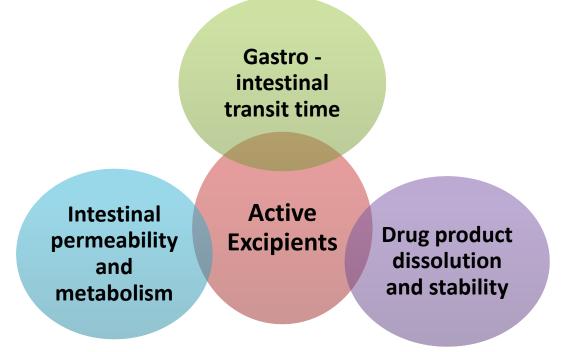
BCS Class 3 Biowaivers and Transporter Considerations

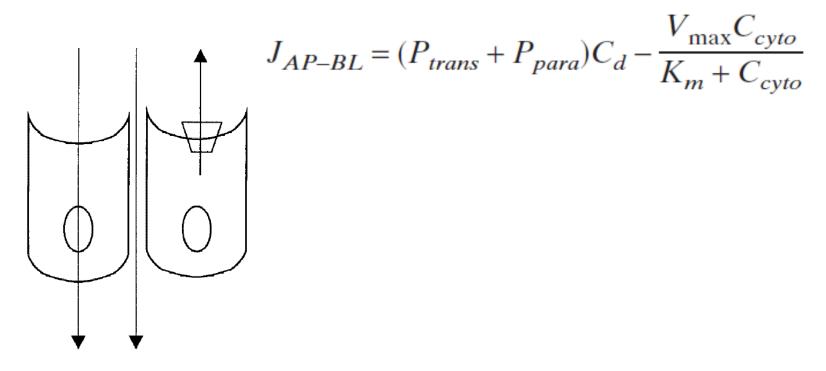

James E. Polli jpolli@rx.umaryland.edu October 27, 2015

Outline

- Background
 - Prior human in vivo studies
- Recent series of in vivo human studies of 14 common excipients
- Potential transporter (or enzyme or nuclear receptor) x excipient interaction concern
- Conclusions

Excipient Effects

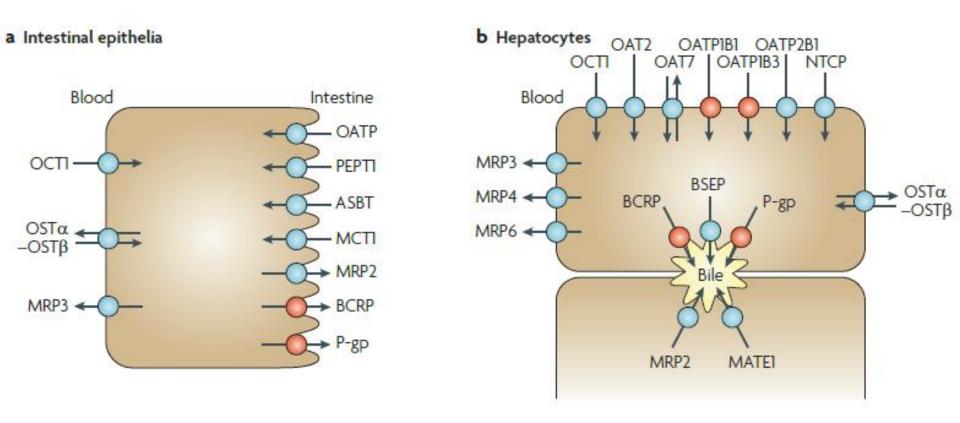
- Class 3 Biowaivers: Excipients should not modulate the rate and extent of drug absorption
- Class 3/low permeation compounds: essentially site-dependent absorption properties



Chen ML, Straughn AB, Sadrieh SN, et al. (2006). Pharm Res. 24(1):73-80. Pham AT, Lee PI. (1994). Pharm Res.11(10):1379-1384.; Rege BD, Yu LX, Hussain AS, Polli JE. (2001). J Pharm Sci. 90(11):1776-1786. General importance of passive permeability

- "While our results do not completely refute the transporters-only hypothesis, they demonstrate that it is unlikely for transporters alone to explain most observations in transcellular drug transport, ..."
- Matsson P, Fenu LA, Lundquist P, Wiśniewski JR, Kansy M, Artursson P. Quantifying the impact of transporters on cellular drug permeability. Trends Pharmacol Sci. 2015 May;36:255-62.

Need for moderate or low permeability for a material transporter effect


Apical Surface

Basolateral Surface

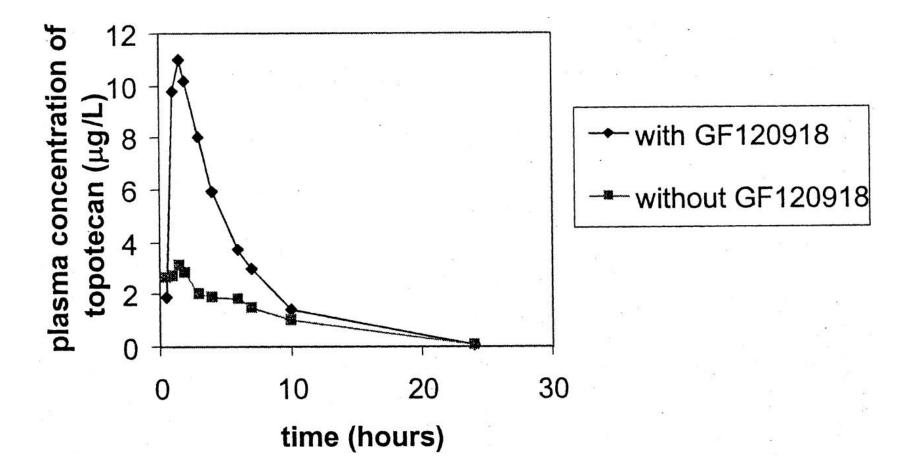
 Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. 2000. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 17(12): 1456-1460.

Tissue localization of transporters and their role in drug disposition

Giacomini KM et al. Membrane transporters in drug development. Nature Rev Drug Discov. 2010;9:215–236.

FDA Guidance for Industry

- Drug Interaction Studies Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations
- Draft, February 2012
- Content
 - General Strategies (i.e. in vitro studies, special in vivo clinical investigations, population pharmacokinetic screens)
 - Design of In Vivo Drug-Drug Interaction Studies
 - Labeling Recommendations
 - Appendicies: "Models for Determining When *In Vivo* Transporter-Mediated Drug Interaction Studies Are Needed"
 - P-gp, BRCP, OATP1B1, OATP1B3, OCT2, OAT1, and OAT3 interaction decision trees

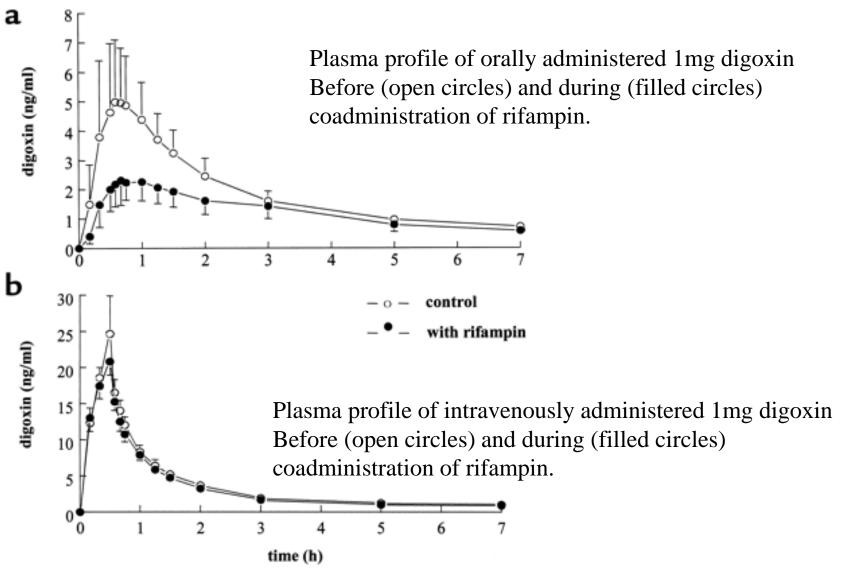

FDA Guidance for Industry

- Linear PK (i.e. relationship between dose and AUC) implies passive transport
- BCS class 1 biowaiver requires no excipient that affects rate or extent
- BCS class 3 biowaiver requires excipients to be qualitatively the same and quantitatively very similar (i.e. within SUPAC composition level 1 and 2)

Topotecan and GF120918

- CMF Kruijtzer et al. Increased Oral Bioavailability of Topotecan in Combination With the Breast Cancer Resistance Protein and P-Glycoprotein Inhibitor GF120918. Journal of Clinical Oncology 20:2943-2950, 2002.
- Motivation: Breast cancer resistance protein (BCRP) substantially limits the oral bioavailability of topotecan in mdr1a/1b(-/-) P-glycoprotein (P-gp) knockout and wild-type mice.
- Conclusion: Coadministration of the BCRP and P-gp inhibitor GF120918 resulted in a significant increase of the systemic exposure of oral topotecan. The apparent oral bioavailability increased from 40.0% without to 97.1% with GF120918.

Topotecan and GF120918



Representative plasma profiles of topotecan in a patient of cohort A. The dose of oral GF120918 was 1,000 mg.

Interaction of Digoxin and Rifampin

- B. Greiner et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147-153, 1999.
- Conclusion: Oral digoxin plasma profiles were lower after co-administration with rifampin, which increased intestinal P-gp content. Intraveneous digoxin plasma profiles were largely unchanged after co-administration with rifampin. The digoxinrifampin interaction occurs at the level of the intestine (i.e. induction of P-gp by rifampin).

Interaction of Digoxin and Rifampin

Outline

- Background
 - Prior human in vivo studies
- Recent series of in vivo human studies of 14 common excipients
- Potential transporter (or enzyme or nuclear receptor) x excipient interaction concern
- Conclusions

Vaithianathan, S., Haidar, S.H., Zhang, X., Jiang, W., Avon, C., Dowling, T.C., Kane, M.A., Hoag, S.W., Flasar, M.H., Ting, T.Y., and Polli, J.E. (2015): Lack of In Vivo Impact of Common **Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class** 3 Drugs Cimetidine and Acyclovir. DOI: 10.1002/jps.24643. In press in *J. Pharm. Sci*.

Study Design

- Cimetidine and acyclovir
- 14 common excipients
- Fasted, single-dose, four-way crossover bioequivalence studies (n=24) in healthy human volunteers
 - Three test formulations and commercial oral liquid reference
 - Commercial solution of cimetidine HCl (eq 300mg base per 5ml) from Hi Tech Pharmacal
 - Commercial suspension of acyclovir (200mg per 5ml) from Hi Tech Pharmacal

Top 20 excipients in BCS Class 3 drugs

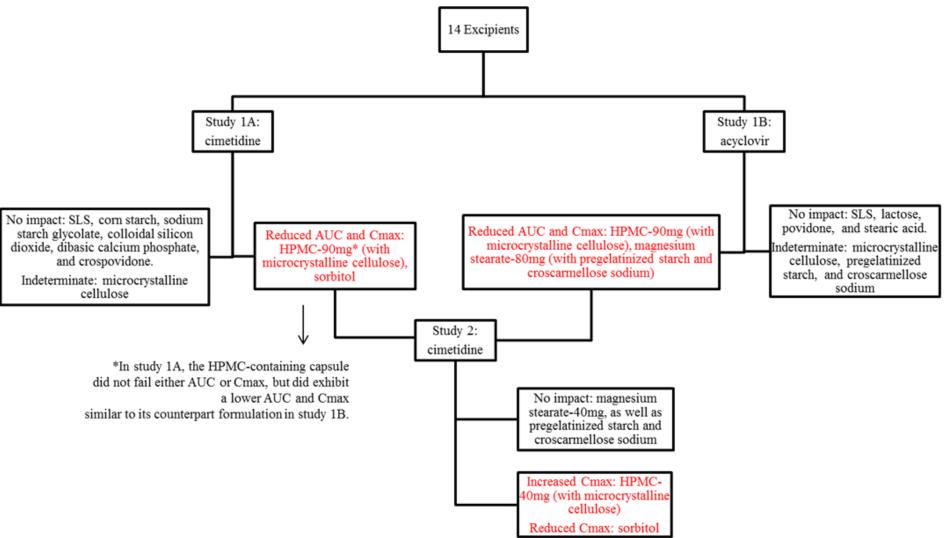
- Magnesium Stearate
- Microcrystalline Cellulose
- Lactose
- Starch
- Sodium Starch Glycolate
- Silicon Dioxide
- Povidone
- Sodium Lauryl Sulfate
- Croscarmellose Sodium
- Stearic Acid

- Pregelatinized Starch
- Hydroxypropylmethyl Cellulose
- Opadry
- Crospovidone
- Talc
- Calcium Phosphate
- Citric Acid
- Sucrose
- Methyl Cellulose
- Titanium Dioxide

Study 1A: Test capsule formulations with 100mg cimetidine per capsule

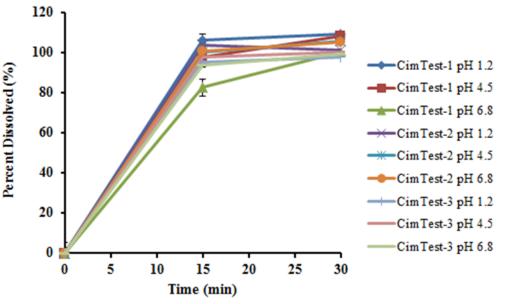
formulation	Excipient 1	Excipient 2	Excipient 3
CimTest-1	Microcrystalline	Hydroxypropyl-	Sodium Lauryl
	Cellulose	methyl Cellulose	Sulfate
	(300mg)	(45mg)	(25mg)
CimTest-2	Corn Starch	Sodium Starch	Colloidal Silicon
	(450mg)	Glycolate	Dioxide
		(100mg)	(20mg)
CimTest-3	Dibasic Calcium	Sodium Lauryl	Crospovidone
	Phosphate	Sulfate	(50mg)
	(300mg)	(25mg)	

Formulation CimTest-1 and AcyTest-1 employed the same excipients.

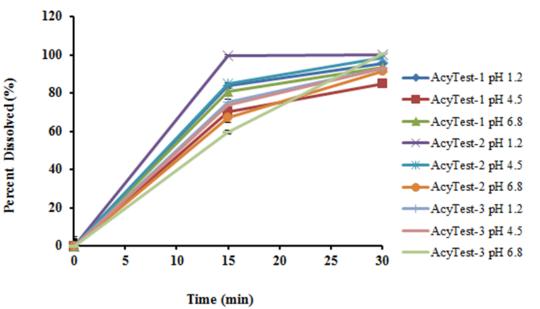

Sodium lauryl sulfate was included in formulations CimTest-1, CimTest-3, and AcyTest-1.

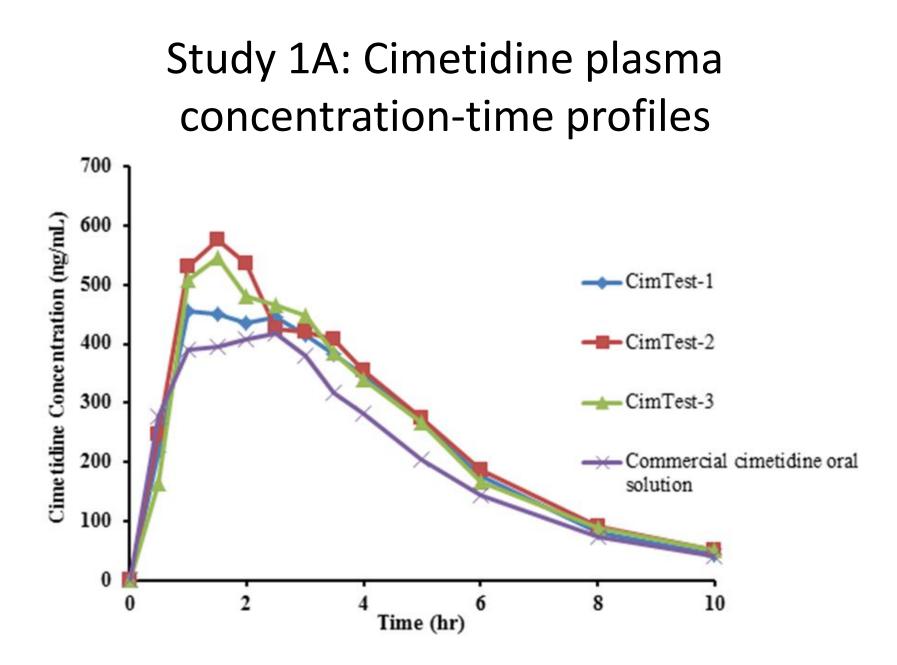
In the in vivo study of each formulation, two capsules were administered as a single dose of 200mg of drug.

Study 1A: Test capsule formulations with 100mg acyclovir per capsule


formulation	Excipient 1	Excipient 2	Excipient 3
AcyTest-1	Microcrystalline	Hydroxypropyl-	Sodium Lauryl
	Cellulose	methyl Cellulose	Sulfate
	(300mg)	(45mg)	(25mg)
AcyTest-2	Lactose	Povidone	Stearic Acid
	(450mg)	(35mg)	(40mg)
AcyTest-3	Pregelatinized	Croscarmellose	Magnesium Stearate
	Starch	Sodium	(40mg)
	(100mg)	(60mg)	

Flowchart of excipient influences across studies 1 and 2


Study 1A: Cimetidine test capsule dissolution profiles


- All very rapidly dissolving except CimTest-1 at pH 6.8
- Appearance and identification, assay, impurity, content uniformity, and dissolution
- Assay was within 2% of target label dose
- Prototype formulations with higher HPMC amounts were slow

Study 1B: Acyclovir test capsule dissolution profiles

- Only AcyTest-2 in pH 1.2 and pH 4.5 was very rapidly dissolving
- Appearance and identification, assay, impurity and guanine, and content uniformity
- Assay was within 4.1% of target label dose

Study 1A: Cimetidine BE analysis

Formulation	Cmax point	Cmax	AUCt point	AUCt
(vs solution)	estimate	90% CI	estimate	90% CI
Test1	120.4	107.7-134.6	112.0	104.6-119.8
Test2	132.9	118.9-148.6	123.3	115.2-131.9
Test3	134.9	120.7-150.8	117.1	109.3-125.3

Study 1A: Cimetidine BE analysis

Formulation	Cmax point	Cmax	AUCt point	AUCt
(vs CimTest-2)	estimate	90% CI	estimate	90% CI
CimTest-1	90.6	81.0-101.3	90.9	84.9-97.2
CimTest-3	101.5	90.8-113.4	95.0	88.8-101.6
Solution	75.2	67.3-84.1	81.1	75.8-86.8

Cimetidine solution

- Reference
 - Commercial solution of cimetidine HCl (eq 300mg base per 5ml)
 - Hi Tech Pharmacal (Amityville, NY 11701)
- Each 5 ml (1 teaspoonful) contains cimetidine hydrochloride equivalent to 300mg; alcohol, 2.8%. In addition, the oral solution contains the following inactive ingredients: FD&C Yellow No. 6, flavor hydrochloric acid, methylparaben, polyoxyethylene polyoxypropylene glycol, propylene glycol, propylparaben, saccharin, sodium, sodium chloride, dibasic sodium phosphate anhydrous, sorbitol and water. The pH range is 5.1 to 5.7.
- HiTech's cimetidine oral solution (per 5 mL):
 - Sorbitol: measured 2355(±8) mg/5mL or 1568(±5) mg/3.33mL

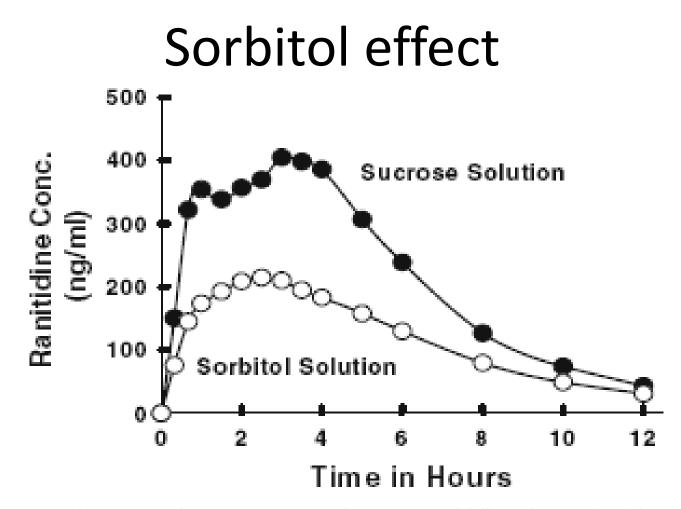
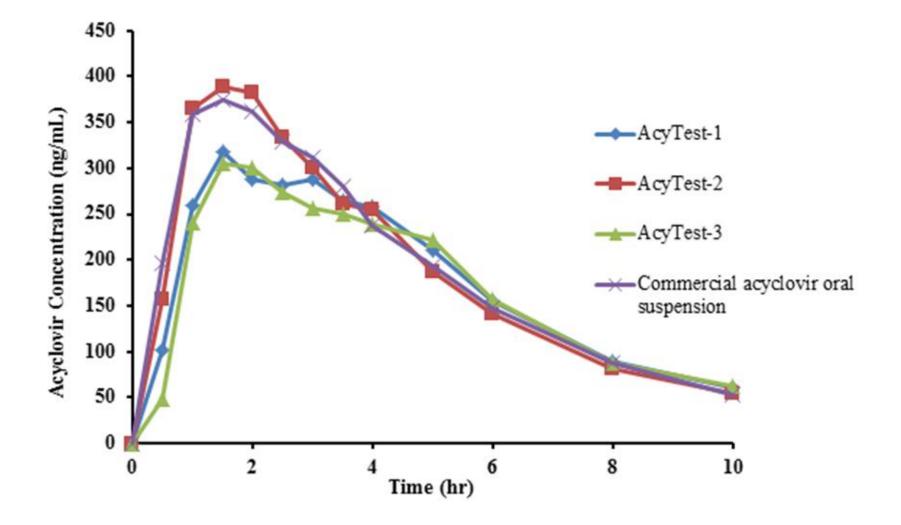


Fig. 1. Mean plasma concentrations of ranitidine in 20 healthy volunteers after administration of 150 mg ranitidine solution with addition of 5 Gm of sorbitol (*open circle*) or 5 Gm of sucrose (*solid circle*).


Chen, M.-L. et al. Pharm Res. 24:73-80(2007)

Sorbitol effect Concentration (ng/mL) Time (hrs)

Fig. 4. Mean plasma concentrations of ranitidine in 24 healthy volunteers after administration of 150 mg ranitidine solution with addition of 0 (closed circle), 1.25 (triangle), 2.5 (square), and 5 Gm (diamond) of sorbitol.

Chen, M.-L. et al. Pharm Res. 24:73-80(2007)

Study 1B: Acyclovir plasma concentration-time profiles

Study 1B: Acyclovir BE analysis

Formulation (vs suspension)	Cmax point estimate	Cmax 90% Cl	AUCt point estimate	AUCt 90% Cl
AcyTest-1	82.7	72.1-94.9	91.7	80.4-104.7
AcyTest-2	102.9	89.7-118.1	97.4	85.3-111.2
AcyTest-3	87.1	75.9-99.9	87.6	76.7-99.9

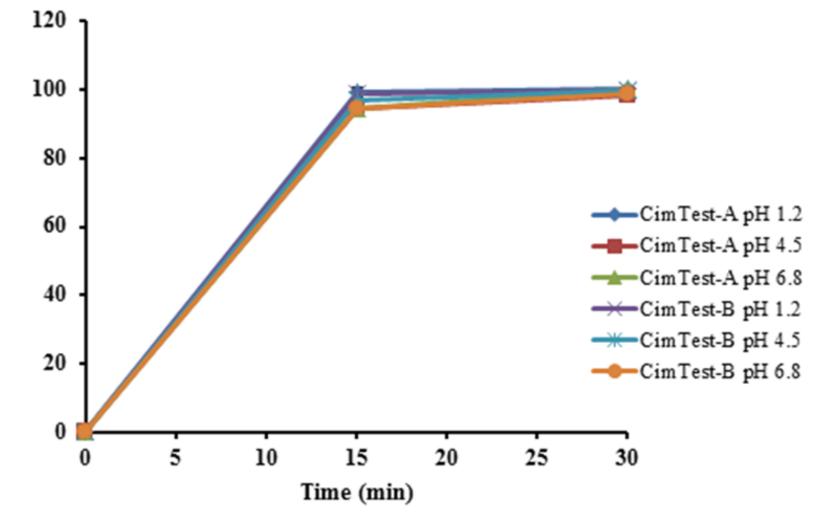
Study 1B: Acyclovir BE analysis

Formulation	Cmax point	Cmax	AUCt point	AUCt
(vs AcyTest-2)	estimate	90% CI	estimate	90% CI
AcyTest-1	80.3	70.0-92.1	94.2	82.5-107.5
AcyTest-3	84.6	73.7-97.0	89.9	78.7-102.6
Suspension	97.1	84.7-111.4	102.7	89.9-117.2

Acyclovir suspension

- Reference
 - Commercial suspension of acyclovir (200mg per 5ml)
 - Hi Tech Pharmacal (Amityville, NY 11701)
- Each teaspoonful (5 ml) of acyclovir suspension , USP, for oral administration contains 200mg of acyclovir and the inactive ingredients artificial banana flavor carboxymethylcellulose sodium, glycerin, methylparaben, 0.1%, microcrystalline cellulose, propylparaben 0.02%, purified water and sorbitol.
- HiTech's suspension of acyclovir (per 5 mL):
 - Sorbitol: measured 1503(±21) mg /5mL

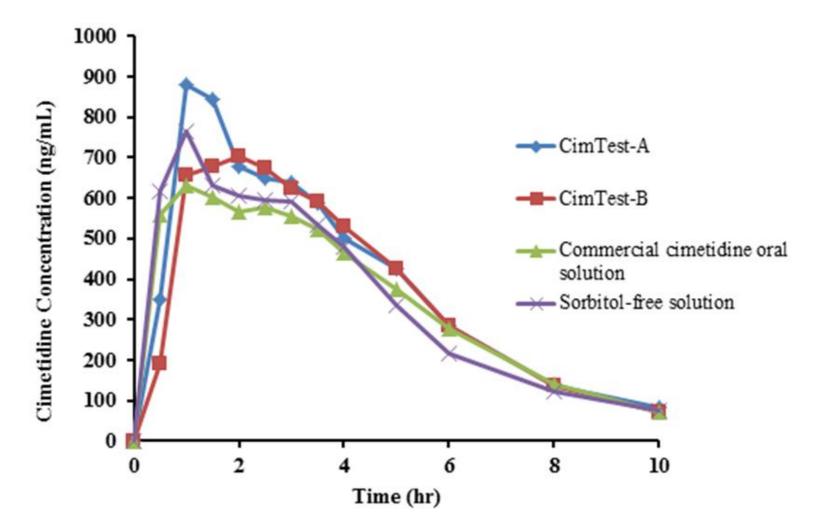
Study 2: Test capsule formulations with 100mg cimetidine per capsule


formulation	Excipient 1	Excipient 2	Excipient 3
CimTest-A	Microcrystalline	Hydroxypropyl-	Sodium Lauryl
	Cellulose	methyl Cellulose	Sulfate
	(300mg)	(20mg)	(25mg)
CimTest-B	Pregelatinized	Croscarmellose	Magnesium
	Starch	Sodium	Stearate
	(100mg)	(60mg)	(40mg)

CimTest-A is CimTest-1 (and AcyTest-1) but reduced HPMC from 45mg to 20mg per capsule.

CimTest-B is AcyTest-3 but reduced magnesium stearate from 40mg to 20mg per capsule. Also changed from Turbula mixer to V-blender.

In the in vivo study of each formulation, two capsules were administered as a single dose of 200mg of drug.


Study 2: Cimetidine test capsule dissolution profiles

Percent Dissolved (%)

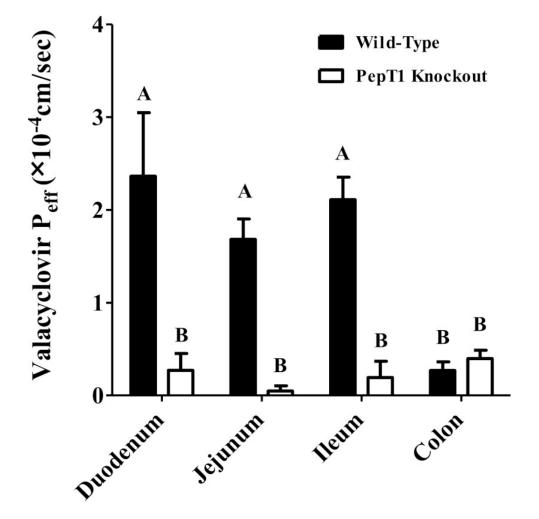
All profiles were very rapidly dissolving.

Study 2: Cimetidine plasma concentrationtime profiles

Study 2: Cimetidine BE analysis

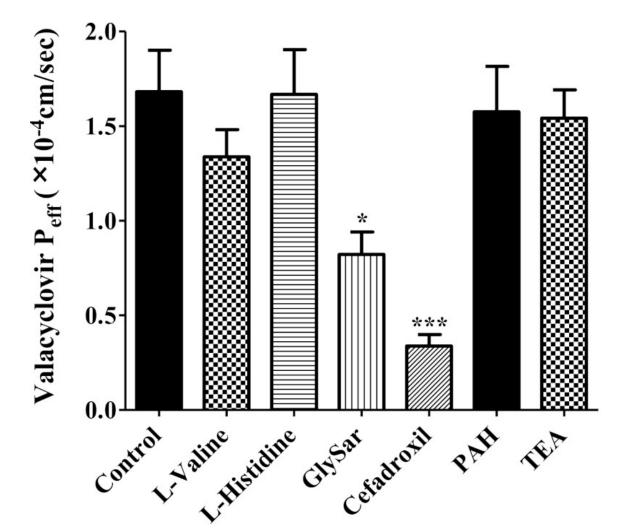
Formulation	Cmax point	Cmax	AUCt point	AUCt
(vs sorbitol-	estimate	90% CI	estimate	90% CI
free solution)				
CimTest-A	122.1	109.4-136.2	112.2	104.4-120.6
CimTest-B	105.0	94.1-117.2	105.2	97.6-113.0
Commercial	86.9	77.9-97.0	100.2	93.2-107.7
solution				

Max amount of excipients that BCS class 3 biowaivers can accommodate


Excipient	Max (mg)
Microcrystalline	Q1 and Q2
Cellulose	
НРМС	Q1 and Q2
Sodium Lauryl	50
Sulfate	
Corn Starch	900
Sodium Starch	200
Glycolate	
Colloidal Silicon	40
Dioxide	
Dibasic Calcium	600
Phosphate	

Excipient	Max (mg)
Crospovidone	100
Lactose	900
Povidone	70
Stearic Acid	80
Pregelatinized Starch	200
Croscarmellose	120
Sodium	
Magnesium	40
Stearate	

Outline


- Background
 - Prior human in vivo studies
- Recent series of in vivo human studies of 14 common excipients
- Potential transporter (or enzyme or nuclear receptor) x excipient interaction concern
- Conclusions

Permeability of valacyclovir in different intestinal segments of wild-type and *PepT1* knockout mice

Bei Yang and David E. Smith. Significance of Peptide Transporter 1 in the Intestinal Permeability of Valacyclovir in Wild-Type and PepT1 Knockout Mice. Drug Metab Dispos. 2013 Mar; 41: 608–14.

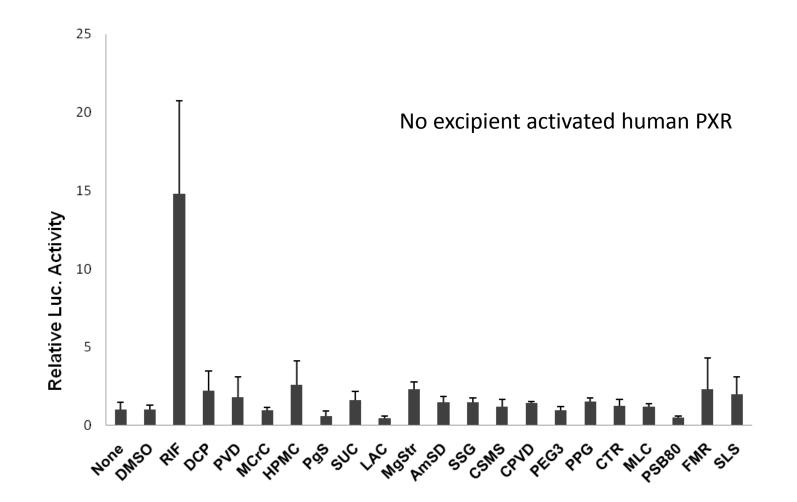
Effect of potential inhibitors on valacyclovir jejunal perfusion permeability in wild-type mice

Tompkins, L., Lynch, C., Haidar, S., Polli, J.E., and Wang, H. (2010): Effects of Commonly Used Excipients on the Expression of CYP3A4 in Colon and Liver Cells. DOI 10.1007/s11095-010-0170-2. *Pharm. Res.* 27:1703–1712.

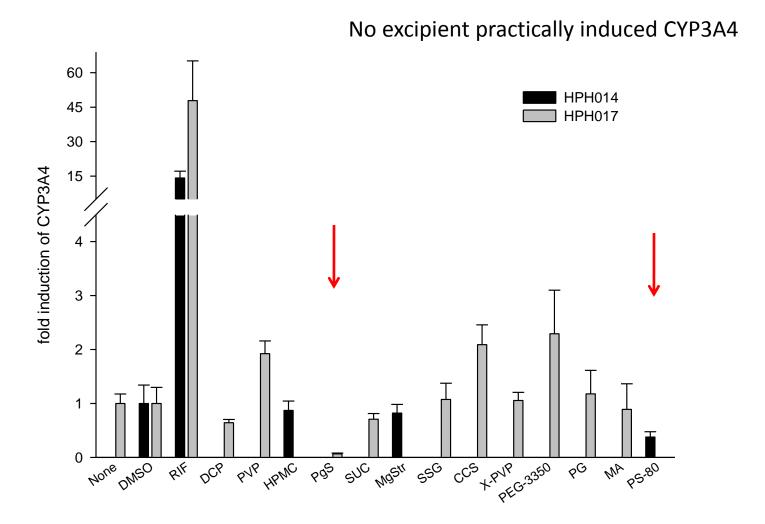
Effects of Commonly Used Excipients

- 19 excipients, including hydroxypropyl methylcellulose, pregelatinized starch, croscarmellose sodium, crospovidone, and polysorbate-80
- Human PXR activation assays; CYP3A4 expression in immortalized human liver cells (HepG2 and Fa2N4), human primary hepatocytes (HPH), and the intestinal LS174T cell models
- Pregnane X receptor (PXR) is a promiscuous nuclear receptor known to bind a variety of structurally-diverse compounds and regulate a number of metabolically-important genes (e.g. CYP3A4, CYP2B6, MDR1).

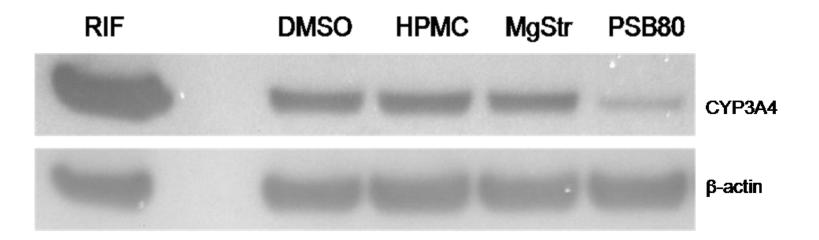
Effects of selected excipients on the expression of CYP3A4 and MDR1


	Fa2	2N4	HP	H	LS174	IT
Excipient	mRNA	Protein	mRNA	Protein	CYP3A4	MDR1
HPMC	1	\downarrow	=	Х	\downarrow	↓a
PgS CCS	= ↑	=	\downarrow	X X	$\downarrow a$	↓ ↓ a
X-PVP	∱a	\downarrow	=	Х	\downarrow	↓ a
PS-80	↑/↓ ^b	\downarrow	\downarrow	\downarrow	=	=

^{*a*} Change was not statistically significant.


^b At low dose, PS-80 increased CYP3A4 expression 3.02-fold, but high dose PSB80 decreased expression to 0.37-fold.

HPMC, pregelatinized starch, and polysorbate 80 – some tendency to repress

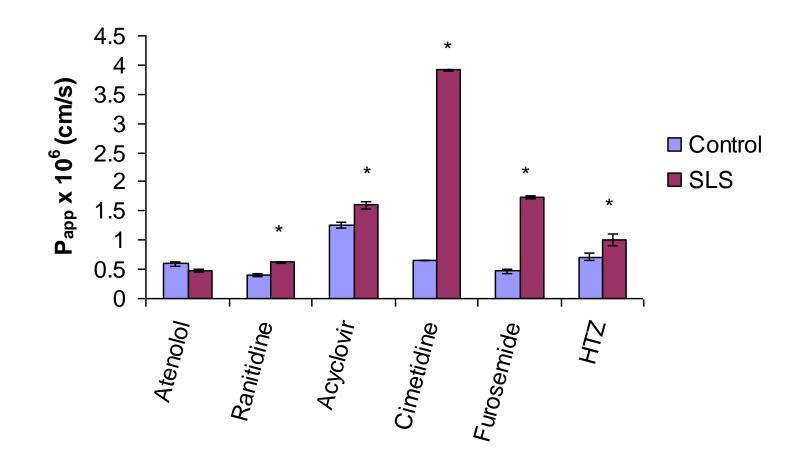

PXR reporter assay in HepG2 cells

Excipient effect on CYP3A4 expression in human primary hepatocytes

Excipient effect on CYP3A4 expression in human primary hepatocytes

Excipient Effect on Drug Permeability

	Quantity in IR dosage	Concentration used in Caco-
Excipient	form	2 study
Lactose	500 mg	2 mg/ml
Sodium lauryl sulfate	10 mg	0.04 mg/ml
Tween 80	450 mg	1.8 mg/ml
HPMC	30 mg	0.12 mg/ml
Docusate sodium	5 mg	0.02 mg/ml
EDTA	15 mg	0.06 mg/ml
Propylene glycol	3.75 ml	1.5 %v/v
PEG 400	3.75 ml	1.5 %v/v
Anhydrous cherry flavor	0.15 ml	0.006 %v/v

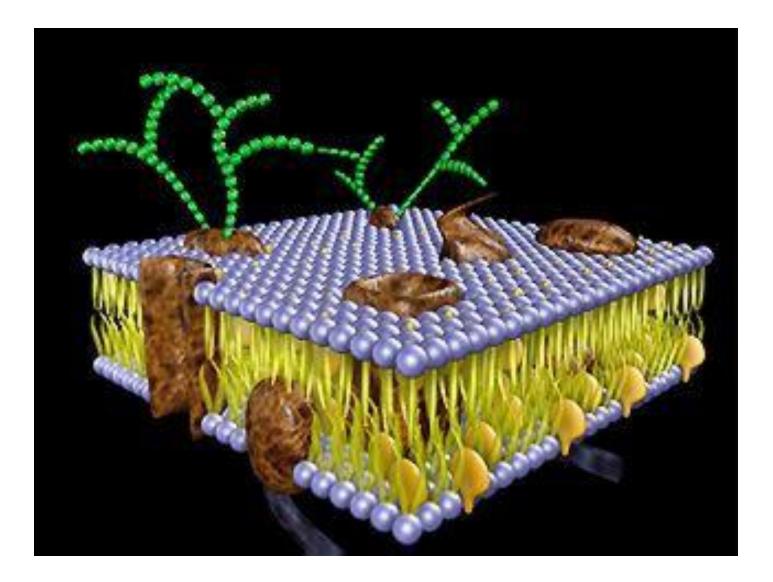

- Concentration calculated assuming a unit dose weight of 500 mg of solid formulation and 15 ml for liquid formulation
- Rege, B.D., Yu, L.X., Hussain, A.S., and Polli, J.E. (2001). Effect of common excipients on Caco-2 transport of low permeability drugs. *J. Pharm. Sci.* 90:1776-1786.

HPMC

	Papp (SEM) x 10 ⁶ [cm/sec]		
Drug	Control	HPMC	
Atenolol	0.592 (0.041)	0.506 (0.009)	
Ranitidine	0.405 (0.031)	0.484 (0.025)	
Acyclovir	1.26 (0.05)	1.31 (0.04)	
Cimetidine	0.650 (0.007)	0.898 (0.065)*	
Furosemide	0.466 (0.029)	0.428 (0.048)	
HCTZ	0.710 (0.063)	0.790 (0.027)	

* p = 0.035

Sodium Lauryl Sulfate



Tween 80

	Papp (SEM) x 10 ⁶ [cm/sec]		
Drug	Control	Tween 80	
Atenolol	0.592 (0.041)	0.649 (0.036)	
Ranitidine	0.405 (0.031)	0.713 (0.039)*	
Acyclovir	1.26 (0.05)	1.27 (0.02)	
Cimetidine	0.650 (0.007)	1.52 (0.06)*	
Furosemide	0.466 (0.029)	3.49 (0.35)*	
HCTZ	0.710 (0.063)	1.81 (0.06)*	

* p < 0.05

Singer-Nicolson Fluid Mosaic Model

Influence of Excipients on Anisotropy

Fluidity Modulator or Nonionic	Steady state anisotropy as % of control		
Surfactant	DPH	TMA-DPH	
Cholesterol	186.6 ± 2.4	98.5 ± 0.5	
Benzyl Alcohol	90.4 ± 1.1	87.1 ± 1.6	
Tween 80			
0.025 mM	65.2 ± 1.8	97.9 ± 1.4	
1 mM	50.9 ± 2.6	100.0 ± 0.5	
Cremophor EL			
0.025 mM	64.0 ± 0.9	99.3 ± 0.7	
1 mM	63.1 ± 0.9	99.9 ± 0.8	
Vitamin E TPGS			
0.025 mM	105.8 ± 0.6	101.2 ± 1.6	
1 mM	128.7 ± 3.5	102.8 ± 1.1	
N-octyl glucoside	97.0 ± 1.3	99.2 ± 0.9	

Rege, B.D., Kao, J.P.Y., and Polli, J.E. (2002): Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. *Eur. J. Pharm Sci.* **16**:237-246.

Effect of Nonionic Surfactant on Permeability

- Tween 80
 - R123 and gly-sar
- Cremophor EL
 - R123 and (mildly) benzoic aid
- Vitamin E TPGS

- R123

Consideration in the Use of In Vitro Studies

- Biological relevance of the model
- Consumer risk versus producer risk
- Resolution of assay versus bioequivalence requirements

Outline

- Background
 - Prior human in vivo studies
- Recent series of in vivo human studies of 14 common excipients
- Potential transporter (or enzyme or nuclear receptor) x excipient interaction concern
- Conclusions