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Maximizing oral bioavailability of drug candidates represents a challenge in the pharmaceutical industry.
In recent years, there has been an increase in the use of amorphous solid dispersions (ASDs) to address
this issue, where a growing number of solid dispersion formulations have been introduced to the market.
However, an increase in solubility or dissolution rate through ASD does not always result in sufficient
improvement of oral absorption because solubility limitations may still exist at high doses. Chemical
modification in the form of a prodrug may offer an alternative approach for these cases. Although
prodrugs have been primarily used to improve membrane permeability, examples are available in which
prodrugs have been used to increase drug solubility beyond what can be achieved via formulation ap-
proaches. In this mini review, the role of ASDs and prodrugs as 2 complementary approaches in
improving oral bioavailability of drug candidates is discussed. We discuss the fundamental principles of
absorption and bioavailability, and review available literature on both solid dispersions and prodrugs,
providing a summary of their use and examples of successful applications, and cover some of the bio-
pharmaceutics evaluation aspects for these approaches.

© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Introductiondthe Pursuit for High Oral Bioavailability

The oral route of administration of a drug is typically preferred
due to the convenience of self-administration, ease of handling of
the dosage form by the patient, and lower cost of the final drug
product. In a drug discovery setting, oral bioavailability (F) is
perhaps the most commonly used pharmacokinetic measure of
drug candidate suitability for oral administration. The oral
bioavailability of a drug is defined as the fraction of an oral dose of
the drug that reaches the systemic circulation.1 High oral
bioavailability is important to ensure sufficient therapeutic levels
after ingestion of an oral dosage form within acceptable dose
ranges, thus avoiding potential side-effects with higher doses, and
to reduce both between subject and within subject plasma con-
centration variability. It is often used to optimize structure-activity
relationships of the molecule and has led to development of drug-
likeness criteria that are commonly used in early drug discovery.2,3
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Numerous publications have discussed efforts toward
improving oral bioavailability both in academic and industrial
settings. One illustrative case is that of saquinavir, a potent protease
inhibitor with a minimum effective concentration of 100 ng/mL
that requires a high pill burden of 600 mg dosed 3 times daily.
Saquinavir's low human bioavailability (4%) from the original hard
gelatin capsule formulation was attributed to a combination of
extensive presystemic metabolism (cytochrome P450 3A4 medi-
ated) and incomplete absorption, resulting in high plasma vari-
ability and lack of response in many patients.4 To improve oral
bioavailability and systemic levels of saquinavir, Hoffman-La Roche
introduced Fortovase®, a reformulated soft gel capsule formulation
containing vitamin E TPGS and ritonavir (a cytochrome P450 3A4
inhibitor) that delivered a 3-fold improvement in oral bioavail-
ability. Low bioavailability can also result in high intersubject
variability, a subject of the work by Hellriegel et al.,5 where an in-
verse relationship was demonstrated between absolute oral
bioavailability and intersubject variability, implying high variability
for drugs with low oral bioavailability. For example, high pharma-
cokinetic variability (75% coefficient of variation) and low
bioavailability (8%) limits oral therapeutic use of docetaxel, but
coadministrationwith cyclosporine improved oral bioavailability to
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circa 90% and also reduced variability in systemic concentration.6

And finally, the erratic oral bioavailability of methotrexate (28%-
94%) in the management of rheumatoid arthritis led to the
development of a therapeutically preferred but less convenient
subcutaneous parenteral formulation.7

As mentioned previously, the drivers to achieve high oral
bioavailability are self-evident and well documented. Assuming a
drug is stable in the gastrointestinal fluids, oral bioavailability is
dependent on both fraction absorbed (Fa), that is, the percent of
drug that crosses from the lumen in the intestinal wall and first-
pass metabolism in the intestinal wall or the liver. However, the
first-pass metabolism may be altered by chemical modification or
coadministration of inhibitors, such as the case of saquinavir or
ritonavir highlighted previously. For formulation and bio-
pharmaceutics scientists, the focus is typically on maximizing in-
testinal absorption (Fa). Fa is strongly governed by both
pharmaceutical factors (drug solubility, dissolution rate, release
rate from the formulation, intestinal permeation, and stability in
gastrointestinal [GI] tract) as well as physiological factors (trans-
porters, GI motility, fluid volume, and disease state). This interplay
between compound physicochemical properties, drug product
properties, and intestinal physiology eventually dictates the suc-
cess in oral delivery of a new chemical entity. Only 30%-35% of the
top 200 immediate release orally administered drugs in the United
States, United Kingdom, Spain, and Japan markets are classified as
Biopharmaceutics Classification System (BCS) I (highly soluble and/
or highly permeable) compounds, meaning it is likely that there are
no physicochemical and/or formulation limitations to their ab-
sorption. In addition, poor aqueous solubility is rapidly becoming
the leading hurdle for formulation scientists working on oral de-
livery of drug compounds.8 It has been suggested that up to 90% of
new chemical entities would be categorized as BCS class II or IV
compounds.9 Therefore, there is a clear need for adoption of stra-
tegies that would overcome these absorption limitations.

Salt formation, active pharmaceutical ingredient (API) particle
size reduction (traditionally to micronized and more recently
nanosized range), use of lipid vehicles and cosolvents in the form of
liquid-filled capsules, complexation (e.g., cyclodextrins), and more
recently amorphous solid dispersions (ASDs) are used as formula-
tion solutions to improve the solubilization of compounds in the
gastrointestinal tract and thus subsequently improve their oral
Table 1
Select Orally Administered Amorphous Solid Dispersions and Prodrugs Approved in the

Drug or Prodrug (Proprietary Name) Compa

Ritonavir/lopinavir (Kaletra®) Abbott
Lisdexamfetamine dimesylate (Vynase®) New Ri
Etravirine (Intelence®) Janssen
Fesoterodine fumarate (Toviaz®) Pfizer (
Prasugrel (Effient®) Eli Lilly
Everolimus (Zortress®) Novarti
Ritonavir (Norvir®) Abbott
Itraconazole (Onmel®) Stiefel (
Dabigatran etexilate (Pradaxa®) Boehrin
Vemurafenib (Zelboraf®) Roche (
Telaprevir (Incivek®) Vertex
Gabapentin enacarbil (Horizant®) Xenopo
Azilsartan medoxomil (Edarbi®) Takeda
Ivacaftor (Kalydeco®) Vertex
Posaconazole (Noxafil®) Merck
Tacrolimus (Astagraf XL®) Astellas
Dimethyl fumarate (Tecfidera®) Biogen
Sofusbuvir (Sovaldi®) Gilead
Tedizolid phosphate (Sivextro®) Cubist (
Suvorexant (Belsomra®) Merck
Ombitasvir/paritaprevir/ritonavir/ dasabuvir (Veikira Pak™) Abbvie
Ledipasvir/sofosbuvir (Harvoni®) Gilead
Isavuconazolium sulfate (Cresemba®) Astellas
bioavailability. Prodrugs have also been similarly used to improve
both the permeability and the solubility of orally administered
compounds. In this mini review, we focus on discussing what can
be considered as divergent but complementary approaches to the
oral absorption and/or bioavailability challenge: the use of pro-
drugs or ASDs. Among the different formulation technologies, we
focus on ASDs on account of the recent increase in their uptake as a
formulation solution, as evidenced by the appearance of several
ASD products in themarket in the last decade (Table 1).We contrast
this formulation approach to that of the chemical modification
approach via prodrug strategy, with approved products also listed
in Table 1.

Oral Absorption and Oral Bioavailabilitydin the Context of
Formulation Development

Although it is common to use the term bioavailability to
describe formulation performance of orally administered drugs, it is
important to distinguish between absorption and bioavailability
when it comes down to understanding the formulation limits. This
distinction is important especially in the discovery space when
drug discovery teams are looking to optimize the compound
structure-activity and related physicochemical properties.

After ingestion of an immediate-release solid oral dosage form,
disintegration or dispersion of the drug product and dissolution of
the API must occur before absorption can take place. It is commonly
accepted that the intrinsic dissolution rate of an API is proportional
to its solubility.10-13 The BCS allows for categorization of com-
pounds to reflect whether solubility is a limiting factor to their
absorption. For low solubility BCS II and IV drugs, oral formulation
technologies such as ASDs discussed within this review are
designed to maximize the availability of the API in the dissolved
state in the lumen. Alternatively, chemical modifications of the
drugs in the form of their prodrugs also can be used for the same
end purpose of increased solubility, although examples of such
application are less common and prodrug application has been
mostly focused on improving intestinal permeability of ionizable
and/or highly polar compounds. Whether this increase in solubility
results in an increased absorption or bioavailability depends not
only on the formulation but also on physicochemical properties and
the metabolic profile of the specific compound. It is important for
Last Decade

ny (Year of Approval) Bioavailability Enhancement Technology

(2005) ASD
ver (2007) Prodrug
(2008) ASD
2008) Prodrug
(2009) Prodrug
s (2010) ASD
(2010) ASD
2010) ASD
ger Ingelheim (2010) Prodrug
2011) ASD
(2011) ASD
rt (2011) Prodrug
(2011) Prodrug
(2012) ASD
(2013) ASD
(2013) ASD
IDEC (2013) Prodrug
(2013) Prodrug
2014) Prodrug
(2014) ASD
(2014) ASD
(2014) ASD/Prodrug
(2015) Prodrug
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drug discovery and development scientists to keep in mind that a
highly solubilizing formulation may still not lead to sufficient
bioavailability if the limitation to bioavailability is not only the
availability of drug presented in the lumen. Two subsequent steps,
the permeation of the compound into the enterocytes and first-
pass metabolism in the intestine and the liver will dictate the
final oral bioavailability of the compound.

Although the benefits of high oral bioavailability are well
documented, it should also be acknowledged that compounds with
low bioavailability may still be developed as successful commercial
products as long as sufficient plasma levels are achieved at
acceptable dose ranges. For example, bisphosphonates such as
alendronate have extremely low bioavailability due to ionization-
limiting intestinal permeability; alendronate bioavailability has
been reported at 0.76% across a 5-80 mg dose.14 In some cases, the
exact mechanism for the low bioavailability may not be clear, as in
the case of aliskiren, where the low oral bioavailability of 2.6% may
be limited by efflux transporters.15 Drugs where the liver is the site
of action (e.g., statins) or those with high clearance also may show
low bioavailability despite being formulated to achieve high ab-
sorption. For example, the oral bioavailability of atorvastatin is
estimated at circa 14% although oral absorption is considered likely
complete.16 Therefore, the use of oral bioavailability (F) as the
measuring point of formulation success is not sufficient, and an
estimation of Fa is a more appropriate way to understand the per-
formance of a dosage form. We acknowledge that in certain cases,
the extent of first-pass metabolism is related to the rate and extent
of absorption if metabolic processes are saturable. In that case,
formulation, absorption, and first-pass metabolism connections
may be more complex. However, a detailed discussion around this
is beyond the scope of this mini review. With the advancement in
preclinical in vitro and computation tools including physiologically
based pharmacokinetic modeling,17,18 discovery scientists are in a
better position nowadays to decouple the contribution of different
factors to the overall pharmacokinetic profile of a compound, and
can better identify whether or not the root cause of low bioavail-
ability can be solved using formulation approaches.

Increasing Bioavailability Via ASDs

ASDs rely on the higher apparent solubility of the amorphous
form of an API relative to its crystalline phase 19-21 to increase the
dissolution rate in the gastrointestinal tract, which in turn will lead
to increased rate and extent of absorption. Successful use of ASD as
a bioavailability-increasing formulation approach has been
demonstrated for both BCS II compounds such as posaconazole,22

itraconazole,23 and fenofibrate,24 as well as BCS IV compounds
such as ritonavir,25 vemurafenib,26 and furosemide.27 Although the
potential benefits of the amorphous form of an API in improving
intestinal absorption have been discussed for several decades, only
in the last decade a significant number of ASD-based pharmaceu-
tical products have appeared in the market (Table 1). The delay
between proof-of-principle of this approach to the introduction of
commercial products may be caused, in part, by perceived or
observed risks around stability and manufacturability.28 However,
the continuous increase in the number of BCS II and IV compounds
in the development pipelines across pharmaceutical companies,
coupled with improved biopharmaceutical understanding, char-
acterization techniques, and formulation or manufacturing pro-
cesses on ASD, has led to their increased use.28-30

The primary concern around use of ASD has been around the
stability of the amorphous phase, both chemically and physically.
Because the amorphous form of the API is at a higher energy state
and possesses greater molecular mobility compared with its crys-
talline counterparts,31 the amorphous form is typically but not
always more chemically reactive, leading to faster degradation ki-
netics,32 for example, as shown for beta-lactam antibiotics33 and
cefoxitin sodium.34 Even when sufficient chemical stability is
achieved, recrystallization in the solid form35,36 has also been a
concern. The conversion of the amorphous form of an API to its
corresponding crystalline forms is governed by thermody-
namic37,38 as well as kinetic factors.31,39-42 Different strategies have
been evaluated to reduce this risk. The most common strategy is
mixing a polymer at themolecular level, formingwhat is referred to
as an amorphous solid solution. Because of larger molecular size,
polymers have slower coordinated molecular motions, which are
reflected in higher glass transition temperatures (Tgs). When such
polymers are intimately mixed with the API, the Tgs of the mixed
systems will be increased in proportion to the fraction of polymer,
indicating reduced coordinated molecular motions. This was
exhibited, for example, with felodipine-polyvinylpyrrolidone
(PVP),43 sucrose-PVP, and sucrose-polyvinylpyrrolidone-co-vinyl
acetate systems.44 The reduction in coordinated molecular motions
effect is enhanced in the presence of molecular coupling between
the polymer and the API.45,46 In addition to the coordinated global
molecular motions (also referred to as a-relaxation motions),
molecules also experience local molecular motions (referred to as
b-relaxation motions). Recent advances show that b-relaxation
motions are better indicators of the physical stability of amorphous
APIs, especially below their Tgs.40,47,48 Other factors such as misci-
bility and pairwise interactions also have to be considered in
designing mixed API-polymer systems.48-50

Assuming stability concerns can be addressed, the next impor-
tant consideration is the selection of a formulation composition
that would result in the desired bioavailability. Although the high
amorphous solubility of the API is favorable for faster and more
complete absorption, it is important that the formulation compo-
sition facilitates this by ensuring rapid release of the API. Because
BCS II and IV compounds that would be formulated as ASD have
hydrophobic characteristics, the inclusion of a surfactant such as
sodium lauryl sulfate or vitamin E d-a-tocopheryl polyethylene
glycol 1000 succinate can enhance the API release rate during
dissolution.30,51 The selection of the polymer system can also
impact the API release rate by achieving the appropriate balance
between disintegration of the dosage form versus dissolution of the
API. The use of polymers with pH-dependent solubility such as
hypromellose acetate succinate (HPMCAS) may be advantageous to
avoid premature gel layer formation, which can effectively slow
down the rate of API release by inhibiting rapid disintegration.52

However, the final release kinetics of the API are not solely
dictated by the pH-dependency of the polymer, and the gelling
effect should not be confused with a true delay in API release, such
as in the case of enteric-coated delayed-release formulations; most
HPMCAS formulations on the market retain immediate-release
product characteristics. The initial dispersion (or disintegration)
of the tablet can also be the rate-limiting step in the absorption
process, if dissolution of the primary ASD particles is relatively fast.
This disintegration time may depend not only on the polymer
selected but also on tablet properties such as tablet tensile strength,
as demonstrated for the ASD of suvorexant.53

On dissolution, preventing rapid API crystallization could be
considered as the next critical step in achieving bioavailability
enhancement.54,55 Crystallization can occur from the supersatu-
rated solution or through solid-solid conversion.56,57 The selection
of the appropriate surfactant and polymer systems for the specific
API can greatly aid in slowing down the crystallization rate. Konno
et al.58 reported that HPMCAS was more effective than poly(vinyl
pyrrolidone) at maintaining the supersaturation of felodipine dur-
ing dissolution, while Trasi et al.59 found that poly(vinyl pyrroli-
done) and hypromellose were effective inhibitors of the
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desupersaturation of acetaminophen. In another study, Chen et al.
showed that the use of sodium dodecyl sulfate and Polysorbate 80
promoted the crystallization of celecoxib from ASD suspensions,
whereas sodium taurocholate and Triton X-100 inhibited its crys-
tallization.60 For systems with low tendency of crystallization such
as telaprevir, the formation of a wet glassy colloidal state on
dispersion into aqueous media has also been reported.61 Recent
advances suggest that in addition to the maintenance of supersat-
uration, the formation of nanoparticulate species can be critical to
the bioavailability enhancement performance of amorphous-based
formulations, for example, as shown for ritonavir and ABT-102.62-65

However, it should be acknowledged that direct translation of
in vitro observations to in vivo, especially as related to precipitation,
is challenging, and the significance of in vitro observations may not
be always clear.

ASDs represent a very active area of research. Since 2012, more
than 600 articles concerning ASDs can be found through Scopus
and Web of Science™ research websites. In Table 2, we have
summarized some of the newest directions of research around
ASDs, both on building the fundamental understanding of their
bioperformance as well as expanding their utility in delivery of BCS
II and IV molecules.

It is clear that a continuous understanding of behavior and
performance of ASDs has allowed for a shift in the approach for
designing these systems from empirical trials of API with different
polymers to achieve high amorphous solubility and high Tg, tomore
elaborate formulation development paradigms encompassing the
selection of the right polymer(s), surfactant(s), or other functional
excipients. This increased understanding can be leveraged to
design formulations or polymers specifically aimed at intended
solid state properties and dissolution rate characteristics to achieve
desirable pharmacokinetic profiles.
Table 2
Select Examples of Directions for Active Research in ASD Formulations and Fundamenta

Research Area Motivation Select Examples a

Formulations with
sustained-release (SR)
profiles for BCS II/IV
compounds

BCS II and IV compounds, at higher
doses, represent a challenge for
delivery as SR formulations due to
low solubility and small volume of
liquid in the lower GI that could
lead to low bioavailability

Examples of susta
Eudragit® E100,6

sodium in Compr
emulsifying solid
hypromellose con
pentaacetic acid w

New polymers or new
polymer combinations

Improve stability or further tailor
release kinetics and/or better
maintain supersaturation with the
goal to improve absorption or
bioavailability

Combinations of
bioavailability of
systems exhibited
solid dispersions
The chemistry sp
groups,63 while c
propionate,75 car
been synthesized
improved physico

Formulations with lipidic
excipients

Looking for a synergistic effect from
lipidic excipients to increase
solubility and/or permeability

Sodium caprate w
added to increase

Addition of other agents Achieve stability or bioperformance
benefits by means other than
polymer/surfactant changes

Incorporation of
added to enhance
The formation of
potentials of bile
studied.60,83 The
dissolution has b
solubility.85

Studying mechanism of
absorption

Understand critical parameters to
absorption to improve formulation
design, establishment of in vitroein
vivo relationships and in vitroein
vivo correlations

The impact of sup
permeability87 ar
place in the “Biop

PVPVA, polyvinylpyrrolidone-co-vinyl acetate.
Prodrugs for Increasing Permeability and Solubility

Unlike the ASD strategy presented in the preceding section
which focuses on a formulation approach to increase oral
bioavailability for BCS II and IV compounds, the prodrug strategy is
considered a “chemistry” approach because a transient covalent
modification is made on the drug molecule to directly influence its
pharmaceutical and/or pharmacokinetic properties. Prodrugs,
whether pursued prospectively as a new chemical entity or pro-
gressed retrospectively as in an effort to improve an existing
product (e.g., life-cycle management), have resulted in marketed
products which has validated their design and the concept.88-90

Prodrugs, parallel to formulation approaches, have been
explored where oral absorption and bioavailability of drug candi-
dates was suboptimal. In an role beyond the solubility and disso-
lution rate improvement via ASDs, prodrugs have been designed to
increase both solubility as well as permeability of highly polar and
ionizable water-soluble drugs, where intestinal membrane
permeation may limit oral absorption. The prodrug is designed to
mask the charge or increase the lipophilicity of the molecule,
leading to more favorable passive membrane permeation, or to
provide chemical modifications that would facilitate uptake by
intestinal transporters. In the former cases, covalently-linked
lipophilic carboxylate and/or phosphonate ester functional groups
are used to increase passive diffusion. Once the parent drug is
absorbed, the prodrug is rapidly cleaved by an enzyme to release
the parent drug. Thus, instead of BCS II and IV compounds, this
prodrug application typically focuses on BCS III molecules, as
exemplified by adefovir, enalaprilat, and gabapentin. In some cases,
the prodrug may result in a change of BCS classification, as is the
case for gabapentin (BCS III) where esterification resulted in a BCS II
prodrug (gabapentin enacarbil). Another example of this approach
l Understanding of Their Bioperformance

nd References

ined-release ASDs include polyelectrolyte-drug complex of enalapril maleate and
6 tanshinone in glyceryl monostearate-PEO system,67 controlled-release diclofenac
itol® 888 ATO (glyceryl behenate),68 Eudragit® E100, or Eudragit® S100,69 self-
dispersion of isradipine with poloxamer 407 which was formulated into
trolled-release tablet,70 and penta-ethyl ester prodrug of diethylenetriamine
ith blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and a-tocopherol.71

HPMC-PVP and HPMC-PVPVA led to better physical stability, solubility and
a BCS II drug with very low Tg,72 while phase separated Eudragit® EPO and PVPVA
better release and stability of felodipine.73 Simvastatin microparticles containing

in Eudragit® E 100 and poly(3-hydroxybutyrate) exhibited very fast dissolution.74

ace of HPMCAS is probed by varying the ratios of acetyl and succinoyl substitution
ompletely novel cellulose-derived polymers such as cellulose acetate adipate
boxymethyl cellulose acetate butyrate,76 and u-carboxyesters derivatives77 have
to provide better maintenance of super-saturation, increased absorption, or
chemical stability.
as included as absorption enhancer for berberine,78 while Gelucire® 50/15 was
the solubility of ursolic acid.79

citric acid provided microenvironmental pH modification,80 while alkalizer was
the dissolution rate in rebamipide/sodium alginate/sodium carbonate system.81

aminoclay complex with telmisartan led to improved AUC and Cmax,82 while the
salts to prevent API crystallization and enhance absorption have also been
use of inorganic salts as kosmotropic agents to disrupt gel strength and promote
een investigated,84 while API complexation with weak acids led to increased

er-saturation to membrane transport86 and increasing solubility without reducing
e areas of active research. Further discussion on bioperformance aspects takes
harmaceutics Assessment of Formulation” section of this manuscript.



Figure 1. Chemical structure of dabigatran etexilate.
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is the case of orally administered anticoagulant dabigatran. The
presence of zwitterionic charge and polarity (log P �2.4) from the
amidinium and carboxylate groups resulted in negligible oral
bioavailability for dabigatran.91 In designing dabigatran etexilate, a
double prodrug, the amidinium group was masked as a carbamate
whereas the carboxylate was derivatized to an ester (see Fig. 1). By
doing so, the absolute bioavailability of dabigatran after oral
administration of its prodrug dabigatran etexilate was improved
significantly to approximately 7%, and dabigatran etexilate is
considered a BCS II compound.

In the case of membrane transporter targeted prodrugs, a pro-
moiety can be incorporated into polar and/or charged drugs to
target specific intestinal membrane carrier-mediated uptake
transporters. For example, the intestinal membrane permeation of
valganciclovir was mediated by dipeptide and tripeptide trans-
porters (hPEPT1) that are distributed widely across the small in-
testine. As a result, a 3-10 fold improvement in intestinal
permeation rate was observed in the case of valganciclovir, the
L-valine ester prodrug of ganciclovir. Although ganciclovir has low
and variable oral bioavailability (7%), its prodrug offers an oral
bioavailability of circa 60% in fed humans due to improved intes-
tinal permeation. Both ganciclovir and valganciclovir are classified
as BCS III compounds.

Modulation of permeability via orally administered prodrugs has
led to many successful marketed products. Huttunen et al.92 esti-
mated that up to 10% of all marketed medicines can be classified as
prodrugs. Table 3 lists examples of such prodrugs, with a brief
rationale or pharmacokinetic advantage in pursuing the prodrug
methodology. The examples are intended to highlight different
chemical modifications and the impact on bioavailability; covering
all the prodrug aspects is not possible as part of thismini review, and
the readers are referred to extensively available literature. In
reviewing the data in Table 3 for each of the prodrugs, it quickly
became apparent that the degree of bioavailability improvement
varies widely between compounds. For example, the bioavailability
of dabigatran even after the prodrug modification is only 3%-7%,
whereas 60% absorption is obtained for enalapril compared to 3% for
enalaprilat. Thus absolute bioavailability alone is not the sole
determinant of success for a prodrug strategy. As long as the prodrug
modification allows for obtaining sufficient plasma concentration
levels, they represent a possible approach to enabling oral admin-
istration of a difficult to deliver parent drug. It is also apparent that
the final BCS classification spans all 4 BCS classes, again confirming
that there is no one-size-fits-all rule in setting the criteria for a
successful prodrug strategy on BCS III compounds.

Prodrugs have been successfully used to improve both solubility
and permeability of the parent compounds. Generally speaking, it
would appear that a formulation approach is preferred to the
chemical modification to address solubility limitations. Neverthe-
less, some examples are available which demonstrate the applica-
tion of a prodrug strategy to parent drugs that show either a
dissolution rate or solubility-limited absorption. Incorporation of a
di-ionized phosphate promoiety is one of the classic examples in
prodrug chemistry to improve the solubility of orally administered
poorly water-soluble drugs. Some other examples are listed in
Table 4, such as etoposide, amprenavir, and so forth. One contem-
porary prodrug example targeting increased solubility is
isavuconazonium sulfate, a water-soluble triazolium salt of the
azole antifungal isavuconazole, which was approved in March 2015
for the treatment of invasive aspergillosis and mucormycosis in
adults (see Fig. 2). The high lipophilicity is a characteristic of the
azole antifungals and is required for therapeutic efficacy, which in
turn reduces aqueous solubility. Isavuconazonium sulfate is
designed as a substrate of butylcholinesterases, which on hydro-
lysis of the glycine ester, initiates a rapid intramolecular
cyclization-elimination reaction that concurrently releases isavu-
conazole and 2 inactive cleavage by-products (see Fig. 3).133 The
prodrug is formulated for both oral (as capsules) and intravenous
(lyophilized sterile powder in vial) administration. The prodrug
chemistry offers dosing flexibility (intravenous or oral) as well as an
injectable cyclodextrin-free intravenous formulation, thereby
removing concerns of nephrotoxicity due to the use of cyclodex-
trins as solubilizing agents, as is the case with voriconazole.134 Of
interest to note is the fact that isavuconazonium sulfate is the first
commercially successful prodrug obtained by derivatizing a triazole
functional group on the parent drug and reinforces the importance
of critically selecting a suitable functional group for derivatization.

From the typical solubility improvement seen with prodrugs in
the relatively limited cases applied, it is fair to conclude that the
solubility enhancement is generally higher compared with what
can be achieved by formulation approaches. However, it should be
acknowledged that chemical modification is not always readily
feasible and does result in a new chemical entity that may require
additional studies and qualifications. The premise for prodrug
chemistry, perhaps obvious, is that the drug has a functional group
that can be suitably derivatized with the promoiety. The choice of
promoiety as well as the site of derivatization is important with
respect to achieving adequate product shelf-life (chemical stabil-
ity), as well as rapid in vivo bioconversion to liberate parent drug.

Whereas examples in Tables 3 and 4 highlight only one prodrug
for oral bioavailability enhancement of each parent drug, it is
acknowledged that developing prodrugs is an iterative, resource-
intensive process requiring a multidisciplinary team of scientists to
design the appropriate prodrug. Once conceptualized, in vitro and
in vivo assessment of the prodrug candidates is essential so as to
ensure the limitations of the parent drug have been addressed and
intended results are achieved. Selection of a promoiety is also
critical for bioavailability enhancement via prodrug, which include
aspects such as ease of synthesis and site of linking to parent drug,
metabolism site, and by-products of the promoiety, choice of
counterion (if applicable), and chemical stability to afford desired
shelf-life of the formulation.

Biopharmaceutics Assessment of Oral
AbsorptiondComparison Between the 2 Formulation
Techniques and Preclinical Evaluation

Both bioavailability enhancement approaches highlighted pre-
viously have clear benefits in increasing the oral bioavailability of a
poorly soluble API. In the case of ASD systems, it has been suggested
that this approach may be more favorable relative to other ap-
proaches such as lipid or cosolvent formulations or complexation
agents, as the ASD approach promotes true higher concentration of
“free drug” in the lumen. Because only “free drug” (i.e., drug in true
solution in aqueous environment of the gastrointestinal tract) can
permeate through the enterocyte membrane, a formulation
approach that promotes true supersaturation may be more ad-
vantageous; this has been demonstrated through in vitro and in
silico models.87,135 However, it should be acknowledged that the
in vivo absorption process is more complex and more dynamic than
what can be captured in vitro, which may result in different be-
haviors from what is suggested by in vitro measurements.



Table 3
Select Orally Administered Prodrugs for Permeation Enhancement of Therapeutically Active Drugs

Prodrug In Vivo Bioconversion to
Parent Drug/Active Metabolite

Rationale and/or Benefit From a Prodrug

Adefovir dipivoxil Adefovir The oral bioavailability of adefovir is �10% primarily due to high polarity. Esterification of the phosphonic
acid moiety in adefovir dipivoxil improves adefovir bioavailability to 59% in humans.20,93,94 Both parent and
prodrug are BCS class III compounds.

Azilsartan medoxomil Azilsartan A bioisostere replacement of the acidic tetrazole and esterification of the polar carboxylic group was done to
improve oral bioavailability. Simple alkyl esters were precluded because they showed slow bioconversion in
rat plasma and liver homogenate, resulting in selection of the double ester promoiety, a learning leveraged
from prodrugs of b-lactam antibiotics.95 The prodrug is hydrolyzed to azilsartan by esterases in the
gastrointestinal tract and/or during absorption with a peak plasma concentration occurring within 1.5-3.0 h,
an absolute oral bioavailability of 60% in humans, and no effect of food on bioavailability.96,97 Azilsartan
medoxomil is a BCS IV compound.

Bacampicillin Ampicillin The zwitterionic charge on ampicillin at absorption-relevant pH limits its intestinal permeation and
absorption. By esterification, the polarity of the prodrug is reduced, resulting in improved oral bioavailability
(86%) in comparison to dosing ampicillin (62%) per se.98 Although ampicillin would be categorized as a BCS III
compound, bacampicillin appears to be a BCS II compound.

Cefditoren pivoxil Cefditoren Esterification of the polar carboxyl group increases lipophilicity, leading to improved intestinal permeation
of cefditoren pivoxil. The absolute bioavailability of cefditoren is 16% and 2.5% when cefditoren pivoxil is
taken with low-fat and high-fat meals, respectively.99,100 Cefditoren pivoxil is categorized as a
Biopharmaceutics Drug Disposition Classification System IV compound.

Dabigatran etexilate Dabigatran Dabigatran etexilate was designed to mask the zwitterionic charge and polarity (log P �2.4) on dabigatran,
which resulted in negligible oral bioavailability. To increase lipophilicity, the 2 polar groups, amidinium, and
carboxylate, were derivatized by carbamic acid and carboxylic acid ester, respectively. As a result, after oral
administration of the prodrug, rapid and complete deesterification resulted in the formation of dabigatran,
with �7% absolute oral bioavailability.91,101 Dabigatran etexilate is considered a BCS II compound.

Dimethyl fumarate Monomethyl fumarate After oral administration of the prodrug, rapid presystemic esterase-catalyzed conversion to the active
metabolite monomethyl fumarate occurs with a median Tmax of 2-2.5 h.102 The delayed-release capsule
formulation has no clinically relevant food effect; although it increases Tmax from 2 h to 5.5 h and reduces
flushing by 25%. Dimethyl fumarate is a BCS class I compound.

Enalapril Enalaprilat By masking an ionized group on enalaprilat, the extent of absorption of enalapril increases to 60% (vs. 3% for
enalaprilat), resulting in a human oral bioavailability of 36%-44% for enalaprilat independent of food.103,104

Both enalapril and enalaprilat are classified as BCS III compounds.
Fesoterodine fumarate 5-hydroxymethyl

tolterodine (5-HMT)
Nonspecific esterases rapidly and completely hydrolyze the isobutyric ester on the phenolic hydroxyl of
fesoterodine to its active metabolite, a muscarinic receptor antagonist. The absolute oral bioavailability of
5-HMT is <52%, Cmax is reached in 5 h post dosing of the extended release tablet and is unaffected by the
presence of food.105,106 Fesoterodine fumarate is a BCS class I compound.

Gabapentin enacarbil Gabapentin Gabapentin, a structural analog of the neurotransmitter gamma-aminobutyric acid (GABA), has unfavorable
human pharmacokinetics (high variability, saturation of uptake transporter at absorption site, and short
half-life) leading to less than desired therapeutic benefits.107,108 The prodrug was designed to be stable in
the gastrointestinal pHs and overcome erratic uptake by being actively transported by high-capacity
nutrient transporters (monocarboxylate transporter Type 1 [MCT-1] and the sodium-dependent
multivitamin transporter [SMVT]).109 The prodrug is rapidly deesterified to the active gabapentin primarily
in the enterocytes, with a 2-fold higher bioavailability (75%) in fed state than in fasted fed state (36.6%).110

Although gabapentin is generally considered a BCS III compound, gabapentin enacarbil is classified as a BCS II
compound.

Mycophenolate mofetil Mycophenolic acid Mycophenolic acid has variable and low oral bioavailability (<40%). In contrast, the absolute bioavailability
of mycophenolic acid in humans is 94% after oral administration of its prodrug.111,112 Mycophenolatemofetil
is a BCS II compound.

Prasugrel Pras-AM (R-138727) Prasugrel is a third-generation thienopyridine prodrug designed to have faster onset of action, increased
potency, and less variability with regard to platelet inhibitory activity.113 In humans, human
carboxylesterase (hCE-2) hydrolyzes prasugrel to a thiolactone intermediate, which then undergoes
oxidation to the active metabolite Pras-AM via intestinal and hepatic cytochrome P450 enzymes.114 The
bioavailability of prasugrel is circa 79%with plasma peak concentration of Pras-AM occurring within 30mins
after dosing.115 Prasugrel HCl is a BCS class II compound.

Tenofovir alafenamide
fumarate (TAF)

Tenofovir diphosphate As a nucleotide reverse transcriptase inhibitor, TAF was specifically synthesized to offer improved plasma
stability and reduced renal toxicity. In plasma, TAF is more stable than tenofovir disproxil fumarate (TDF)
and permeates virally infected cells intact. Intracellularly, TAF is converted to its active metabolite, tenofovir
diphosphate, by carboxylesterase 1 (CES1) within hepatitis-B virus infected hepatocytes and by cathepsin A
within HIV-infected lymphoid cells.116 The high intracellular concentration of the active metabolite due to
high plasma stability results in TAF's lower dose (25 mg), lower toxicity, and comparable efficacy in
comparison to TDF (300 mg) in the treatment of both HIV-1117 as well as chronic hepatitis B infection.118

Valganciclovir Ganciclovir The low human oral bioavailability of ganciclovir (7%) is due to high polarity (Log P ¼ �1.65) and moderate
solubility (6mg/mL, 37

�
C). The highly soluble (70mg/mL) L-valyl monoester prodrug is a substrate for PEPT1

intestinal peptide uptake transporter and rapidly converts to ganciclovir with human absolute oral
bioavailability of circa 60% in fed state.119-121 Both parent drug and prodrug are BCS III compounds.

Ximelagatran Melagatran Ximelagatran offers improved fraction absorbed due to the masking of charges, a human oral bioavailability
of 20%, which is 3-6 times higher than melagatran administration per se, reduced intersubject variability,
and no food effect.122,123

Zofenopril Zofenoprilat Once absorbed, zofenopril is rapidly (human Tmax 0.4 h) and completely deesterified to its sulfhydryl
containing active metabolite zofenoprilat. In humans, the 10-mg dose of zofenopril has an average
bioavailability of 70%.124
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Table 4
Select Orally Administered Prodrugs for Solubility Enhancement of Therapeutically Active Drugs

Prodrug In Vivo Bioconversion to
Parent Drug/Active Metabolite

Rationale and/or Benefit From a Prodrug

Etoposide
phosphate

Etoposide Nonlinear and erratic oral absorption of etoposide, presumably due to low aqueous solubility, results in highly
variable bioavailability of 40%-76%. The water-soluble phosphate prodrug is rapidly absorbed with 19% higher
bioavailability and less variability compared with oral etoposide.125,126

Fludarabine
phosphate

Fludarabine The phosphate prodrug offers improved solubility (10 mg/mL in water), dose-independent and predictable
bioavailability, low intrasubject variability, and no food effect.127,128

Fosamprenavir Amprenavir Low aqueous solubility of amprenavir (0.04 mg/mL) required high ratio of solubilizing excipients to favor intestinal
absorption (16 of the 150 mg softgel capsule per day). To improve this solubility-limited absorption, the
monocalcium phosphate ester prodrug was designed (54 mg/mL solubility, pH 3.3) which dramatically dropped
patient pill burden (4 of the 700 mg tablet per day). Oral dosing of fosamprenavir results in rapid blood levels of
amprenavir (0.25 h) with a Cmax of 1.5-2.5 h post dosing, with no effect of food on bioavailability.129

Isavuconazonium
sulfate

Isavuconazole On oral administration of the water-soluble prodrug, plasma esterases (predominantly butylcholinesterases)
hydrolyze the prodrug to generate the active azole antifungal. Human Tmax is achieved within 2-3 h; absolute oral
bioavailability is 98%, and can be administered independent of food.130

Tedizolid
phosphate

Tedizolid Phosphorylation of the 5-position hydroxymethyl adduct in the prodrug leads to an improved aqueous solubility
(>50 mg/mL), rapid bioconversion, and a human bioavailability of �90%.131,132

A.C.F. Rumondor et al. / Journal of Pharmaceutical Sciences xxx (2016) 1e11 7
Even for compounds where ASD works well, it should be an
expectation that the amorphous formulation will hit an absorption
limit dictated by the apparent aqueous solubility of the amorphous
form of the compound. The difference between apparent amor-
phous and crystalline solubility is compound dependent; while the
range varies widely, in our experience the difference in apparent
solubility is typically about 10 fold. Such an increase in apparent
solubility, although definitely beneficial, may be insufficient to
drive high absorption for a very low solubility or high-dose com-
pound. One can conceptualize this absorption limit by applying the
concept of BCS on the basis of the apparent amorphous solubility: if
even with apparent amorphous solubility the compound is classi-
fied as a BCS II/IV, absorption limitations will persist. ASDs have
also been reported to result in extensive speciation on dissolution
that results in generation of different nanosized and micron-sized
structures.63 These different species influence the apparent disso-
lution rate and apparent solubility of the compound and have
different capacities in providing drug available for absorption. Un-
derstanding the in vitro behavior of solid dispersion is an area of
active research.

Prodrugs, on the other hand, can lead to great increases in ab-
sorption by increasing aqueous solubility beyond what ASD can
offer, for example, as illustrated by fosamprenavir (54mg/mL, pH 3)
and its parent drug amprenavir (0.04mg/mL).136 Prodrugs may also
be able to address oral absorption issues from a permeability
perspective, something that formulation techniques such as ASDs
Figure 2. Chemical structure of isavuconazonium sulfate.
may not be able to accomplish. However, the chemical structure
and the availability of functional groups on the parent drug to
design its prodrug can be the limiting factors in its application. In
our experience, unless the prodrug option is considered early on
and a drug candidate is designed with the prodrug in mind, it is not
a straightforward proposition to go back and progress an existing
compound as its prodrug.

Evaluating the ability of either approach to increase absorption
and/or bioavailability in a preclinical setting is critical to their
successful application. Preclinical formulation evaluation in a
pharmaceutical industry setting typically encompasses both in vitro
assays and in vivo testing in animal models. It is common that the
screening is performed in a staged fashion: first formulations are
screened in dissolution assays before dosing the most promising
ones to preclinical models.137 In recent years there have been sig-
nificant advances in the field of dissolution including the devel-
opment and adoption of biorelevant media that has led to a
significant expansion of the role of dissolution as a formulation
screening tool past the traditional use as a quality-control release
assay.17 Traditional dissolution testing in biorelevant media is
considered generally adequate for prediction of in vivo performance
of conventional dosage forms based on crystalline API. Several
publications have shown the ability of dissolution to provide
discriminatory data on comparing factors such as particle size and
to use these data as input in PBPK type of models to forecast clinical
pharmacokinetics.18,138 However, traditional dissolution tests may
not be sufficient to fully reflect the behavior of solubilizing
formulation. For ASDs, the ability of the system to capture the su-
persaturation generated is a critical aspect of the in vitro evaluation.
As a result, methodologies that measure the ability of the formu-
lation to maintain higher solubility139,140 have been proposed as an
initial estimation of the supersaturation propensity in vivo. How-
ever, these methodologies focus on assessing the availability of the
compound in the lumen and not necessarily the availability of
compound available for absorption. To that extent, more recent
systems that simulate simultaneous dissolution and absorption
have been proposed, either in the form of biphasic dissolution or
with use of systems where dissolution is combined with an artifi-
cial membrane or a cell monolayer.141-144 These systems may pro-
vide higher likelihood for meaningful assessment of formulation
performance of supersaturating systems. But more research is still
required to fully assess the improvement in predictability and to
also allow for application of these tools in routine formulation
screening. Finally, more complex systems that also try to simulate
both the transit and absorption of the compound in the GI tract
have been developed.145 These systems, along with the dissolution



Figure 3. Suggested bioconversion pathway of the prodrug isavuconazonium sulfate.134
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and/or cell monolayer systems, may also be of interest in under-
standing behavior of prodrugs and the potential solubility and/or
permeability interplay as discussed in the literature.146,147 Although
advances in the field of biorelevant dissolution in regard to un-
derstanding the behavior of solubilization-enabling formulations
have been significant, the predictability of the tools across com-
pounds is still questionable. This has led to cross-industry efforts to
try to further validate these tools and understand their applications
and/or limitations such as the Oral Biopharmaceutics Tools Inno-
vative Medicines Initiative.148

However, the ultimate test to judge the success of formulations
is in vivo testing. The application of animal models is common in
the pharmaceutical development paradigm. The use of animal
models in most cases is driven by compound-specific properties
(including understanding of pharmacokinetics and safety) and/or
practical considerations (e.g., it is not possible to test clinical for-
mulations such as tablets in rodents)137 and must be done on a
case-by-case basis. In the case of prodrugs, an additional consid-
eration may be the selection of a species where prodrug conversion
may be more similar to human. This was highlighted in a recent
study by Borde et al.,149 where the authors suggested that dog in-
testinal fluid may be a reasonable surrogate for human intestinal
fluid in terms of understanding the stability of 3 prodrugs, although
quantitative differences were still apparent. Thus, an a priori
knowledge of such information especially in a quantitative fashion
may not be possible. At the end, for both prodrugs and ASDs, the
ultimate decision is influenced by clinical relative bioavailability
studies.

Concluding Remarks

Oral administration of drugs in humans will remain a preferable
dosing option due to convenience and compliance. Progress made
over the years with the development of in silico, in vitro tools, and
in vivo data has enabled a better understanding of molecular
properties that affect bioavailability and to identify the rate-
limiting steps in the oral absorption cascade. This in turn has led to
a more rational selection of drug candidate compounds around
their pharmaceutical properties, including the use of prodrugs as a
means to improve primarily compound permeability, and to a
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lesser extent solubility, and implementation of a variety of
formulation technologies such as ASDs that improve the in vivo
solubilization and dissolution rate of the drug candidate com-
pound. The concepts of ASDs and prodrugs are not new, but at least
for the former there is a clear increase in use in the last decade, as
also judged by the application in marketed products. The 2 ap-
proaches have been discussed in this review as divergent but
complementary approaches to achieve the bioavailability goals for
BCS II, III, and IV drug candidates. Future developments in the field
of ASDs may involve the use of novel excipients and polymers or
combinations of polymers and/or other excipients that coupled
with the continuous advancement in mechanistic understanding of
absorption can drive the use of the technology toward further
modulation of pharmacokinetic profiles and not just an increase in
bioavailability. With prodrugs, the focus is on improved synthetic
methodologies for promoiety incorporation, chemistry of the
selected promoiety and its counterion per se, and designing pro-
drugs that are substrates for specific disease tissue or organ en-
zymes in humans to cause localized bioconversion or drug release.
Regardless of the selected approach for a new drug candidate, the
complexity of the absorption process and the underlying challenges
with the biopharmaceutics evaluation mandate a collaboration
between chemists, formulators, and biopharmaceutics scientists to
lead to a successful implementation of the chosen strategy in the
different pharmaceutical discovery and subsequently development
phases.
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