers to drug delivery. It was observed that
aging impacts the oral mucosa as well the properties of the saliva. There are several studies in the
application of buccal films including the use of a wide range of permeation enhancers. The 3D printing of
buccal films seems to introduce dosing flexibility to buccal film manufacturing.

Introduction

As healthcare advancements contribute to increased life expectancy,
the geriatric population is expanding at a faster rate compared to
previous decades. The World Health Organization predicts that the
number of geriatric adults (aged 60 years and older) will rise from
1 billion to 2.1 billion by 2050 [1]. The extended lifespan of adults
is accompanied by a susceptibility to disease, a consequence of the
accumulation of age-related damage at the cellular and molecular
level [2,3]. The aging process causes deterioration of body functions,
often worsening the function of organ systems at rates dependent
on individual environmental and genetic influence [3,4].

Age-related changes to the body often lead to disability and
comorbidities in geriatric populations [3]. Currently, the most prev-
alent method for treating these comorbidities involves the pre-
scription of multiple solid and liquid oral dosage forms.
Approximately, 60% of established small-molecule drug products
are delivered through the oral route. Oral formulations dominate
the global pharmaceutical market, accounting for roughly 90% of
all formulations designed for human use [5].

While oral drug delivery is convenient and widely accepted,
oral administration poses challenges for geriatric patients, particu-
larly those afflicted with swallowing difficulties (dysphagia) [6,7].
Mucoadhesive buccal films (MBFs) present an alternative dosage
form option. These films adhere to the inside of the cheek, facili-
tating a controlled drug release via the buccal mucosa to achieve
systemic or local effects. Buccal films remove the need for swal-
lowing, offering a significant benefit for dysphagic geriatric
patients and improving treatment compliance. Furthermore,
administering drugs via the buccal mucosa bypasses the hepatic
‘first pass’ metabolism and pre-systemic degradation associated
with oral drug delivery, improving bioavailability, and reducing the
overall exposure to the active ingredient [8]. An opportunity to
tailor and optimize buccal film drug delivery is also made possible
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with the adoption and adapting of 3D printing in film manufac-
ture. Personalized medicine and dosing are becoming more attrac-
tive as the importance of a patient’s individual needs are
recognized, rejecting the traditional ‘one-size fits all’ concept, and
advancements in technology can now facilitate this [9,10].

The buccal mucosa is a promising site for drug delivery due to
the vast number of blood vessels throughout the lamina propria,
providing a rich arterial blood supply to the tissue. Combined with
the hydrated environment, the buccal mucosa is ideal for the disso-
lution and permeation of drug molecules into the circulatory system
[11]. More details about the oral cavity have been covered exten-
sively [12-14]. However, it is crucial to recognize that age-related
changes also influence the physiology and function of the saliva and
buccal mucosa, presenting challenges for buccal film drug delivery.

This literature review aims to explore MBFs as an alternative
and age-appropriate dosage form for geriatric therapy. To assess
their suitability for geriatric patients, this review investigates
age-related changes to the buccal mucosa and oral environment,
considering how these changes affect buccal drug delivery.
Additionally, the review examines methods to minimize and coun-
teract the challenges posed by these age-related changes.
Innovative solutions such as permeation enhancers, saliva stimula-
tion and 3D printing are explored to optimize buccal drug delivery
for geriatric patients.

Age-related changes in the oral cavity and their impact
on mucoadhesive buccal film drug delivery

Aging impacts the structure and function of the buccal mucosa,
similarly to other organs and tissues in the body. Among geriatric
populations, thinning of the buccal epithelium, decreased cell den-
sity, and impaired tissue regeneration are observed [2]. Additionally,
geriatric adults are more susceptible to experiencing xerostomia
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(dry mouth) or salivary gland hypofunction [15]. These age-related
morphological changes could impact the predicted performance
of MBF drug delivery. To accurately predict, enhance and optimize
drug delivery, age-related changes to the oral environment must
be considered. A summary of age-related changes to saliva is
shown in Table 1. It is worth noting that recruiting healthy geriat-
ric subjects, without any morbidities, for clinical studies is difficult
due to normal aging processes and age-related susceptibility [34].
However, some studies excluded subjects with conditions known
to alter saliva secretion and those taking medications that induce
xerostomia [18,19,32]. While this approach may account for certain
variables, it limits the applicability of the findings [35]. To ensure
clinical studies are truly representative of the population, it is ben-
eficial to include geriatric patients with comorbidities, particularly
those affecting the oral cavity. This would provide a more accurate
understanding of the challenges and dynamics within this specific
patient group, ultimately leading to more effective and inclusive
therapeutic strategies.

Age-related changes to the oral cavity reduce the effectiveness
of MBF drug delivery by reducing drug absorption across the buc-
cal mucosa. These physiological changes necessitate considerations
when designing MBFs intended for geriatric therapy, prioritizing
features which promote improved drug delivery. In addition to
age, gender and ethnicity also have an impact on saliva flow rate
[36]. However, as this work is focused on geriatric drug delivery,
only the impact of age has been thoroughly explored.

Age-related changes on the buccal mucosa

Limited studies have explored age-related changes to the buccal
mucosa in geriatric populations and the resulting effect on buccal

Table 1. Age related changes to saliva quantity, quality, and features.

Age related changes

Adults Geriatric References
Buccal saliva 31.40-58.50 [16,17]
film thickness
(um)
Flow rate (mL/  Unstimulated  0.16-1.66 0.13-0.55 [17-24]
min) saliva
Stimulated 0.95-2.47 0.62-1.52  [17,18,20,21,23,25]
saliva
pH Unstimulated 6.06-6.97 5.44-7.32 [17,22,26-29]
saliva
Stimulated 6.29-7.40 5.80-8.15 [17,26,28-30]
saliva
Inorganic Nat 5.64-7.00 6.80 + 0.88 [19,31]
component
concentration
(mmol/L)
K* 13.47-18.80 25.45-25.90 [19,31,32]
cr- 22.83-23.26 32.13 £ 5.00 [19]
Phosphate 1.54 £ 0.01 266 = 0.16 [19]
Ca** 0.95-1.55 0.74-1.95 [19,24,31]
Organic Total protein  0.45-11.35 0.86-12.04 [16,19,25,32,33]
component
concentration
(mg/mL)
Extensional 2.20-23.09 5.59 + 0.99 [25,33]
rheology
(spinnbarkeit)
(mm)
Viscoelastic 1.00 77.50 [32]
relaxation
time (ms)

The two comparison groups include adult (18-60 years) and geriatric (>60 years)
populations.

permeability. Although literature regarding buccal epithelium
thickness in geriatric patients is scarce, intra-oral ultra-sonographic
images highlight a general trend of buccal epithelium thinning as
individuals age [37]. Research also highlights an increase in buccal
epithelial cell size and a decrease in their sphericity [2]. The reduc-
tion in buccal mucosa thickness results in a shortened diffusion
path for drug molecules, enhancing the drug permeation rate [38].

With increased age, a decrease in microvasculature within buc-
cal mucosa is observed, with compromised vascular functions
diminishing systemic blood circulation and consequently lowering
drug distribution to tissues [39]. Diminished buccal microvascula-
ture can present due to lifestyle factors or oral health conditions
[40]. Furthermore, these age-related structural changes to the buc-
cal mucosa contribute to impaired mucosal healing [39].

Mucus is a viscoelastic hydrogel formed by weak non-covalent
bonds, facilitating carbohydrate-carbohydrate and interchain hydro-
phobic interactions. This creates a barrier between the buccal
mucosa and MBF. Chloride and calcium ions present in mucus are
responsible for the expansion of cross-linked mucin chains after
secretion [41,42]. A study by Raynal et al. [42] identified the role of
calcium ions in mucin condensation by promoting the aggregation
of mucin molecules into large linear and branched structures, sug-
gesting that the rheological properties of mucus are dependent on
ion-mediated interactions. Therefore, like the saliva, increased ion
concentrations could alter the rheological properties of mucus,
increasing the viscosity and reducing the rate of drug diffusion from
MBFs [43]. Aging has been observed to impact ion concentration;
however, more research is required on the wide range of ions pres-
ent in mucus and their concentration effects on drug absorption.

The impact of aging on the composition of saliva

As an individual age, physiological and environmental changes to
saliva and the tissue of the salivary glands can occur. The volume
of parenchymal tissue decreases, with the space occupied by non-
functioning adipose and fibrous tissue, resulting in the reduction
of protein production. Additionally, the composition of saliva
changes, therefore affecting the composition of the contact layer
between the dosage form and buccal epithelium [36].

The overall concentration of salivary components was signifi-
cantly higher in the geriatric adults, compared to younger adults
(Table 1). Although the function of salivatory glands is inhibited,
the concentrations of the saliva components increase. Evidence
indicates the water secretion pathway is inhibited, reducing the
amount of water that makes up the saliva, resulting in a more
concentrated saliva [19]. The increased salivary component con-
centration, especially mucin, in geriatric adults leads to the alter-
ation of saliva’s rheology [44]. The altered saliva viscosity increases
the boundary layer thickness, decreasing the diffusion coefficient
and reducing drug diffusion rates from MBF [45].

The impact of aging on salivary flow rate and pH

Saliva is produced by three pairs of major salivary glands (the
parotids, submandibulars, and sublinguals) and hundreds of minor
salivary glands. The saliva is then secreted directly into the oral
cavity via ducts crossing the epithelium [46]. The flow of saliva can
become a barrier to MBF drug absorption due to the occurrence
of ‘saliva wash-out’ effect caused by salivary flux. Saliva continu-
ously ‘washes’ the buccal mucosa and consequently dilutes the
concentration of drug at the MBF contact site and simultaneously
reduces the contact time of the formulation [47]. A study by Serpe



et al. [48] observed that significant backwash of sulforhodamine
deposited into porcine mucosal tissue was caused by the dynamic
flow of saliva. However, the washing effect of saliva can be reduced
by the implementation of an insoluble backing layer, which is usu-
ally a drug free layer protecting the drug loaded layer from the
saliva. This additional layer promotes a unilateral drug movement
in addition to reducing the loss of drug in the saliva, and down
into the gastrointestinal tract [48].

Reduction of salivary flow rate is a result of age-related changes
within the salivary gland. A loss of mucous acinar cell volume and
secretory tissue, accompanied with an increase of adiposity, is sus-
pected to contribute to salivary gland hypofunction which can
lead to xerostomia [20]. In geriatric adults, decreased salivary flow
impacts the oromucosal drug delivery from MBFs. The reduced sal-
ivary flow creates a ‘dry’ oral environment, which can reduce the
rate of drug dissolution from a film and its mucoadhesion to the
buccal mucosa [49-51].

Additionally, a reduced salivary flow rate in geriatric adults
affects the component concentration of the saliva which decreases
the pH of the oral environment [50]. Drug molecules containing
hydrogen accepting groups become ionized in more acidic envi-
ronments, reducing their lipophilicity which directly hinders per-
meation across the buccal mucosa membrane [50]. A change in
pH of the saliva and surrounding environment can hinder the
mucoadhesion between the MBF and buccal mucosa by affecting
the structural ionizable groups responsible for adhesion [52].
Mucoadhesive force influences the residence time of the MBF and
is necessary for controlled and extended drug release [53].

The impact of medications on saliva secretions

Polypharmacy is a recognized and inevitable challenge experienced
by many geriatric adults. Over 1000 drugs in 42 drug categories and
56 sub-categories are known to induce salivary hypofunction and
dryness of the buccal mucous membranes [54]. Anticholinergic
medications (including cardiovascular, antiemetic, and selective sero-
tonin reuptake inhibitor/serotonin-norepinephrine reuptake inhibi-
tor antidepressants) bind to muscarinic receptors situated in the oral
salivary glands which inhibit acetylcholine pathways in the central
nervous system, consequently reducing salivary flow [55,56].
Additionally, literature indicates that diuretic treatment (com-
monly prescribed for conditions such as hypertension, renal dis-
eases, and cardiac failure) is associated with a decrease in salivary
flow rate, pH, sodium, and calcium ion concentrations present in
saliva in addition to a decrease in salivary buffering capacity [57].
The mechanism behind how diuretics influence salivary flow rate
remains unclear; however, Nederfors et al. [58] hypothesize that
salivary hypofunction induced by diuretics could result from the
accumulation of diuretics in the lumen fluid, leading to inhibition
of transportation proteins or dehydration due to excessive urinary
excretion, ultimately reducing the volume of saliva produced. Due
to prevalence of polypharmacy, there is a considerable likelihood
that a geriatric patient may be prescribed more than one anticho-
linergic or diuretic agent. This scenario increases the cumulative
burden, further worsening salivary hypofunction [2,37-40,55-57].

Features of mucoadhesive buccal film drug delivery
system

Oral dosage forms remain the most popular treatment option in
geriatric therapy due to their cost-effectiveness and scalable bulk
manufacture. However, conditions such as dysphagia hinder oral
drug delivery in this population [59,60]. Mucoadhesive film drug
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delivery presents a promising alternative for dysphagic geriatric
patients, utilizing the rich vascularization and permeability of the
buccal mucosa to deliver drug in a pH-stable environment, circum-
venting the swallowing challenges associated with traditional oral
dosage forms [61]. Mucoadhesive films are thin, flexible, multilay-
ered systems designed for prolonged drug release via the buccal
mucosa. These films utilize a blend of mucoadhesive polymers to
facilitate strong mucoadhesion, optimal mechanical properties,
and prolonged drug release profiles [14]. To enhance flexibility,
plasticizers such as glycerol, propylene glycol, and polyethylene
glycol, are incorporated into formulation [62]. This flexibility allows
films to adapt to the natural movements of the mouth, improving
comfort and promoting patient acceptability. Mucoadhesive buccal
films are particularly advantageous for geriatric patients as they
are easy to administer, requiring simple insertion and adhesion to
the buccal mucosa to facilitate the systemic drug delivery. In con-
trast, rectal, vaginal, and inhalation therapies demand higher cog-
nitive and manual dexterity, which can be challenging for geriatric
patients due to age-related physical and mental decline [63-65].

Alternatively, mucoadhesive buccal tablets are designed to
remain fixed between the gum and cheek to deliver drug to the
buccal mucosa. Similar to MBFs, buccal tablets rely on mucoadhe-
sive polymers to facilitate strong mucoadhesion and prolonged
drug release [66]. However, their placement limits the available
contact surface area for mucoadhesion whereas the dimensions of
MBFs are only limited by the surface area of the buccal mucosa.
Unlike buccal films, buccal tablets do not contain plasticizers, lead-
ing to a more rigid formulation that may cause discomfort for
patients during prolonged drug delivery. While this is a predict-
able drawback, sensory studies comparing the patient acceptabil-
ity of MBFs and tablets are needed to confirm this.

Although buccal tablets are more prevalent in the market, buc-
cal films offer underutilized advantages, such as reduced thickness
and greater flexibility within the oral cavity, enhancing patient
comfort [14,67,68]. Despite the lack of clinical research, the design
of MBFs can prioritize patient-centric features and acceptability. A
thinner, more flexible MBF reduces discomfort experienced by
patients and strong mucoadhesion reduces the risk of detach-
ment; these combined features result in improved patient compli-
ance [67,68]. Table 2 summarizes the features MBFs investigated in
literature, focusing on diseases more prevalent in geriatric popula-
tion [1]. However, it is worth noting that geriatric populations have
an increased risk of irritation of the oral mucosa [78]. Therefore,
future studies exploring the relationship between aging and
acceptability of MBFs have the potential to identify the impact of
increased sensitivity of the oral mucosa on the success of MBF
drug delivery.

These studies demonstrate film thickness between 0.02 and
1.34mm, mucoadhesive forces between 0.05 and 63.60 N and
retention times (also an indication of mucoadhesion) from 0.4
to 9.1h. Folding endurance is an indication of film flexibility
and is performed by folding the film until a break or tear
appears. Table 2 indicates that these films exceed 100 folds. An
appropriate thickness for MBFs is between 0.05 and 1.00 mm;
however, there is not a universally accepted mucoadhesive or
folding endurance criteria [79].

A limitation of MBFs is their relatively low drug loading capac-
ity, constrained by the smaller surface area of the buccal mucosa
[81]. Table 2 indicates a dose loading range of 0.17-70.00 mg,
although the study by Gayathri and Jayakumari [80] reported a
500mg loading of glipizide, albeit with significantly heavier films.
The impact of buccal film weight on patients’ acceptability remains
unknown. Despite reduced drug loading compared to other dos-
age forms, buccal films benefit from bypassing gastrointestinal
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degradation and hepatic first-pass metabolism enabling therapeu-
tic effects with smaller drug doses [81].

Permeation enhancers as an approach to enhance
buccal drug delivery

The oral mucosal membrane is an important barrier to buccal
drug delivery, acting as a rate limiting step for permeation across
the buccal membrane. Permeation enhancers (Table 3) aid the
transport of drugs across the buccal mucosa membrane, thereby
enhancing bioavailability. Despite the shared objective, each per-
meation enhancer employs diverse mechanisms of action to
achieve enhanced permeation. Table 3 highlights that compounds
which act by the removal or disruption of buccal membrane lipids
exhibit the greatest permeation enhancement. Incorporating per-
meation enhancers in MBF formulation is beneficial for geriatric
patients due to the age-related physiological changes in the oral
cavity which hinder effective drug absorption across the buccal
mucosa. Permeation enhancers facilitate drug absorption across
the buccal mucosa by modifying mucosal barrier properties and
utilizing these excipients can improve and enhance MBF drug
delivery for geriatric patients.

Lipid based permeation enhancement

Nonionic surfactants

Surfactants possess transcellular perturbation action, a proposed
mechanism of action which involves the insertion of the surfactant
monomer into the plasma membrane. The surfactant monomers
remove phospholipids from the structure to form a mixed surfac-
tant and phospholipid micelle [109]. The destabilization compro-
mises the integrity of the plasma membrane which also raises
concerns for toxicity.

Surfactants have been successfully employed in research per-
taining to buccal drug delivery (Table 3) [110,111]. Nonionic mol-
ecules are more desirable for pharmaceutic formulations as the
molecular structure can be altered to obtain a desired HLB -
hydrophile-lipophile balance. Higher HLB values indicate a greater
hydrophilicity and a HLB value between 12 and 14 being ideal to
solubilize proteins in buccal membranes [70,110,111].

Fatty acids

The precise mechanism of action of fatty acids as permeation
enhancers is not currently well defined. The proposed mecha-
nisms include increasing the fluidity of mucosal membranes via
extraction of buccal barrier lipids [87]. Literature indicates that
fatty acid concentration, chain length, and degree of unsatura-
tion (double bonds) contribute to the effectiveness of the perme-
ation enhancer. The maximum permeation effect is achieved at
an optimal concentration, and permeation declines as concentra-
tion increases further. The optimal concentration is also fatty acid
molecule dependant as increase in chain length demonstrates a
parabolic relationship to permeation enhancement factor (Table
3), with medium chain lengths (10 carbons) being the optimum
[87,112]. Furthermore, buccal permeation increases when a fatty
acid molecule contains more double bonds. Capric acid, a
medium chain length fatty acid exhibits the largest enhancement
of permeability compared to other fatty acids. This is likely attrib-
utable to capric acid’s high lipophilicity, as indicated by its LogP
value of 4.09 [87]. These findings suggest the efficacy of fatty

acids in enhancing buccal permeation is dependent on the mol-
ecules ability to penetrate the buccal mucosa to interact with the
lipid domains.

Bile salts

Bile salts are ionic amphiphilic compounds, characterized by both
hydrophilic head groups and hydrophobic tails. Above the critical
micelle concentration (CMC), they form micelles, which are essen-
tial for their role in drug delivery [91]. The mechanism of perme-
ation enhancement is believed to occur through the solubilization
and micellar entrapment of intercellular lipids, as well as the dena-
turation and extraction of proteins, which create hydrophilic chan-
nels in the buccal mucosal membrane [91]. As shown in Table 3,
trihydroxy bile salts, such as sodium taurocholate, demonstrate
greater permeation enhancement compared to dihydroxy bile
salts. This suggests that the additional hydroxyl group in trihy-
droxy bile salts plays a critical role in enhancing their permeation
effectiveness.

Another key mechanism of action for bile salts is the reduction
of mucus viscosity and elasticity via breakdown of mucus structure
[113]. This is particularly beneficial for geriatric patients, whose
mucus viscosity and elasticity often increase, creating a barrier to
drug delivery. By incorporating bile salts into buccal films, the
age-related challenges to drug absorption can be overcome,
improving the rate of drug diffusion across the mucosal layer and
enhancing therapeutic efficacy for older populations.

Tight junction permeation enhancement

Cyclodextrins

Cyclodextrins are oligosaccharide molecules possessing a hydropho-
bic internal environment and a hydrophilic surface. Cyclodextrins
are a recent addition to known permeation enhancers, and conse-
quently research is scarce [114,115]. Methylated cyclodextrins exhib-
its the most significant enhancement in permeation across porcine
buccal epithelium compared to other cyclodextrins [71]. Histological
studies revealed that methylated cyclodextrin induced extended
detachment of the superficial layers, indicating the opening of tight
junctions within the membrane [71].

Chelators

The use of chelating agents to enhance buccal drug permeation is
underexplored in research, with a singular study investigating the
permeation enhancement of a chelator, citric acid, within a buccal
film formulation, highlighting a notable research gap [100].
Calcium chelators act by depleting calcium ion concentrations,
causing disruption of actin filaments and calcium dependant
adhesion molecules to cause loosening of the tight junctions.
Although chelators did not improve buccal drug permeation,
research suggests calcium chelators have improved permeability of
bovine cornea [100,116]. The lack of research is potentially due to
the associated in vitro toxicity accompanied by the enhanced per-
meation [117-119]. Additionally, the current quantities of chelators
used in research in buccal, ocular, and oral drug delivery exceed
the limits permitted by FDA (0.1-0.01% w/v) [116,118]. These strict
restrictions further emphasize the toxicity associated with chela-
tors as permeation enhancers. Given their toxicological concerns,
chelators may not be the most suitable option for use in MBFs,
which rely on extended adherence to the oral mucosa for sus-
tained drug delivery.
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Figure 1. Digital photographs of 3D printed films with different shapes, infill patterns, and infill percentage. (a) Honeycomb infill (20%); 30 x 30 mm? (b) rectangular
infill (20%); 30 x 30mm?, (c) rectangular infill (15%) (r = 16mm), (d) honeycomb infill (20%) (r = 16), (e) plain infill (100%); 20 x 20mm?, (f) honeycomb infill (15%);
20 x 20mm? rectangular infill, and (g) rectangular infill (15%), 20 x 20 mm? [133], with permission from international journal of pharmaceutics.

Positively charged polymers

The suspected mechanism by which positively changed polymers
enhance mucosal membrane permeation involves the neutraliza-
tion of the negatively charged interior of tight junction channels,
loosening the pores; however, the mechanism is not entirely
understood [120]. Negatively charged polymers can also improve
mucosal permeability by altering tight junction function by chelat-
ing calcium [121]. However, their application in buccal mucosa
permeation studies is less prominent, likely due to the potential
toxicity associated with chelation, as discussed earlier.

The incorporation of positively charged polymer, such as chitosan,
into formulation proved to be an effective permeation enhancer
across the buccal mucosa (Table 3). Chitosan, an amine-based poly-
mer with a pKa of 5.5-7, carries a positive charge at a lower pH and
exhibits good mucoadhesive properties [121]. N-trimethyl chitosan,
exhibiting a positive charge, demonstrated superior enhancement of
buccal mucosal permeation for ropinirole hydrochloride when com-
pared to negatively charged sulfobutyl ether-B-cyclodextrin and neu-
tral hydroxypropyl-p-cyclodextrin [98,122]. Due to the mucoadhesive
properties of chitosan, the polymer can be an attractive excipient for
MBF formulation, promoting retention to buccal mucosa while
increasing permeation of hydrophilic or large molecular weight drugs
via paracellular pathways. However, it is worth noting that positively
charged polymers can cause irritation to the site of administration
due to the mechanism of action.

3D printing of mucoadhesive buccal films as an
approach to control drug release and dose
personalization

Currently, solvent casting is the predominant method for the man-
ufacturing of MBFs. The casting process involves the preparation
of a polymeric casting solution, wherein drug, polymer, and addi-
tional excipients such as plasticizers are dissolved in a solvent.

Once poured into a mold and casted, the buccal films are cut into
appropriate dimensions containing the desired dose [123,124].
While solvent casting is a low-cost, straight-forward technique, the
process is associated with constraints. Limitations include uneven
film thickness, lack of drug uniformity, and the necessity for
reduced viscosity to facilitate pouring and casting of the solution,
restricting the achievable polymer concentration of films [14,123].

Three-dimensional (3D) printing, also known as additive manu-
facturing, has become a transformative technology of the
twenty-first century. Initially patented by Charles Hull in 1986, 3D
printing has since gained widespread application across diverse
industries including pharmaceuticals and healthcare [125]. In the
pharmaceutical industry, 3D printing reached a significant mile-
stone in 2015 when the U.S. Food and Drug Administration (FDA)
approved Spritam®, the first and only 3D-printed drug product to
date [126,127]. This approval sparked considerable interest among
global pharmaceutical manufacturers, due to its potential to rede-
fine drug delivery. By 2015, the global market for 3D printing tech-
nologies had reached $5.165 billion and the market is projected to
expand further, with an estimated value of $3.692 billion by 2026,
growing at a compound annual growth rate (CAGR) of 18.2%
[125,127]. This growth underscores the increasing adoption of 3D
printing, highlighting its potential to revolutionize the field.

Three-dimensional printing has been recently utilized in the
manufacture of oromucosal drug delivery systems, including buc-
cal films [8,128]. Leveraging 3D printing technologies such as ste-
reolithography, powder-based printing, selective sintering, fused
filament fabrication, and extrusion-based methods, enables the
utilization of a more diverse array of materials — ranging from res-
ins, powders, thermoplastic filaments, and hydrogels possessing
wide range of viscosities [129-132].

By harnessing computer-aided design (CAD) software, 3D printing
enables the manufacturing of uniform buccal films with intricate and
unique complex geometries that are unattainable through conven-
tional drug manufacturing techniques such as solvent casting [133,134].
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Implementing 3D printing for manufacturing MBFs enables
customization of infill patterns, density, and geometric properties.
This customization tailors the film's characteristics and perfor-
mance to individual needs and is particularly advantageous for
geriatric patients whose therapeutic needs vary with age [135].
The individualized approach to medicine relies on clinical data,
genetic profiles, and overall health status, to enhance therapeutic
outcomes while minimizing side effects [136]. Furthermore, 3D
printing has potential to facilitate the manufacture of multilayer
combination therapy (co-therapy) MBFs to simplify drug adminis-
tration, which is especially beneficial for geriatric patients manag-
ing comorbidities.

The impact of infill pattern and density on drug release
personalization

Infill patterns refer to the internal structure of a 3D printed dosage
form, and this influences the physiochemical properties of the
buccal film, including mechanical strength and drug release
[137,138]. Infill patterns can be exploited to create rectilinear,
cubic, and hexagonal pore structures within a MBF to alter and
optimize surface area to volume ratios, mediating drug release
profiles [137]. A study explored the impact of infill patterns (Figure
1) on the release of estradiol from 3D printed MBFs; the findings
revealed rectangular, and honeycomb (hexagonal) infill patterns
facilitated faster drug release compared to the ‘plain’ 100% infill
[133]. By modifying the infill geometries and therefore adjusting
the available surface area of the buccal film, it becomes possible
to optimize drug release kinetics [139].

Moreover, adjustments in infill density, representing the volume
of material utilized to occupy the internal layers, can be made.
Increasing the infill density of a buccal film increases mechanical
strength of the dosage form, however, this can influence drug
release [138]. Research has investigated the use of semi-solid
extrusion 3D printing to manipulate infill densities and evaluate
the effect on drug release [140]. The study examined the effects of
10%, 20%, and 40% infill densities and identified that a 10% infill
density led to wider pattern spacing and greater rate of drug dis-
solution. Therefore, reducing the infill density of a 3D printed

Figure 2. Representative photos of 3D printed films in the absence (A) and pres-
ence of ethyl cellulose (B) or wafer (C) backing layers. (D) Optical micrograph of
0C-X formulations (without chitosan, without backing layer) [8], with permission
from European Journal of Pharmaceutics and Biopharmaceutics.

buccal film can facilitate a faster drug release rate. However, this
reduction of infill density also corresponded to a decrease in
mechanical strength of the films [140]. Although greater infill den-
sities improve the mechanical strength of the buccal film, litera-
ture notes that drug release rates are proportional to surface area
to volume ratios [133,141].

The level of customization afforded by 3D printed buccal films
enables individualized medicine that is patient focused. The flexi-
ble infill pattern and density options facilitate the customization
and tailoring of drug release profiles based on geriatric patients’
therapeutic needs [140]. For instance, where these patients require
smaller doses over prolonged periods of time, the surface area to
volume ratio can be optimized to facilitate a more sustained
release formulation.

The impact of geometry on dose personalization and drug
release

Flexible dose adjustments are crucial for meeting the unique
needs of geriatric patients due to the age-related physiological
changes including renal impairment and liver mass reduction and
their effect on drug absorption, metabolism, distribution, and
elimination [142,143]. With aging, lean muscle mass and water
content decrease, while total body fat proportion increases, signifi-
cantly affecting how many drugs are distributed throughout the
body [143]. These age-related changes to the body are especially
important when considering delivery of lipophilic drugs, such as
opioids, benzodiazepines, and antipsychotics, as these drugs will
have a larger volume of distribution in geriatric patients [142,143].
Therefore, without appropriate dose adjustments patients are at
risk of adverse events and overdose caused by prolonged elimina-
tion half-life and drug accumulation.

The use of 3D printing to adjust the geometry of buccal films
enables further patient-focused customizations by adjusting thick-
ness and size of film to alter the dose [144]. The geometry of a
mucoadhesive films can be tailored to individual needs, such as
altering catechol-loaded mucoadhesive films based on mouth
ulcer size [145]. There has been little research conducted on the
effect of different geometries, created by 3D printing, on the rate
of drug release in buccal films. The study conducted by Abdella
et al. [133] identified that shorter 3D printed buccal film thickness
facilitated greater drug release due to greater surface area to vol-
ume ratios. Similar findings were also highlighted in other litera-
ture which explored the use of 3D printing to alter tablet
geometries and the effects on drug release [146,147]. Tailoring
drug release profiles based on geriatric patients’ individual physio-
logical needs possesses the potential to revolutionize healthcare
by preventing drug accumulation and associated toxicity, reducing
the occurrence of adverse events in this population. However, in
vivo studies and clinical trials are required to evidence whether
tailoring drug release profiles can minimize adverse events for
geriatric patients.

Using 3D printing, the geometry can be adjusted to increase
contact surface area between buccal film and the buccal mucosa,
optimizing buccal drug delivery. Expanding the surface area of
mucoadhesive polymer buccal films facilitates increased interac-
tion between the dosage form and buccal mucosa. A larger con-
tact area enables greater interaction between polymer and mucin
chains, enhancing mucoadhesion [148,149]. Utilizing 3D printing
allows for the precise alteration of the surface area, facilitating
optimal mucoadhesion [142,144,145].



3D printing of multi-layer combination therapy
mucoadhesive buccal films

A high pill burden (prescribed >5 tablets or capsules a day) is a
prevalent challenge among geriatric patients due to comorbidity
and polypharmacy [150,151]. Over 40% of geriatric adults experi-
ence polypharmacy, increasing the risk of a high pill burden
[152,153]. A high pill burden is especially challenging for dys-
phagic geriatric patents and can impede compliance in this popu-
lation [154]. Multilayer buccal films containing multiple drugs,
known as fixed dose combination therapy (FDCT), addresses this
issue. The FDCT concept, proven successful in forms like the polyp-
ill for cardiovascular treatment, improves overall compliance as
patients favored the polypill over multiple oral dosage forms
[155-157].

Recent studies on FDCT MBFs show promise by combining
complimentary drugs with the aim of simplifying treatment of oro-
mucosal inflammatory conditions. The studies designed MBFs
intended for the co-delivery of a fast-acting local anesthetic (lido-
caine) and a controlled-release non-steroidal anti-inflammatory
drug (NSAID) [158,159]. The rapid release lidocaine is desirable for
this application because a prompt local anesthetic effect is ideal,
while the relatively slower delivery of NSAID ensures optimal
anti-inflammatory effect.

Eleftheriadis et al. implement hot melt extrusion (HME) 3D
printing to fabricate lidocaine/ketoprofen FDCT MBFs which
involves the systematic deposition of material in a layer-by-layer
fashion to create a complex multi-layer film [8,159]. Eleftheriadis
et al. also utilize fused deposition modeling (FDM) 3D printing to
manufacture multilayer films, comprised of a drug layer and addi-
tional backing layer (Figure 2). Through the layering approach, 3D
printing enables the fabrication of multilayer buccal films featuring
diverse functionalities, including impermeable backing layers to
facilitate unilateral drug release, drug-loaded reservoirs for con-
trolled and sustained drug delivery and additional mucoadhesive
layers to enhance adherence to the buccal mucosa [8,160].
However, there is an opportunity to further develop FDCT multi-
layer MBFs by altering the design of these layers. These layers can
offer versatility in composition, infill patterns and infill densities,
allowing for customization to optimize drug delivery [133]. It is
worth noting that 3D printing technologies utilizing HME require
high processing temperatures (150-230°C) to extrude drug loaded
polymer filaments [161]. The elevated temperatures pose a risk of
thermal degradation of the drug, compromising the stability and
therapeutic potential of the formulation.

Alternatively, Alves et al. [158] utilizes solvent-casting in the
manufacture of multi-layer MBFs, dispensing one layer onto
another. Solvent casting typically involves casting thick layers, fol-
lowed by prolonged drying periods which poses a risk of irregular
drug and excipient distribution within the film [162,163]. By inte-
grating 3D printing technology, an in-process drying step can be
incorporated in the manufacture of multi-layer buccal films.
Simultaneous printing and drying of thin layers mitigate the risk
of irregular distribution and facilitates the manufacture of uniform
films [164].

Utilizing 3D printing in the manufacture of FDCT multilayer
MBFs is especially beneficial for geriatric patients due to their
challenges regarding comorbidities and high pill burdens
[150,151]. FDCT benefits geriatric patients by simplifying drug
administration, replacing multiple oral dosage forms with a sin-
gle MBF, to improve compliance. By utilizing 3D printing tech-
niques, a tailored MBF can be developed and designed for
co-therapy, offering flexible drug doses. This approach reduces
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pill burden, improves compliance in geriatric patients and
encourages individualized drug therapy.

The future 3D printing in buccal film manufacturing

The flexibility afforded by 3D printing enables precise dosage
adjustments tailored to individual therapeutic needs, offering a
level of customization unattainable with mass-produced buccal
films. The ability to 3D-print tailored buccal films has the potential
to revolutionize healthcare, particularly within pharmacy and hos-
pital settings [165]. Healthcare practitioners can prepare
patient-specific doses using optimized formulations readily avail-
able off the shelf [10,166,167].

However, regulatory challenges present a notable barrier to the
implementation of 3D printing in healthcare settings. Although
the specific regulatory framework for these devices remains
unclear, 3D printed buccal films must adhere to the quality, safety,
and performance standards established by regulatory bodies [165].
In December 2017, the FDA issued guidance on additive manufac-
turing for medical devices, outlining regulatory insights, current
agency perspectives, and key chemistry, manufacturing, and con-
trol (CMC) requirements for approving 3D-printed drugs and
devices [125]. The document does not address quality control
requirements, printer specifications, or in-process and finished
product testing parameters needed to ensure product quality con-
sistency. This is likely due to the wide variety of printers available,
each with differing technologies, software, hardware, printing
speeds, and quality. Such variability impacts dosage form consis-
tency. To address this, regulatory agencies must deepen their
understanding of these technologies and processes, fostering col-
laboration among researchers, manufacturers, and regulators, to
implement thorough regulatory governance and implementation
of in-process quality assurance testing.

Furthermore, the successful implementation of 3D printed buc-
cal films depends on the skills and knowledge of the healthcare
professionals, particularly pharmacists, as the potential main users
[168]. However, the approval of the first 3D printed dosage form,
SPRITAM, using ZipDose technology, highlights the potentials of
this technology [69].

Conclusion

Literature has identified key age-related challenges to MBF drug
delivery. However, by incorporating additional excipients into the
formulation, such as permeation enhancers, MBF drug delivery can
be optimized, minimizing the effect of age-related biological
changes to the oral cavity. Despite these advancements, notable
gaps in the understanding remain, including a thorough compre-
hension of buccal mucosa changes in geriatric populations.
Mucoadhesive buccal films have some potential as a therapy for
geriatric patients, addressing to the challenges of high pill burden
and low compliance. Utilizing 3D printing techniques, FDCT MBFs
could simplify geriatric therapy via individualized and tailored
co-therapy. However, furthermore clinical studies focusing on the
performance and acceptability of MBFs in geriatric populations is
required for an extensive insight into the appropriateness of buc-
cal film drug delivery for these patients.
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