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Abstract 

This work presents a system, in which machine vision combined with artificial intelligence-

based image analysis was used to determine the component-based particle size distribution of 

pharmaceutical powder blends. The blends consisted of acetylsalicylic acid (ASA) and 

calcium hydrogen phosphate (CHP). Images of powders were recorded with a digital camera 

in-line during feeding from a continuous feeder. The component-based particle size 

distributions determined with the system correlated well with those measured using a 

microscope as a reference method. This novel method proved to be effective in the real-time 

determination of particle size distribution of different components in the same blend. It was 

also possible to predict the in vitro dissolution profile of capsules filled with this blend by 

using the measured particle size distribution of ASA as input in a population balance model. 

The method could provide valuable information on the blends used in the pharmaceutical 

industry and could play a key role in the development of pharmaceutical quality control. 
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1. Introduction 

Powder blends are integral to many areas of the pharmaceutical industry. Tablets represent up 

to 70% of all drugs on the market. Powder blends are the main intermediate products of 

tablets. Therefore, knowing and controlling their properties is of utmost importance. It’s 

particularly important considering that the malfunctions of the equipment used in the 

manufacturing of tablets are mainly tied to powder behaviour [1]. The pharmaceutical 

excipients can vary in size from the nanoscale colloidal range to granules of millimetre size in 

various pharmaceutical formulations. The two most important parameters of pharmaceutical 

powder particles are their size and shape, since these can have a huge effect on the quality 

attributes of the powders and a considerable impact on the end product. Particle size can 

affect content uniformity since the particles of different size and shape can segregate and 

cause inhomogeneity. Its effect on flow properties should not be overlooked [2, 3]. Particle 

size can also strongly influence dissolution and absorption rates [4], especially in the case of 

BCS II compounds, while for BCS I/III compounds particle size distribution is not the 

limiting factor, making the development of the dissolution method simpler. Given this great 

impact, particle size is in many pharmaceutical processes considered a Critical Quality 

                  



Attribute (CQA) [5] typically measured using the distribution of parameters such as 

equivalent diameter or Feret diameter.  

Determining and controlling the component-based particle size distributions is crucial in 

understanding the segregation of powder blends, where the sticking behaviour is dependent on 

material properties, such as surface area and crystal morphology [6]. Although there are as 

many as 13 mechanisms related to the segregation of ingredients identified in engineering 

areas [7] only a few are relevant in handling pharmaceutical solids. Amongst those the most 

relevant ones are sifting, fluidization and rolling. In these three phenomena the varying 

behaviour of the particles is attributed to the difference in their sizes, rather than the 

differences in the materials themselves [8]. As a result, particles of the same component but of 

varying sizes and shapes may exhibit different behaviours, which can lead to further 

segregation and inhomogeneity. In their research, Péterfi et al. have investigated the surface 

powder sticking of blends containing amlodipine as API, highlighting that the concentration 

of amlodipine increased in the material adhered to the inner wall, showing that in certain 

cases different materials may show diverse behaviour when contacting various surfaces [9]. 

Traditionally, particle size has been determined using off-line methods such as sieve analysis, 

laser diffraction (LD), and microscopy. These methods often require skilled operators and can 

be time consuming, therefore they are typically not suitable for real-time process control [5]. 

Recently, as Process Analytical Technology (PAT) and continuous manufacturing (CM) are 

becoming more widespread in the industry, there has been a significant shift towards in-line 

methods in particle size analysis. These methods include in-line LD [10], spatial filtering 

velocimetry (SFV) [11] and Focused Beam Reflectance Measurement (FBRM) [12]. LD is 

still mostly used as an off-line method. While LD can measure the size of relatively small, 

even nanoscale particles, the primary limitations of the technology are its destructivity and the 

fact that the particles are always assumed to be spherical. For non-spherical particles, this 

leads to a distribution of equivalent light scatter diameters, which is dependent on particle 

orientation [13]. While SFV can easily be installed into manufacturing equipment, it requires 

special attention and maintenance and in many cases the use of pressurised air in order to 

ensure representative sampling. In FBRM a major challenge in interpreting its results is that 

the chord length distributions measured by the method may not correlate directly with particle 

size [5]. Neither of the aforementioned methods are capable of differentiating between 

particles of varying materials, thus they are not able to determine the component-based 

particle size distribution of a powder blend. This leads to limitations in the application of such 

methods in CM. 

Machine vision is a simple and effective tool for the in-line analysis of pharmaceutical 

processes. A machine vision system recovers useful information about a scene from its two-

dimensional projections [14]. In past studies machine vision systems have been used to 

classify the quality of coated tablets [15], to predict bulk powder flowability of 

pharmaceutical materials based on their particle shape and size distributions [16] and to 

characterize the particle size distribution of granular products [17]. A machine vision system 

comprises of several components, including the camera and light source, each serving the 

purpose of collecting reproducible data [18]. For the light source, the most important factor is 

the consistency in the quality of the emitted light, which is primarily required due to the strict 

pharmaceutical and GMP standards. In their publication, Martin et al. provided an in-depth 

analysis of selecting an appropriate light source and on the importance of optimal setup in 

machine vision systems [19]. Selecting the appropriate camera is crucial for capturing images 

of the required quality, which can be utilized not only for object detection, but for determining 

                  



shapes and leveraging properties (colour, transparency etc.) to distinguish between different 

components [20]. A limitation of image analysis and machine vision for monitoring particle 

parameters during production is the low efficiency of data evaluation with classical 

algorithms, such as thresholding [21]. 

The combination of artificial intelligence and neural networks applied to the processing of 

information obtained through machine vision has the potential to yield significant 

advancements. For the automation and efficiency improvement of image analysis YOLOv5, 

an object detecting algorithm combined with a convolutional neural network (CNN), may 

prove useful. It uses a convolutional neural network to detect different objects, thereby 

enhancing its performance and efficiency in real-time detection. Its ability to learn many 

appearances of an object makes it better at managing real-world situations where the 

appearance of objects changes dynamically [22, 23]. Compared to the object detection 

algorithms used in the past, it also has the advantage of using instance segmentation instead of 

bounding boxes. Instance segmentation is capable of accurately following the contours of 

detected objects, whereas the use of bounding boxes is most effective when the primary 

parameter of interest is the objects’ location or quality. With the use of instance segmentation, 

a significant improvement could be achieved in determining object size and shape, and it has 

already been applied in various fields, including agriculture to enhance fruit production [24]. 

As for its use in the pharmaceutical industry a recent study by Fazekas et al. presented a 

quality assurance system, where CQAs were monitored with fast at-line techniques. The 

developed technique measured the diameter of electrospun fibrous samples using camera 

images and instance segmentation performed by a trained AI model [25]. 

Another  valuable reference is the study by Ficzere et al., who introduced a system, where 

object detection was used on images captured with a digital camera to simultaneously 

determine the API concentration and the particle size distribution of two components of a 

powder blend [26]. They utilized a setup where the powder blend was transferred onto a 

conveyor belt providing a surface to capture images with a digital camera and then the images 

were analysed using the method of bounding boxes.  

The bioavailability of orally administered drugs depends on their absorption from the 

gastrointestinal tract (GI). The Biopharmaceutical Classification System (BCS) is a system 

used to classify drugs based on their solubility and permeability. It helps predict the rate and 

extent of drug absorption in the body. For drugs belonging to BCS II (characterized by high 

permeability and low solubility), the dissolution rate in GI fluids serves as the rate limiting 

step in the absorption of these drugs rather than their diffusion through the GI membrane [27]. 

It is therefore an integral part of preclinical and clinical development. Dissolution testing 

constitutes one of the most important analytical tools in the pharmaceutical industrial quality 

control laboratories. This analytical method typically involves numerous steps [28]. For the 

dissolution testing, the tablets are placed in the dissolution medium and samples are collected 

at predetermined time intervals for analysis of the concentration of dissolved API. This 

method is relatively slow, destructive, and unsuitable for examining a large number of tablets 

or for in-line application. Significant improvements could be achieved by integrating an in-

line sensor with a mathematical model. It is therefore advantageous to develop reliable 

dissolution models that are capable of predicting the dissolution rate of the API based on its 

properties such as particle size distribution. Population balance equation could be a useful tool 

to predict the dissolution rate based on particle size distribution for products, if the particle 

size distribution has been established as a critical quality attribute for the product. 

                  



The population balance equation describes the nucleation, growth, aggregation/ agglomeration 

and breakage. Population balance equations can be formulated using an Eulerian or a 

Lagrangian approach, where the Lagrangian viewpoint tracks a finite number of particles in a 

flow field, while the Eulerian viewpoint tracks the particles as a bulk continuous phase [29]. 

These equations can be applied in the determination of dissolution rate and could be 

combined with an in-line particle size distribution measurement technique to enable real-time 

prediction of dissolution rates. 

Given the significant results achieved with the technology introduced by Ficzere et al. [26] 

where the powder blends were transferred onto a conveyor belt and images were analysed 

using bounding boxes, a setup in which the blend is examined directly at the feeder output, 

making it possible for an ideal in-line application, along with the use of instance 

segmentation, could lead to notable advancements in determining particle shape and size 

distribution. The determined distribution could be combined with population balance 

equations to achieve real-time dissolution rate prediction. 

 

 

2. Materials and methods 

2.1 Materials 

The model API used in the study, acetylsalicylic acid (ASA) was acquired from Sigma-

Aldrich (St. Louis, Missouri, USA). Anhydrous calcium hydrogen phosphate (CHP) was 

obtained from JRS Pharma (Rosenberg, Germany). Microscopic images of the used materials 

are presented in Fig. 1. The presented images illustrate the differences between the two 

components in terms of shape (CHP being more circular), size (CHP having a smaller 

diameter) and transparency (ASA being more transparent). 

 

 

Fig. 1. Microscopic images of a) CHP b) ASA. 

                  



 

2.2 Methods 

2.2.1 Preparation of powder blends 

Sieving was performed for both ASA and CHP to obtain fractions. The CHP fraction consisted 

of particles that did not pass through the 200 µm diameter sieve. The three ASA fractions 

were obtained using two sieves, with particles that did not pass through the sieve with the 

smaller diameter being collected. The sieve pairs employed had the following diameters: 63-

100 µm, 150-200 µm, and 300-500 µm. A CISA BA200N Compact Digital Electromagnetic 

Sieve Shaker (Barcelona, Spain) was used for sieving and the process was continued until the 

mass of material on the sieves no longer changed. 

Sieving was followed by creating the blends of ASA and CHP. This was performed by manual 

rotation for 5 minutes in small plastic containers. Each contained 50 g of powder and the API 

concentration was 20% w/w in all samples. The composition of the three blends is presented 

in Table 1. 

 

Table 1. The sieve fractions used in the three blends. 

 ASA CHP 

Blend 1 150-200 µm >200 µm 

Blend 2 63-100 µm >200 µm 

Blend 3 300-500 µm >200 µm 

 

2.2.2 Real-time capture of images and videos 

The powder blends were loaded into a twin-screw feeder (Brabender Technologie, Duisburg, 

Germany), which operated at a mass flow rate of 0.12 kg/h. The particles then fell onto a glass 

plate, which was inclined at a 45° angle to facilitate powder flow while maintaining the 

particles in the same plane. The 12-megapixel Basler acA4112-30uc (Basler, Ahrenberg, 

Germany) camera was positioned over the glass plate at a 90° angle. The objective attached to 

the camera was a 1.0X-3.0X VariMagTL telecentric objective (Edmund Optics, Barrington, 

New Jersey, USA), operating at the 3X magnification setting. The appropriate lighting was 

achieved using a high-intensity fiber optic LED light source, at an approximately 30° angle 

relative to the glass plate, which made the particles stand out from the background, making 

them more recognisable. A total of 812 images (resolution: 4096x3000) were captured of 

Blend 1, which were later used for the training of the object detection algorithm. Furthermore, 

20-second videos were recorded of all three blends with a frame rate of 10 frames per second, 

which were later used for the determination of particle size distribution. The measurement 

setup is presented in Fig. 2. 

                  



 

Fig. 2. Setup for real-time imaging of powder blends during continuous feeding. 

 

2.2.3 Training of the YOLOv5 algorithm for particle and component recognition 

The first step in the training of the YOLOv5 algorithm was the manual annotation and 

classification of particles, providing a reference pattern for the algorithm. Roboflow [30] was 

used for the manual annotation of objects (particles). It was essential to only annotate particles 

that were clearly distinguishable from the background and had well-defined edges. For this 

purpose, the Instance Segmentation function of Roboflow was used. Manual annotation was 

performed on the 812 images captured of Blend 1, images of Blends 2 and 3 were not used for 

training the model. The ASA and CHP particles were categorized into two different classes. A 

raw image and its annotated version are presented in Fig. 3. 

 

 

Fig. 3. Raw image of Blend 1 (a) and its manually annotated version (b) containing one ASA 

and four CHP particles that are properly visible. 

                  



The YOLOv5 model was then trained in Google Colab, using the manually annotated images, 

which were split into datasets for training, validation and testing. The number of images in 

each dataset is shown in Table 2. In the 568 training images, a total of 2008 CHP particles and 

130 ASA particles were annotated. Although the overrepresentation of one class is not 

optimal, in this case, it did not lead to any issues in the training or in the subsequent size 

distribution determination.  

The training of YOLOv5 was conducted over 200 epochs, while the dataset was split into 

batches, with a size of 10 images. As the training was completed, the file containing the 

weight factors of the developed model was saved for later utilization. The model had a P 

value of 0.842 and an R value of 0.707. P value stands for precision metric (Eq. (1)) and can 

be calculated using the number of true positives (TP) and false positives (FP). High precision 

indicates that the model’s classifications are typically accurate, whereas a low precision value 

suggests that incorrect classifications occur frequently. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

Recall measures the model’s effectivity in identifying all positive instances within the dataset. 

A high recall value indicates that the model successfully detects most instances of the target 

object, whereas a low value suggests frequent failures in object recognition. Recall can be 

calculated using Eq. (2), where FN stands for false negative [25]. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 

Table 2. The number of images in each dataset. 

 Number of images in the dataset 

Training 568 

Validation 164 

Testing 80 

 

2.2.4 Determination of particle size distribution 

The trained YOLOv5 model was used on the 20-second videos recorded of all three blends. 

The model was capable of recognizing and classifying the particles on frames that had not 

been annotated beforehand. After the object detection was performed by the model, the 

relative coordinates and other parameters of the detected particles were downloaded as text 

files, each belonging to an individual image.  

The evaluation of this data was accomplished in MATLAB R2023b (Mathworks, Natick, 

Massachusetts, USA) with a custom-made code. Using the minimal Feret-diameter of each 

detected particle, the code calculated the number-based and volume-based particle size 

distribution of the components. The number-based distribution was used during the 

dissolution prediction described in Chapter 2.2.6. The more generally applied volume-based 

distribution was used for evaluating the performance of the real-time imaging system by 

comparing the distribution to the reference method described in Chapter 2.2.5. 

                  



The same method was performed on all three 20-second videos, captured of the different 

powder blends. 

A 20-second video consists of approximately 200 frames. Assuming an average of 3-5 

properly visible particles per frame, the analysis of each video examines around 600-1000 

particles. 

 

2.2.5 Reference method for particle size measurement 

As a validation of the developed technology, images of each fraction were individually 

captured using a light microscope. Light microscopy was used as the reference method 

because it allows for the direct measurement of the minimum Feret diameter of the particle, 

which is not possible with techniques such as laser diffraction. An additional advantage of this 

method is its ability to directly determine particle size, whereas laser diffraction provides an 

indirect measurement. The images (resolution: 4912x2762) were acquired with an Olympus 

BX40 (Shinjuku City, Tokyo, Japan) light microscope, using a 4x zoom objective. For sample 

preparation, the particles of each fraction were dispersed on glass plates, with efforts made to 

minimize overlapping and contacting particles. Images were captured of the four fractions 

individually. The particles in the images were manually annotated using Roboflow. Roboflow 

annotation was employed to ensure that overlapping or contacting particles were not 

annotated, as an algorithm based on grey-level thresholding would have identified them as a 

single particle. Subsequently, the custom-made MATLAB code utilized the text files 

containing the parameters of the annotated particles to calculate their size distribution. This 

served as the reference for the results obtained with the developed method. Fig. 4 shows 

images of the four different fractions captured with light microscope. 

 

Fig. 4. Microscopic images of a) >200 µm CHP b) 150-200 µm ASA c) 63-100 µm ASA d) 

300-500 µm ASA 

 

                  



 

2.2.6 Kolmogorov-Smirnov test 

Two-sample Kolmogorov-Smirnov test was used to compare the particle size distributions 

obtained with the two different methods. The null hypothesis of the test was that the 

distributions obtained with the reference method and the real-time machine vision method 

came from the same distribution. The confidence level was 95%. The test returns two values. 

The h value is 1 if the null hypothesis is rejected and 0 if the null hypothesis is not rejected. 

The p value is the probability that the test statistic is as extreme as or, more extreme than, the 

observed value under the null hypothesis. 

Table 3 presents the number of analysed particles for the real-time analysis. while the number 

of analysed particles for the microscope reference method is shown in Table 4. 

Table 3. The number of analysed particles for the real-time analysis. 

 CHP ASA 

Blend 1 996 76 

Blend 2  1103 406 

Blend 3 1178 15 

 

Table 4. The number of analysed particles for the microscope reference method. 

 
CHP 

150-200 µm 

ASA 
63-100 µm ASA 

300-500 µm 

ASA 

Number of 

analysed 

particles 

210 177 910 65 

 

Based on [31], the use of the Kolmogorov-Smirnov test is not recommended for sample sizes 

below 30, but it is considered reliable for sample sizes above 50. In our case, with the 

exception of one sample, all our sample sizes exceed 50, leading us to deem the Kolmogorov-

Smirnov test appropriate for our analysis. The small number of ASA particles was caused by 

the fact that in the case of 300-500 µm particle size, the mass is concentrated in a small 

number of large particles. We find it remarkable that even with such a small sample size, the 

real-time method yielded a relatively accurate measurement. To obtain more reliable results, 

mixtures with a large API particle size need to be monitored for a longer time so that more 

particles can be included in the analysis. From the perspective of the practical applicability of 

the developed method, this is not expected to pose a major problem, as API particles of this 

size are typically not used in industrial applications. However, our method can detect such 

particles if they occur as a result of some manufacturing problem. 

2.2.7 In vitro dissolution measurement 

From each of the three powder blends four capsules were prepared, each containing 150 mg 

of powder. Hard gelatine capsule shells (size 0) were used. On the capsules containing powder 

blends with identical fractions, parallel dissolution measurements were performed over a 

period of 120 minutes, with automated sampling at predetermined intervals (5, 10, 15 and 20 

min, and afterwards every 10 min until 120 min) using a Hanson SR8-Plus dissolution tester 

(Chatsworth, CA, USA). The measurement was carried out in the USP II setting (paddle 

                  



method). The rotation speed of the paddles was 50 rpm, and spiral sinkers were used to ensure 

that the capsules stay at the bottom of the vessel.  The medium was 900 mL of pH 1.2 HCl 

solution, tempered at 37°C. The concentration of ASA in the solution was measured using an 

Agilent 8453 on-line UV spectrometer (Hewlett-Packard, Palo Alto, CA, USA) by measuring 

the absorbance at 277 nm. 

 

2.2.8. Prediction of the in vitro dissolution profile with population balance method 

 

For the mathematical description of the dissolution a population balance model (PBM) was 

used. In this, the temporal evolution of the population density function and the concentration 

in the dissolution medium was described using differential equations combined with mass 

balances. It was assumed, that the temporal evolution of the population density function is 

only affected by the dissolution of the particles. A size-dependent dissolution rate equation 

was formulated, incorporating relative supersaturation and size effects, though supersaturation 

was considered insignificant under experimental conditions. The model was then solved using 

a high-resolution finite volume method, with parameters optimized by minimizing the root 

mean square error (RMSE) between experimental and simulated concentration data. The 

dissolution model assumed that capsule shell effects were constant, with ASA dissolution 

primarily influenced by particle size, and incorporated this by applying a constant retarding 

factor to the dissolution rate. The modelling methodology is described in detail in the work of 

Nagy et al. [32] . The PBM was developed in MATLAB R2024a (MathWorks, Natick, MA, 

USA). For the fitting of the PBM based on the measured ASA number-based particle size 

distributions of 63-100 µm and 300-500 µm samples were used, while the blend with 150-200 

µm ASA fraction was used as validation.  

The predicted and the measured dissolution were compared using the f1 and f2 parameters. 

The f1 (difference factor) measures the percent error between two curves over the time points, 

while the f2 (similarity factor) is a logarithmic transformation of the sum-squared error of 

differences between the test and reference products over the time points [33]. In the 

pharmaceutical practice, the similarity between the two curves is considered acceptable if the 

f1 value is below 15 and the f2 value exceeds 50. 

 

 

3. Results and discussion 

3.1 Results obtained with the microscopic analysis reference method 

The results obtained with the off-line microscopic analysis correlated well with the 

expectations based on the sizes of the sieves used in the making of the ASA fractions. The 

CHP fraction’s particle size distribution measured with the reference method was lower than 

expected. This could be attributed to the inefficiency of the sieving process. If the sieving was 

performed for a relatively short period or if CHP particles stuck in the apertures of the 200 µm 

diameter sieve, it could result in smaller particles being prevented from passing through the 

200 µm sieve. The unexpectedly small particle size of CHP provides a great opportunity for 

testing our method. If our real-time method measures a similarly small particle size, then it 

demonstrates the capability of the newly developed tool. The reference particle size 

distributions of the fractions, obtained with the microscopic analysis, are shown in Fig. 5. 

 

                  



 

Fig. 5. Particle size distributions of the fractions measured with the microscopic analysis. 

 

3.2 Evaluation of real-time videos and comparison of results from the developed and the 

reference method 

The method outlined in the Chapter 2.2.4. was applied to all three 20-second videos captured 

of the powder blends. The particle size distributions, based on minimum Feret diameter, 

calculated using the developed method are compared with the results for the same fractions 

obtained from the microscopic reference method and presented in Fig. 6. 

                  



 

 
Fig. 6. Comparison of the minimum Feret diameter-based particle size distributions measured 

using the developed method and the reference method for a) Blend 1 (150-200 µm ASA) b) 

Blend 2 (63-100 µm ASA) c) Blend 3 (300-500 µm ASA). 

 

The figures indicate that the results measured with the real-time machine vision method 

exhibit a high degree of similarity with the reference method. The curves obtained with the 

real-time machine vision method are very similar in the case of Blend 1. In the case of Blend 

2, the two methods measured the size of ASA with only a slight difference. The size of CHP 

in Blends 2-3 and ASA in Blend 3 show larger differences. However, the real-time 

measurements still capture that the size of ASA is remarkably different compared to Blend 1. 

It should be noted that the YOLO model was trained using only images of Blend 1. Therefore, 

augmenting the training dataset with smaller and larger ASA particles would likely result in 

more accurate measurements in the case of the other size fractions. Overall, the results 

demonstrate the versatility of the new technology. In all three cases, the unexpectedly small 

size distribution of the CHP fraction measured with the real-time machine vision method 

correlated well with the distribution obtained using the reference method. For a more in-depth 

                  



comparison, D10, D50, D90, and span values were calculated using the results obtained from 

both methods. This comparison is presented in Table 5.  

Table 5. D10, D50, D90, and span values calculated from the results obtained using the real-

time machine vision method and reference method. 

 

Blend 1 

(150-200 µm ASA;  

>200 µm CHP) 

Blend 2 

(63-100 µm ASA;  

>200 µm CHP) 

Blend 3 

(300-500 µm ASA;  

>200 µm CHP) 

ASA CHP ASA CHP ASA CHP 

D10 

(µm) 

Reference 

method 
96.46 75.05 32.11 75.05 145.52 75.05 

Real-time 

machine 

vision method  

91.54 65.93 35.88 43.53 151.27 45.29 

D50 

(µm) 

Reference 

method 
122.48 90.94 41.99 90.94 204.23 90.94 

Real-time 

machine 

vision method 

121.68 87.85 47.89 72.93 213.39 74.97 

D90 

(µm) 

Reference 

method 
159.79 113.76 55.15 113.76 239.49 113.76 

Real-time 

machine 

vision method 

150.12 111.58 62.46 93.58 250.17 96.34 

Span 

(-) 

Reference 

method 
0.52 0.43 0.55 0.43 0.46 0.43 

Real-time 

machine 

vision method 

0.48 0.52 0.56 0.69 0.48 0.68 

 

The high grade of similarity in the values proves the effectiveness of the developed method. 

This outcome was accomplished by training solely on images captured of Blend 1, without 

any prior exposure to data from the other two blends. This achievement is particularly notable 

given that in Blend 1 CHP and ASA particles had similar sizes, while in Blend 2 and Blend 3 

the sizes of the two components differed more significantly. Although, as shown in Fig. 4 

(images c) and d)), the size of ASA particles in Blend 2 and 3 differed significantly, the 

particle size distribution of ASA was effectively measured in both of these blends, 

demonstrating the technology’s efficiency. This implies that the object detection model has 

good generalization ability and it does not differentiate between the particles based on only 

their size. 

                  



Our results are also significant considering that the similar method developed by Ficzere et al 

[26] was not able to recognize particles smaller than 100 µm, while our method successfully 

measured the particle size distribution of fractions that passed through a 100 µm sieve. In 

their study, the difference between the curves measured with the machine vision and the 

reference methods is visibly larger. This difference could stem from the distinction between 

bounding boxes and instance segmentation. Since our method uses instance segmentation, it 

can more accurately determine the outline of a particle, enabling more precise measurements.  

The developed technology was capable of calculating the component-based particle size 

distribution of powder blends, using real-time videos captured of the blends. This underscores 

the method’s in-line efficiency in differentiating between different components and 

determining their individual particle size distributions – capabilities not previously achieved 

by other methods. A similar technology was introduced by Péterfi et al. [34], in which particle 

size was analysed during the pellet layering process using an artificial intelligence-based 

machine vision system. The method proved effective for in-line particle size analysis; 

however, in that setting, there was no need to differentiate between two classes of particles. 

Other studies, such as [35] and [36], have introduced methods using image-analysis for 

determining particle size distribution. With these methods the particle size distributions of the 

different components are measured separately and neither method was capable of measuring 

component-based particle size distribution in powder blends.  

 

The possible limitations of the method include the lower efficacy of distinguishing 

components that show a high degree a similarity in their visual appearance. The lower limit of 

the minimal Feret diameter, at which the method is still able to adequately recognize and 

measure a particle, is unclear. Additionally, if an image contains a high density of particles, 

the method’s efficiency in differentiating individual objects may decrease due to overlapping. 

The null hypothesis, according to the p values of the two-sample Kolmogorov-Smirnov tests, 

was not rejected for either of the distributions. This implies that there is no statistically 

significant difference between the particle size distribution obtained with the real-time 

machine vision method and the reference method. The results of the Kolmogorov-Smirnov 

test are shown in Table 6. 

 

Table 6. The p and h values from the Kolmogorov-Smirnov tests.  

 

Blend 1 

(150-200 µm ASA;  

>200 µm CHP) 

Blend 2 

(63-100 µm ASA;  

>200 µm CHP) 

Blend 3 

(300-500 µm ASA;  

>200 µm CHP) 

ASA CHP ASA CHP ASA CHP 

p value from 

Kolmogorov-

Smirnov test 

0.5886 0.1625 0.3320 0.3874 0.4622 0.3481 

h value from 

Kolmogorov-

Smirnov test 

0 0 0 0 0 0 

 

3.3 Evaluation of the dissolution rates predicted with the PBM 

                  



The dissolution profiles of capsules containing the three powder blends are presented in Fig. 

7. 

 

 
Fig. 7. The average and the standard deviation values of the four parallel measurements of 

capsules containing the three powder blends at the sampling time points.  

As Fig. 7 shows, the particle size distribution and dissolution rate of the ASA correlated, with 

larger particles resulting in slower dissolution and smaller particles leading to faster 

dissolution. 

The results from blends containing ASA fractions of 63-100 µm and 300-500 µm were used to 

fit the PBM’s empirical parameter kd. The model fitting resulted in a dissolution rate 

coefficient, kd =4.6395*10
-8

. Afterwards, the particle size distribution of ASA in Blend 1 

(150-200 µm) was used as input in PBM and the model was used to predict its dissolution 

profile. This enabled the validation of the model.  

Fig. 8 shows how the fitted PBM predicted the dissolution rate of ASA in each size range, 

compared to the results obtained from the in vitro dissolution measurements. 

 
Fig. 8. The dissolution profiles predicted by the PBM method compared to the results of the 

in vitro dissolution measurements. 

                  



While n=12 data for both test and reference batches are a prerequisite for f1/f2 calculations, 

the smaller data pool we used should not be an issue, considering that this is a scientific paper. 

In the f1/f2 calculations all of the time points were included. In pharmaceutical quality control, 

only the time points preceding 85% of the maximum dissolution are considered. However, in 

our case, these values were used for a quantifiable comparison of the two curves. As 

illustrated in Fig. 8, the f1 and f2 values were within the acceptable range in all cases, 

demonstrating the model’s efficiency. The similarity of the model’s predictions and the 

measured values was lower for the blend containing ASA in the 63-100 µm size range, 

potentially indicating a limitation in predicting the dissolution rate for smaller particles. It is 

possible that smaller particles aggregate and consequently their specific surface area becomes 

smaller, leading to slower dissolution. The blend containing ASA in the 150-200 µm size 

range was used for validation. In that case both f1 and f2 values confirm the high efficiency of 

the PBM. It underscores the model’s ability to predict the dissolution rate of the API using 

real-time particle size distribution data obtained with the novel real-time machine vision 

method. A paper by Kevin C. Johnson [37] discusses and compares different approaches to 

predicting dissolution based on particle size distribution. This demonstrates that there are 

existing methods capable of predicting dissolution profiles based on particle size distribution. 

Our work represents a step forward, as it combines an effective technology for determining 

component-based particle size distribution in powder-blends, with a model that uses the 

measured distribution to predict the dissolution profile of the API. Although it should be 

noted that the PBM, used for the mathematical description of dissolution profiles, can only be 

applied if dissolution is solely influenced by the API characteristics (e.g. particle size and 

solubility). Zaborenko et al. [38] describes two types of approaches to predictive dissolution 

modeling, first-principles approaches and empirical approaches. First-principles (physical) 

models predict drug dissolution based on fundamental physical and chemical properties, even 

before experimental testing. Empirical models use statistical and data-driven methods, such as 

linear regression and chemometric techniques, to predict dissolution based on formulation and 

process data. Based on this description, our model is a first-principles model. Such models are 

rarely integrated with real-time sensors to predict product quality. Our method is similar to the 

one outlined by Horkovics-Kovats et al. [39], which predicts dissolution based on data 

obtained using a PAT sensor - an approach that has yet to be extensively described in the 

literature. 

Conclusion 

This paper presented a novel PAT system in which machine vision combined with artificial 

intelligence was used to determine the component-based particle size distribution of 

pharmaceutical powder blends using videos captured by a digital camera, and to predict the 

dissolution rate of these blends. The method proved effective in recognizing particles, 

distinguishing between two components, and calculating the components’ particle size 

distributions individually. For this, real-time videos were used, underscoring the in-line 

applicability of the method. Based on the determined particle size distributions of the ASA 

fractions, the dissolution rates were effectively predicted with a PBM. 

Our method could be applied to multi-component blends, enhancing its versatility of use. 

Although similar-looking components may be a limitation for the method, with the 

implementation of techniques such as UV illumination, components that appear similar under 

visible light could be distinguishable. The component-based recognition allows the method to 

be applied in API content determination, which, similarly to particle size analysis, could 

                  



significantly contribute to advancements in pharmaceutical quality assurance. If applied on an 

industrial scale, the use of high-performance computers could significantly increase the 

number of images the method can evaluate (100-150 fps) and reduce the time needed for the 

training of the model, enhancing its speed and effectiveness in real-time measurements. Since 

powder blends are usually a precursor in pharmaceutical production, the method’s ability to 

measure component-based particle size distribution can be applied not only in capsule 

formulations but also in the production of granules and tablets. In the latter scenarios, the 

method could be a way of evaluating intermediate products and it could provide vital 

information about the expected quality of the end product. For instance, knowing the particle 

size of API in the powder that will be tableted can enable the prediction of tablet quality.  
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