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Review Article

Drug Development and Industrial Pharmacy

Exploring the potential of mucoadhesive buccal films in geriatric medicine

Jasmine Southward, Fang Liu , Sam R. Aspinall and Tochukwu C. Okwuosa

Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, 
Hatfield, UK

ABSTRACT
As the global demographic shifts toward an aging society, the geriatric patient population is steadily 
increasing. These patients often suffer from comorbidities and require numerous oral medications, which 
can be especially challenging for dysphagic geriatric patients. Mucoadhesive buccal films (MBFs) seem 
promising and could reduce pill burden, simplify administration, and enable individualized drug therapy. 
This review aims to explore the age-related changes in the oral cavity and their impact on MBF delivery, 
including potential strategies to overcome these age-related barriers to drug delivery. It was observed that 
aging impacts the oral mucosa as well the properties of the saliva. There are several studies in the 
application of buccal films including the use of a wide range of permeation enhancers. The 3D printing of 
buccal films seems to introduce dosing flexibility to buccal film manufacturing.

Introduction

As healthcare advancements contribute to increased life expectancy, 
the geriatric population is expanding at a faster rate compared to 
previous decades. The World Health Organization predicts that the 
number of geriatric adults (aged 60  years and older) will rise from 
1 billion to 2.1 billion by 2050 [1]. The extended lifespan of adults 
is accompanied by a susceptibility to disease, a consequence of the 
accumulation of age-related damage at the cellular and molecular 
level [2,3]. The aging process causes deterioration of body functions, 
often worsening the function of organ systems at rates dependent 
on individual environmental and genetic influence [3,4].

Age-related changes to the body often lead to disability and 
comorbidities in geriatric populations [3]. Currently, the most prev-
alent method for treating these comorbidities involves the pre-
scription of multiple solid and liquid oral dosage forms. 
Approximately, 60% of established small-molecule drug products 
are delivered through the oral route. Oral formulations dominate 
the global pharmaceutical market, accounting for roughly 90% of 
all formulations designed for human use [5].

While oral drug delivery is convenient and widely accepted, 
oral administration poses challenges for geriatric patients, particu-
larly those afflicted with swallowing difficulties (dysphagia) [6,7]. 
Mucoadhesive buccal films (MBFs) present an alternative dosage 
form option. These films adhere to the inside of the cheek, facili-
tating a controlled drug release via the buccal mucosa to achieve 
systemic or local effects. Buccal films remove the need for swal-
lowing, offering a significant benefit for dysphagic geriatric 
patients and improving treatment compliance. Furthermore, 
administering drugs via the buccal mucosa bypasses the hepatic 
‘first pass’ metabolism and pre-systemic degradation associated 
with oral drug delivery, improving bioavailability, and reducing the 
overall exposure to the active ingredient [8]. An opportunity to 
tailor and optimize buccal film drug delivery is also made possible 

with the adoption and adapting of 3D printing in film manufac-
ture. Personalized medicine and dosing are becoming more attrac-
tive as the importance of a patient’s individual needs are 
recognized, rejecting the traditional ‘one-size fits all’ concept, and 
advancements in technology can now facilitate this [9,10].

The buccal mucosa is a promising site for drug delivery due to 
the vast number of blood vessels throughout the lamina propria, 
providing a rich arterial blood supply to the tissue. Combined with 
the hydrated environment, the buccal mucosa is ideal for the disso-
lution and permeation of drug molecules into the circulatory system 
[11]. More details about the oral cavity have been covered exten-
sively [12–14]. However, it is crucial to recognize that age-related 
changes also influence the physiology and function of the saliva and 
buccal mucosa, presenting challenges for buccal film drug delivery.

This literature review aims to explore MBFs as an alternative 
and age-appropriate dosage form for geriatric therapy. To assess 
their suitability for geriatric patients, this review investigates 
age-related changes to the buccal mucosa and oral environment, 
considering how these changes affect buccal drug delivery. 
Additionally, the review examines methods to minimize and coun-
teract the challenges posed by these age-related changes. 
Innovative solutions such as permeation enhancers, saliva stimula-
tion and 3D printing are explored to optimize buccal drug delivery 
for geriatric patients.

Age-related changes in the oral cavity and their impact 
on mucoadhesive buccal film drug delivery

Aging impacts the structure and function of the buccal mucosa, 
similarly to other organs and tissues in the body. Among geriatric 
populations, thinning of the buccal epithelium, decreased cell den-
sity, and impaired tissue regeneration are observed [2]. Additionally, 
geriatric adults are more susceptible to experiencing xerostomia 
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(dry mouth) or salivary gland hypofunction [15]. These age-related 
morphological changes could impact the predicted performance 
of MBF drug delivery. To accurately predict, enhance and optimize 
drug delivery, age-related changes to the oral environment must 
be considered. A summary of age-related changes to saliva is 
shown in Table 1. It is worth noting that recruiting healthy geriat-
ric subjects, without any morbidities, for clinical studies is difficult 
due to normal aging processes and age-related susceptibility [34]. 
However, some studies excluded subjects with conditions known 
to alter saliva secretion and those taking medications that induce 
xerostomia [18,19,32]. While this approach may account for certain 
variables, it limits the applicability of the findings [35]. To ensure 
clinical studies are truly representative of the population, it is ben-
eficial to include geriatric patients with comorbidities, particularly 
those affecting the oral cavity. This would provide a more accurate 
understanding of the challenges and dynamics within this specific 
patient group, ultimately leading to more effective and inclusive 
therapeutic strategies.

Age-related changes to the oral cavity reduce the effectiveness 
of MBF drug delivery by reducing drug absorption across the buc-
cal mucosa. These physiological changes necessitate considerations 
when designing MBFs intended for geriatric therapy, prioritizing 
features which promote improved drug delivery. In addition to 
age, gender and ethnicity also have an impact on saliva flow rate 
[36]. However, as this work is focused on geriatric drug delivery, 
only the impact of age has been thoroughly explored.

Age-related changes on the buccal mucosa

Limited studies have explored age-related changes to the buccal 
mucosa in geriatric populations and the resulting effect on buccal 

permeability. Although literature regarding buccal epithelium 
thickness in geriatric patients is scarce, intra-oral ultra-sonographic 
images highlight a general trend of buccal epithelium thinning as 
individuals age [37]. Research also highlights an increase in buccal 
epithelial cell size and a decrease in their sphericity [2]. The reduc-
tion in buccal mucosa thickness results in a shortened diffusion 
path for drug molecules, enhancing the drug permeation rate [38].

With increased age, a decrease in microvasculature within buc-
cal mucosa is observed, with compromised vascular functions 
diminishing systemic blood circulation and consequently lowering 
drug distribution to tissues [39]. Diminished buccal microvascula-
ture can present due to lifestyle factors or oral health conditions 
[40]. Furthermore, these age-related structural changes to the buc-
cal mucosa contribute to impaired mucosal healing [39].

Mucus is a viscoelastic hydrogel formed by weak non-covalent 
bonds, facilitating carbohydrate–carbohydrate and interchain hydro-
phobic interactions. This creates a barrier between the buccal 
mucosa and MBF. Chloride and calcium ions present in mucus are 
responsible for the expansion of cross-linked mucin chains after 
secretion [41,42]. A study by Raynal et  al. [42] identified the role of 
calcium ions in mucin condensation by promoting the aggregation 
of mucin molecules into large linear and branched structures, sug-
gesting that the rheological properties of mucus are dependent on 
ion-mediated interactions. Therefore, like the saliva, increased ion 
concentrations could alter the rheological properties of mucus, 
increasing the viscosity and reducing the rate of drug diffusion from 
MBFs [43]. Aging has been observed to impact ion concentration; 
however, more research is required on the wide range of ions pres-
ent in mucus and their concentration effects on drug absorption.

The impact of aging on the composition of saliva

As an individual age, physiological and environmental changes to 
saliva and the tissue of the salivary glands can occur. The volume 
of parenchymal tissue decreases, with the space occupied by non-
functioning adipose and fibrous tissue, resulting in the reduction 
of protein production. Additionally, the composition of saliva 
changes, therefore affecting the composition of the contact layer 
between the dosage form and buccal epithelium [36].

The overall concentration of salivary components was signifi-
cantly higher in the geriatric adults, compared to younger adults 
(Table 1). Although the function of salivatory glands is inhibited, 
the concentrations of the saliva components increase. Evidence 
indicates the water secretion pathway is inhibited, reducing the 
amount of water that makes up the saliva, resulting in a more 
concentrated saliva [19]. The increased salivary component con-
centration, especially mucin, in geriatric adults leads to the alter-
ation of saliva’s rheology [44]. The altered saliva viscosity increases 
the boundary layer thickness, decreasing the diffusion coefficient 
and reducing drug diffusion rates from MBF [45].

The impact of aging on salivary flow rate and pH

Saliva is produced by three pairs of major salivary glands (the 
parotids, submandibulars, and sublinguals) and hundreds of minor 
salivary glands. The saliva is then secreted directly into the oral 
cavity via ducts crossing the epithelium [46]. The flow of saliva can 
become a barrier to MBF drug absorption due to the occurrence 
of ‘saliva wash-out’ effect caused by salivary flux. Saliva continu-
ously ‘washes’ the buccal mucosa and consequently dilutes the 
concentration of drug at the MBF contact site and simultaneously 
reduces the contact time of the formulation [47]. A study by Serpe 

Table 1. A ge related changes to saliva quantity, quality, and features.

Age related changes

ReferencesAdults Geriatric

Buccal saliva 
film thickness 
(µm)

31.40–58.50 [16,17]

Flow rate (mL/
min)

Unstimulated 
saliva

0.16–1.66 0.13–0.55 [17–24]

Stimulated 
saliva

0.95–2.47 0.62–1.52 [17,18,20,21,23,25]

pH Unstimulated 
saliva

6.06–6.97 5.44–7.32 [17,22,26–29]

Stimulated 
saliva

6.29–7.40 5.80–8.15 [17,26,28–30]

Inorganic 
component 
concentration 
(mmol/L)

Na+ 5.64–7.00 6.80  ±  0.88 [19,31]

K+ 13.47–18.80 25.45–25.90 [19,31,32]
Cl− 22.83–23.26 32.13  ±  5.00 [19]
Phosphate 1.54  ±  0.01 2.66  ±  0.16 [19]
Ca2+ 0.95–1.55 0.74–1.95 [19,24,31]

Organic 
component 
concentration 
(mg/mL)

Total protein 0.45–11.35 0.86–12.04 [16,19,25,32,33]

Extensional 
rheology 
(spinnbarkeit) 
(mm)

2.20–23.09 5.59  ±  0.99 [25,33]

Viscoelastic 
relaxation 
time (ms)

1.00 77.50 [32]

The two comparison groups include adult (18–60  years) and geriatric (>60  years) 
populations.
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et  al. [48] observed that significant backwash of sulforhodamine 
deposited into porcine mucosal tissue was caused by the dynamic 
flow of saliva. However, the washing effect of saliva can be reduced 
by the implementation of an insoluble backing layer, which is usu-
ally a drug free layer protecting the drug loaded layer from the 
saliva. This additional layer promotes a unilateral drug movement 
in addition to reducing the loss of drug in the saliva, and down 
into the gastrointestinal tract [48].

Reduction of salivary flow rate is a result of age-related changes 
within the salivary gland. A loss of mucous acinar cell volume and 
secretory tissue, accompanied with an increase of adiposity, is sus-
pected to contribute to salivary gland hypofunction which can 
lead to xerostomia [20]. In geriatric adults, decreased salivary flow 
impacts the oromucosal drug delivery from MBFs. The reduced sal-
ivary flow creates a ‘dry’ oral environment, which can reduce the 
rate of drug dissolution from a film and its mucoadhesion to the 
buccal mucosa [49–51].

Additionally, a reduced salivary flow rate in geriatric adults 
affects the component concentration of the saliva which decreases 
the pH of the oral environment [50]. Drug molecules containing 
hydrogen accepting groups become ionized in more acidic envi-
ronments, reducing their lipophilicity which directly hinders per-
meation across the buccal mucosa membrane [50]. A change in 
pH of the saliva and surrounding environment can hinder the 
mucoadhesion between the MBF and buccal mucosa by affecting 
the structural ionizable groups responsible for adhesion [52]. 
Mucoadhesive force influences the residence time of the MBF and 
is necessary for controlled and extended drug release [53].

The impact of medications on saliva secretions

Polypharmacy is a recognized and inevitable challenge experienced 
by many geriatric adults. Over 1000 drugs in 42 drug categories and 
56 sub-categories are known to induce salivary hypofunction and 
dryness of the buccal mucous membranes [54]. Anticholinergic 
medications (including cardiovascular, antiemetic, and selective sero-
tonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibi-
tor antidepressants) bind to muscarinic receptors situated in the oral 
salivary glands which inhibit acetylcholine pathways in the central 
nervous system, consequently reducing salivary flow [55,56].

Additionally, literature indicates that diuretic treatment (com-
monly prescribed for conditions such as hypertension, renal dis-
eases, and cardiac failure) is associated with a decrease in salivary 
flow rate, pH, sodium, and calcium ion concentrations present in 
saliva in addition to a decrease in salivary buffering capacity [57]. 
The mechanism behind how diuretics influence salivary flow rate 
remains unclear; however, Nederfors et  al. [58] hypothesize that 
salivary hypofunction induced by diuretics could result from the 
accumulation of diuretics in the lumen fluid, leading to inhibition 
of transportation proteins or dehydration due to excessive urinary 
excretion, ultimately reducing the volume of saliva produced. Due 
to prevalence of polypharmacy, there is a considerable likelihood 
that a geriatric patient may be prescribed more than one anticho-
linergic or diuretic agent. This scenario increases the cumulative 
burden, further worsening salivary hypofunction [2,37–40,55–57].

Features of mucoadhesive buccal film drug delivery 
system

Oral dosage forms remain the most popular treatment option in 
geriatric therapy due to their cost-effectiveness and scalable bulk 
manufacture. However, conditions such as dysphagia hinder oral 
drug delivery in this population [59,60]. Mucoadhesive film drug 

delivery presents a promising alternative for dysphagic geriatric 
patients, utilizing the rich vascularization and permeability of the 
buccal mucosa to deliver drug in a pH-stable environment, circum-
venting the swallowing challenges associated with traditional oral 
dosage forms [61]. Mucoadhesive films are thin, flexible, multilay-
ered systems designed for prolonged drug release via the buccal 
mucosa. These films utilize a blend of mucoadhesive polymers to 
facilitate strong mucoadhesion, optimal mechanical properties, 
and prolonged drug release profiles [14]. To enhance flexibility, 
plasticizers such as glycerol, propylene glycol, and polyethylene 
glycol, are incorporated into formulation [62]. This flexibility allows 
films to adapt to the natural movements of the mouth, improving 
comfort and promoting patient acceptability. Mucoadhesive buccal 
films are particularly advantageous for geriatric patients as they 
are easy to administer, requiring simple insertion and adhesion to 
the buccal mucosa to facilitate the systemic drug delivery. In con-
trast, rectal, vaginal, and inhalation therapies demand higher cog-
nitive and manual dexterity, which can be challenging for geriatric 
patients due to age-related physical and mental decline [63–65].

Alternatively, mucoadhesive buccal tablets are designed to 
remain fixed between the gum and cheek to deliver drug to the 
buccal mucosa. Similar to MBFs, buccal tablets rely on mucoadhe-
sive polymers to facilitate strong mucoadhesion and prolonged 
drug release [66]. However, their placement limits the available 
contact surface area for mucoadhesion whereas the dimensions of 
MBFs are only limited by the surface area of the buccal mucosa. 
Unlike buccal films, buccal tablets do not contain plasticizers, lead-
ing to a more rigid formulation that may cause discomfort for 
patients during prolonged drug delivery. While this is a predict-
able drawback, sensory studies comparing the patient acceptabil-
ity of MBFs and tablets are needed to confirm this.

Although buccal tablets are more prevalent in the market, buc-
cal films offer underutilized advantages, such as reduced thickness 
and greater flexibility within the oral cavity, enhancing patient 
comfort [14,67,68]. Despite the lack of clinical research, the design 
of MBFs can prioritize patient-centric features and acceptability. A 
thinner, more flexible MBF reduces discomfort experienced by 
patients and strong mucoadhesion reduces the risk of detach-
ment; these combined features result in improved patient compli-
ance [67,68]. Table 2 summarizes the features MBFs investigated in 
literature, focusing on diseases more prevalent in geriatric popula-
tion [1]. However, it is worth noting that geriatric populations have 
an increased risk of irritation of the oral mucosa [78]. Therefore, 
future studies exploring the relationship between aging and 
acceptability of MBFs have the potential to identify the impact of 
increased sensitivity of the oral mucosa on the success of MBF 
drug delivery.

These studies demonstrate film thickness between 0.02 and 
1.34 mm, mucoadhesive forces between 0.05 and 63.60  N and 
retention times (also an indication of mucoadhesion) from 0.4 
to 9.1 h. Folding endurance is an indication of film flexibility 
and is performed by folding the film until a break or tear 
appears. Table  2 indicates that these films exceed 100 folds. An 
appropriate thickness for MBFs is between 0.05 and 1.00 mm; 
however, there is not a universally accepted mucoadhesive or 
folding endurance criteria [79].

A limitation of MBFs is their relatively low drug loading capac-
ity, constrained by the smaller surface area of the buccal mucosa 
[81]. Table 2 indicates a dose loading range of 0.17–70.00 mg, 
although the study by Gayathri and Jayakumari [80] reported a 
500 mg loading of glipizide, albeit with significantly heavier films. 
The impact of buccal film weight on patients’ acceptability remains 
unknown. Despite reduced drug loading compared to other dos-
age forms, buccal films benefit from bypassing gastrointestinal 
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degradation and hepatic first-pass metabolism enabling therapeu-
tic effects with smaller drug doses [81].

Permeation enhancers as an approach to enhance 
buccal drug delivery

The oral mucosal membrane is an important barrier to buccal 
drug delivery, acting as a rate limiting step for permeation across 
the buccal membrane. Permeation enhancers (Table 3) aid the 
transport of drugs across the buccal mucosa membrane, thereby 
enhancing bioavailability. Despite the shared objective, each per-
meation enhancer employs diverse mechanisms of action to 
achieve enhanced permeation. Table 3 highlights that compounds 
which act by the removal or disruption of buccal membrane lipids 
exhibit the greatest permeation enhancement. Incorporating per-
meation enhancers in MBF formulation is beneficial for geriatric 
patients due to the age-related physiological changes in the oral 
cavity which hinder effective drug absorption across the buccal 
mucosa. Permeation enhancers facilitate drug absorption across 
the buccal mucosa by modifying mucosal barrier properties and 
utilizing these excipients can improve and enhance MBF drug 
delivery for geriatric patients.

Lipid based permeation enhancement 

Nonionic surfactants
Surfactants possess transcellular perturbation action, a proposed 
mechanism of action which involves the insertion of the surfactant 
monomer into the plasma membrane. The surfactant monomers 
remove phospholipids from the structure to form a mixed surfac-
tant and phospholipid micelle [109]. The destabilization compro-
mises the integrity of the plasma membrane which also raises 
concerns for toxicity.

Surfactants have been successfully employed in research per-
taining to buccal drug delivery (Table 3) [110,111]. Nonionic mol-
ecules are more desirable for pharmaceutic formulations as the 
molecular structure can be altered to obtain a desired HLB – 
hydrophile–lipophile balance. Higher HLB values indicate a greater 
hydrophilicity and a HLB value between 12 and 14 being ideal to 
solubilize proteins in buccal membranes [70,110,111].

Fatty acids
The precise mechanism of action of fatty acids as permeation 
enhancers is not currently well defined. The proposed mecha-
nisms include increasing the fluidity of mucosal membranes via 
extraction of buccal barrier lipids [87]. Literature indicates that 
fatty acid concentration, chain length, and degree of unsatura-
tion (double bonds) contribute to the effectiveness of the perme-
ation enhancer. The maximum permeation effect is achieved at 
an optimal concentration, and permeation declines as concentra-
tion increases further. The optimal concentration is also fatty acid 
molecule dependant as increase in chain length demonstrates a 
parabolic relationship to permeation enhancement factor (Table 
3), with medium chain lengths (10 carbons) being the optimum 
[87,112]. Furthermore, buccal permeation increases when a fatty 
acid molecule contains more double bonds. Capric acid, a 
medium chain length fatty acid exhibits the largest enhancement 
of permeability compared to other fatty acids. This is likely attrib-
utable to capric acid’s high lipophilicity, as indicated by its LogP 
value of 4.09 [87]. These findings suggest the efficacy of fatty 

acids in enhancing buccal permeation is dependent on the mol-
ecules ability to penetrate the buccal mucosa to interact with the 
lipid domains.

Bile salts
Bile salts are ionic amphiphilic compounds, characterized by both 
hydrophilic head groups and hydrophobic tails. Above the critical 
micelle concentration (CMC), they form micelles, which are essen-
tial for their role in drug delivery [91]. The mechanism of perme-
ation enhancement is believed to occur through the solubilization 
and micellar entrapment of intercellular lipids, as well as the dena-
turation and extraction of proteins, which create hydrophilic chan-
nels in the buccal mucosal membrane [91]. As shown in Table 3, 
trihydroxy bile salts, such as sodium taurocholate, demonstrate 
greater permeation enhancement compared to dihydroxy bile 
salts. This suggests that the additional hydroxyl group in trihy-
droxy bile salts plays a critical role in enhancing their permeation 
effectiveness.

Another key mechanism of action for bile salts is the reduction 
of mucus viscosity and elasticity via breakdown of mucus structure 
[113]. This is particularly beneficial for geriatric patients, whose 
mucus viscosity and elasticity often increase, creating a barrier to 
drug delivery. By incorporating bile salts into buccal films, the 
age-related challenges to drug absorption can be overcome, 
improving the rate of drug diffusion across the mucosal layer and 
enhancing therapeutic efficacy for older populations.

Tight junction permeation enhancement 

Cyclodextrins
Cyclodextrins are oligosaccharide molecules possessing a hydropho-
bic internal environment and a hydrophilic surface. Cyclodextrins 
are a recent addition to known permeation enhancers, and conse-
quently research is scarce [114,115]. Methylated cyclodextrins exhib-
its the most significant enhancement in permeation across porcine 
buccal epithelium compared to other cyclodextrins [71]. Histological 
studies revealed that methylated cyclodextrin induced extended 
detachment of the superficial layers, indicating the opening of tight 
junctions within the membrane [71].

Chelators
The use of chelating agents to enhance buccal drug permeation is 
underexplored in research, with a singular study investigating the 
permeation enhancement of a chelator, citric acid, within a buccal 
film formulation, highlighting a notable research gap [100]. 
Calcium chelators act by depleting calcium ion concentrations, 
causing disruption of actin filaments and calcium dependant 
adhesion molecules to cause loosening of the tight junctions. 
Although chelators did not improve buccal drug permeation, 
research suggests calcium chelators have improved permeability of 
bovine cornea [100,116]. The lack of research is potentially due to 
the associated in vitro toxicity accompanied by the enhanced per-
meation [117–119]. Additionally, the current quantities of chelators 
used in research in buccal, ocular, and oral drug delivery exceed 
the limits permitted by FDA (0.1–0.01% w/v) [116,118]. These strict 
restrictions further emphasize the toxicity associated with chela-
tors as permeation enhancers. Given their toxicological concerns, 
chelators may not be the most suitable option for use in MBFs, 
which rely on extended adherence to the oral mucosa for sus-
tained drug delivery.
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Positively charged polymers
The suspected mechanism by which positively changed polymers 
enhance mucosal membrane permeation involves the neutraliza-
tion of the negatively charged interior of tight junction channels, 
loosening the pores; however, the mechanism is not entirely 
understood [120]. Negatively charged polymers can also improve 
mucosal permeability by altering tight junction function by chelat-
ing calcium [121]. However, their application in buccal mucosa 
permeation studies is less prominent, likely due to the potential 
toxicity associated with chelation, as discussed earlier.
The incorporation of positively charged polymer, such as chitosan, 
into formulation proved to be an effective permeation enhancer 
across the buccal mucosa (Table 3). Chitosan, an amine-based poly-
mer with a pKa of 5.5–7, carries a positive charge at a lower pH and 
exhibits good mucoadhesive properties [121]. N-trimethyl chitosan, 
exhibiting a positive charge, demonstrated superior enhancement of 
buccal mucosal permeation for ropinirole hydrochloride when com-
pared to negatively charged sulfobutyl ether-β-cyclodextrin and neu-
tral hydroxypropyl-β-cyclodextrin [98,122]. Due to the mucoadhesive 
properties of chitosan, the polymer can be an attractive excipient for 
MBF formulation, promoting retention to buccal mucosa while 
increasing permeation of hydrophilic or large molecular weight drugs 
via paracellular pathways. However, it is worth noting that positively 
charged polymers can cause irritation to the site of administration 
due to the mechanism of action.

3D printing of mucoadhesive buccal films as an 
approach to control drug release and dose 
personalization

Currently, solvent casting is the predominant method for the man-
ufacturing of MBFs. The casting process involves the preparation 
of a polymeric casting solution, wherein drug, polymer, and addi-
tional excipients such as plasticizers are dissolved in a solvent. 

Once poured into a mold and casted, the buccal films are cut into 
appropriate dimensions containing the desired dose [123,124]. 
While solvent casting is a low-cost, straight-forward technique, the 
process is associated with constraints. Limitations include uneven 
film thickness, lack of drug uniformity, and the necessity for 
reduced viscosity to facilitate pouring and casting of the solution, 
restricting the achievable polymer concentration of films [14,123].

Three-dimensional (3D) printing, also known as additive manu-
facturing, has become a transformative technology of the 
twenty-first century. Initially patented by Charles Hull in 1986, 3D 
printing has since gained widespread application across diverse 
industries including pharmaceuticals and healthcare [125]. In the 
pharmaceutical industry, 3D printing reached a significant mile-
stone in 2015 when the U.S. Food and Drug Administration (FDA) 
approved Spritam®, the first and only 3D-printed drug product to 
date [126,127]. This approval sparked considerable interest among 
global pharmaceutical manufacturers, due to its potential to rede-
fine drug delivery. By 2015, the global market for 3D printing tech-
nologies had reached $5.165 billion and the market is projected to 
expand further, with an estimated value of $3.692 billion by 2026, 
growing at a compound annual growth rate (CAGR) of 18.2% 
[125,127]. This growth underscores the increasing adoption of 3D 
printing, highlighting its potential to revolutionize the field.

Three-dimensional printing has been recently utilized in the 
manufacture of oromucosal drug delivery systems, including buc-
cal films [8,128]. Leveraging 3D printing technologies such as ste-
reolithography, powder-based printing, selective sintering, fused 
filament fabrication, and extrusion-based methods, enables the 
utilization of a more diverse array of materials – ranging from res-
ins, powders, thermoplastic filaments, and hydrogels possessing 
wide range of viscosities [129–132].

By harnessing computer-aided design (CAD) software, 3D printing 
enables the manufacturing of uniform buccal films with intricate and 
unique complex geometries that are unattainable through conven-
tional drug manufacturing techniques such as solvent casting [133,134].

Figure 1.  Digital photographs of 3D printed films with different shapes, infill patterns, and infill percentage. (a) Honeycomb infill (20%); 30  ×  30 mm2, (b) rectangular 
infill (20%); 30  ×  30 mm2, (c) rectangular infill (15%) (r  =  16 mm), (d) honeycomb infill (20%) (r  =  16), (e) plain infill (100%); 20  ×  20 mm2, (f ) honeycomb infill (15%); 
20  ×  20 mm2 rectangular infill, and (g) rectangular infill (15%), 20  ×  20 mm2 [133], with permission from international journal of pharmaceutics.
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Implementing 3D printing for manufacturing MBFs enables 
customization of infill patterns, density, and geometric properties. 
This customization tailors the film’s characteristics and perfor-
mance to individual needs and is particularly advantageous for 
geriatric patients whose therapeutic needs vary with age [135]. 
The individualized approach to medicine relies on clinical data, 
genetic profiles, and overall health status, to enhance therapeutic 
outcomes while minimizing side effects [136]. Furthermore, 3D 
printing has potential to facilitate the manufacture of multilayer 
combination therapy (co-therapy) MBFs to simplify drug adminis-
tration, which is especially beneficial for geriatric patients manag-
ing comorbidities.

The impact of infill pattern and density on drug release 
personalization

Infill patterns refer to the internal structure of a 3D printed dosage 
form, and this influences the physiochemical properties of the 
buccal film, including mechanical strength and drug release 
[137,138]. Infill patterns can be exploited to create rectilinear, 
cubic, and hexagonal pore structures within a MBF to alter and 
optimize surface area to volume ratios, mediating drug release 
profiles [137]. A study explored the impact of infill patterns (Figure 
1) on the release of estradiol from 3D printed MBFs; the findings 
revealed rectangular, and honeycomb (hexagonal) infill patterns 
facilitated faster drug release compared to the ‘plain’ 100% infill 
[133]. By modifying the infill geometries and therefore adjusting 
the available surface area of the buccal film, it becomes possible 
to optimize drug release kinetics [139].

Moreover, adjustments in infill density, representing the volume 
of material utilized to occupy the internal layers, can be made. 
Increasing the infill density of a buccal film increases mechanical 
strength of the dosage form, however, this can influence drug 
release [138]. Research has investigated the use of semi-solid 
extrusion 3D printing to manipulate infill densities and evaluate 
the effect on drug release [140]. The study examined the effects of 
10%, 20%, and 40% infill densities and identified that a 10% infill 
density led to wider pattern spacing and greater rate of drug dis-
solution. Therefore, reducing the infill density of a 3D printed 

buccal film can facilitate a faster drug release rate. However, this 
reduction of infill density also corresponded to a decrease in 
mechanical strength of the films [140]. Although greater infill den-
sities improve the mechanical strength of the buccal film, litera-
ture notes that drug release rates are proportional to surface area 
to volume ratios [133,141].

The level of customization afforded by 3D printed buccal films 
enables individualized medicine that is patient focused. The flexi-
ble infill pattern and density options facilitate the customization 
and tailoring of drug release profiles based on geriatric patients’ 
therapeutic needs [140]. For instance, where these patients require 
smaller doses over prolonged periods of time, the surface area to 
volume ratio can be optimized to facilitate a more sustained 
release formulation.

The impact of geometry on dose personalization and drug 
release

Flexible dose adjustments are crucial for meeting the unique 
needs of geriatric patients due to the age-related physiological 
changes including renal impairment and liver mass reduction and 
their effect on drug absorption, metabolism, distribution, and 
elimination [142,143]. With aging, lean muscle mass and water 
content decrease, while total body fat proportion increases, signifi-
cantly affecting how many drugs are distributed throughout the 
body [143]. These age-related changes to the body are especially 
important when considering delivery of lipophilic drugs, such as 
opioids, benzodiazepines, and antipsychotics, as these drugs will 
have a larger volume of distribution in geriatric patients [142,143]. 
Therefore, without appropriate dose adjustments patients are at 
risk of adverse events and overdose caused by prolonged elimina-
tion half-life and drug accumulation.

The use of 3D printing to adjust the geometry of buccal films 
enables further patient-focused customizations by adjusting thick-
ness and size of film to alter the dose [144]. The geometry of a 
mucoadhesive films can be tailored to individual needs, such as 
altering catechol-loaded mucoadhesive films based on mouth 
ulcer size [145]. There has been little research conducted on the 
effect of different geometries, created by 3D printing, on the rate 
of drug release in buccal films. The study conducted by Abdella 
et  al. [133] identified that shorter 3D printed buccal film thickness 
facilitated greater drug release due to greater surface area to vol-
ume ratios. Similar findings were also highlighted in other litera-
ture which explored the use of 3D printing to alter tablet 
geometries and the effects on drug release [146,147]. Tailoring 
drug release profiles based on geriatric patients’ individual physio-
logical needs possesses the potential to revolutionize healthcare 
by preventing drug accumulation and associated toxicity, reducing 
the occurrence of adverse events in this population. However, in 
vivo studies and clinical trials are required to evidence whether 
tailoring drug release profiles can minimize adverse events for 
geriatric patients.

Using 3D printing, the geometry can be adjusted to increase 
contact surface area between buccal film and the buccal mucosa, 
optimizing buccal drug delivery. Expanding the surface area of 
mucoadhesive polymer buccal films facilitates increased interac-
tion between the dosage form and buccal mucosa. A larger con-
tact area enables greater interaction between polymer and mucin 
chains, enhancing mucoadhesion [148,149]. Utilizing 3D printing 
allows for the precise alteration of the surface area, facilitating 
optimal mucoadhesion [142,144,145].

Figure 2. R epresentative photos of 3D printed films in the absence (A) and pres-
ence of ethyl cellulose (B) or wafer (C) backing layers. (D) Optical micrograph of 
0C-X formulations (without chitosan, without backing layer) [8], with permission 
from European Journal of Pharmaceutics and Biopharmaceutics.
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3D printing of multi-layer combination therapy 
mucoadhesive buccal films

A high pill burden (prescribed >5 tablets or capsules a day) is a 
prevalent challenge among geriatric patients due to comorbidity 
and polypharmacy [150,151]. Over 40% of geriatric adults experi-
ence polypharmacy, increasing the risk of a high pill burden 
[152,153]. A high pill burden is especially challenging for dys-
phagic geriatric patents and can impede compliance in this popu-
lation [154]. Multilayer buccal films containing multiple drugs, 
known as fixed dose combination therapy (FDCT), addresses this 
issue. The FDCT concept, proven successful in forms like the polyp-
ill for cardiovascular treatment, improves overall compliance as 
patients favored the polypill over multiple oral dosage forms 
[155–157].

Recent studies on FDCT MBFs show promise by combining 
complimentary drugs with the aim of simplifying treatment of oro-
mucosal inflammatory conditions. The studies designed MBFs 
intended for the co-delivery of a fast-acting local anesthetic (lido-
caine) and a controlled-release non-steroidal anti-inflammatory 
drug (NSAID) [158,159]. The rapid release lidocaine is desirable for 
this application because a prompt local anesthetic effect is ideal, 
while the relatively slower delivery of NSAID ensures optimal 
anti-inflammatory effect.

Eleftheriadis et  al. implement hot melt extrusion (HME) 3D 
printing to fabricate lidocaine/ketoprofen FDCT MBFs which 
involves the systematic deposition of material in a layer-by-layer 
fashion to create a complex multi-layer film [8,159]. Eleftheriadis 
et  al. also utilize fused deposition modeling (FDM) 3D printing to 
manufacture multilayer films, comprised of a drug layer and addi-
tional backing layer (Figure 2). Through the layering approach, 3D 
printing enables the fabrication of multilayer buccal films featuring 
diverse functionalities, including impermeable backing layers to 
facilitate unilateral drug release, drug-loaded reservoirs for con-
trolled and sustained drug delivery and additional mucoadhesive 
layers to enhance adherence to the buccal mucosa [8,160]. 
However, there is an opportunity to further develop FDCT multi-
layer MBFs by altering the design of these layers. These layers can 
offer versatility in composition, infill patterns and infill densities, 
allowing for customization to optimize drug delivery [133]. It is 
worth noting that 3D printing technologies utilizing HME require 
high processing temperatures (150–230 °C) to extrude drug loaded 
polymer filaments [161]. The elevated temperatures pose a risk of 
thermal degradation of the drug, compromising the stability and 
therapeutic potential of the formulation.

Alternatively, Alves et  al. [158] utilizes solvent-casting in the 
manufacture of multi-layer MBFs, dispensing one layer onto 
another. Solvent casting typically involves casting thick layers, fol-
lowed by prolonged drying periods which poses a risk of irregular 
drug and excipient distribution within the film [162,163]. By inte-
grating 3D printing technology, an in-process drying step can be 
incorporated in the manufacture of multi-layer buccal films. 
Simultaneous printing and drying of thin layers mitigate the risk 
of irregular distribution and facilitates the manufacture of uniform 
films [164].

Utilizing 3D printing in the manufacture of FDCT multilayer 
MBFs is especially beneficial for geriatric patients due to their 
challenges regarding comorbidities and high pill burdens 
[150,151]. FDCT benefits geriatric patients by simplifying drug 
administration, replacing multiple oral dosage forms with a sin-
gle MBF, to improve compliance. By utilizing 3D printing tech-
niques, a tailored MBF can be developed and designed for 
co-therapy, offering flexible drug doses. This approach reduces 

pill burden, improves compliance in geriatric patients and 
encourages individualized drug therapy.

The future 3D printing in buccal film manufacturing

The flexibility afforded by 3D printing enables precise dosage 
adjustments tailored to individual therapeutic needs, offering a 
level of customization unattainable with mass-produced buccal 
films. The ability to 3D-print tailored buccal films has the potential 
to revolutionize healthcare, particularly within pharmacy and hos-
pital settings [165]. Healthcare practitioners can prepare 
patient-specific doses using optimized formulations readily avail-
able off the shelf [10,166,167].

However, regulatory challenges present a notable barrier to the 
implementation of 3D printing in healthcare settings. Although 
the specific regulatory framework for these devices remains 
unclear, 3D printed buccal films must adhere to the quality, safety, 
and performance standards established by regulatory bodies [165]. 
In December 2017, the FDA issued guidance on additive manufac-
turing for medical devices, outlining regulatory insights, current 
agency perspectives, and key chemistry, manufacturing, and con-
trol (CMC) requirements for approving 3D-printed drugs and 
devices [125]. The document does not address quality control 
requirements, printer specifications, or in-process and finished 
product testing parameters needed to ensure product quality con-
sistency. This is likely due to the wide variety of printers available, 
each with differing technologies, software, hardware, printing 
speeds, and quality. Such variability impacts dosage form consis-
tency. To address this, regulatory agencies must deepen their 
understanding of these technologies and processes, fostering col-
laboration among researchers, manufacturers, and regulators, to 
implement thorough regulatory governance and implementation 
of in-process quality assurance testing.

Furthermore, the successful implementation of 3D printed buc-
cal films depends on the skills and knowledge of the healthcare 
professionals, particularly pharmacists, as the potential main users 
[168]. However, the approval of the first 3D printed dosage form, 
SPRITAM, using ZipDose technology, highlights the potentials of 
this technology [69].

Conclusion

Literature has identified key age-related challenges to MBF drug 
delivery. However, by incorporating additional excipients into the 
formulation, such as permeation enhancers, MBF drug delivery can 
be optimized, minimizing the effect of age-related biological 
changes to the oral cavity. Despite these advancements, notable 
gaps in the understanding remain, including a thorough compre-
hension of buccal mucosa changes in geriatric populations. 
Mucoadhesive buccal films have some potential as a therapy for 
geriatric patients, addressing to the challenges of high pill burden 
and low compliance. Utilizing 3D printing techniques, FDCT MBFs 
could simplify geriatric therapy via individualized and tailored 
co-therapy. However, furthermore clinical studies focusing on the 
performance and acceptability of MBFs in geriatric populations is 
required for an extensive insight into the appropriateness of buc-
cal film drug delivery for these patients.
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