
Abstract

Background

PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation
excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by
formulation excipients that preferentially interact with the protein.

Methodology/Principal Findings

The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl
valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose and preferentially bound guanine
hydrochloride. Structural characterization by far- and near-UV circular dichroism spectroscopy was supplemented by investigation
of protein thermal stability with the use of differential scanning calorimetry, far and near-UV circular dichroism and fluorescence
spectroscopy. It was found that PEGylated lysozyme was stabilized by the preferentially excluded excipient and destabilized by the
preferentially bound excipient in a similar manner as lysozyme. However, compared to lysozyme in all cases the melting transition
was lower by up to a few degrees and the calorimetric melting enthalpy was decreased to half the value for PEGylated lysozyme.
The ratio between calorimetric and van’t Hoff enthalpy suggests that our PEGylated lysozyme is a dimer.

Conclusion/Significance

The PEGylated model protein displayed similar stability responses to the addition of preferentially active excipients. This suggests
that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.
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Introduction

Next-generation protein drugs are proteins with altered amino acid sequence or altered glycosylation patterns, or proteins that are
covalently modified with chemical moieties such as polyethylene glycol (PEG). These modifications are generally aimed at
improving the pharmacokinetics of the protein, most commonly an increase in circulation half-life. In the case of PEGylation inert
PEG chains are covalently conjugated to the protein, which can then circulate more than 20 times longer than the non-modified
product depending on various protein- and modification specific characteristics. PEGylation of proteins has led to significantly
improved possibilities for drug administration; for example, in treatment of chronic hepatitis C a 7-fold increase in circulation half-life
is observed upon PEGylation of the native protein drug [1]. This allows once-weekly injections with improved clinical outcome
compared to the thrice-weekly injections of the unmodified drug, despite the fact that receptor binding is reduced by more than a
factor 10 for the PEGylated product [2]. Currently, there are 10 PEGylated proteins on the market [3].
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The chemical aspects of the PEGylation process are well-documented, focusing on the different types of the PEGs, the coupling
chemistry, the number of modifications and the targeting of different modification sites [4–8]. Also pharmacokinetic studies showing
sustained plasma concentrations are common [9–12].

Comparatively fewer studies are available on the physical stability of PEGylated proteins. Those studies generally show a lower
propensity for aggregation upon PEGylation, as shown for several proteins [6, 13–15]. Somewhat surprisingly, adsorption to
hydrophobic surfaces is not reduced [13, 16]. The impact of PEGylation on thermal stability is less equivocal, with both decreases
[13, 15] and increases [17] reported.

Considering the commercial success of protein PEGylation, there is surprisingly limited literature on pharmaceutical processing and
formulation aspects. A few studies on processing by freeze-drying show that PEGylation improves stability [18–21]. While there are
numerous studies on protein formulation approaches to achieve long-term storage stability (reviewed in [22–24]) proper formulation
principles for PEGylated proteins are largely unreported in the scientific literature although it has undoubtedly been explored by the
industry. It is therefore still unknown whether PEGylation may change the interactions between the pharmaceutical protein and
commonly used excipients. Therefore, we have investigated the interactions between a PEGylated model protein and model
excipients which are either preferentially excluded or bound. The model protein was lysozyme (Lyz), doubly PEGylated with 5 kDa
units (LyzPEG). The preferentially excluded excipient was sucrose, which is present in various pharmaceutical formulations, and
the preferentially bound excipient was guanidine hydrochloride (GdnHCl), which is commonly used to denature proteins. It is our
hypothesis that PEGylation modifies the preferential interactions because PEG itself is preferentially active [25, 26]. The impact of
the excipients was investigated in terms of structural stability by far- and near-UV circular dichroism (CD), while thermal stability
was characterized by thermal denaturation using DSC, near- and far-UV CD and fluorescence. Furthermore, we discuss the spatial
implications and possible interactions of PEG with the protein and possible explanations for the observed results.

Materials

Hen egg white lysozyme dry powder (>95%), HEPES, guanidine hydrochloride and sucrose were purchased from Sigma. 5000 Da
mPEG-succinimidyl valerate (mPEG-SVA)was purchased from Laysan Bio A/S.

Experimentals

PEGylation

Lysozyme was diPEGylated with a 5 kDa mPEG-SVA onto lysine residues and purified with IEC as described previously [13]. The
diPEGylated species was used for all experiments, the main modification sites being Lys-33 and Lys-97 [27, 28] and to a minor
degree Lys-116 [29] in the Lyz sequence.

Sample preparation

1.67 M sucrose and 2.77 M GdnHCl stock solutions with 10 mM HEPES pH 7.4 were prepared and frozen until use. In our
experience sucrose solutions may behave differently after being frozen or kept at 5°C prior to use at room temperature. Therefore,
both excipient solutions were heated to 50–60°C to ensure homogeneity and then left to cool to room temperature before further
use. Excipient concentrations were determined by refractometry. The refractive index was measured on a RL3 refractometer (Nr.
28046/01, PZO Warszawa, Warsaw, Poland). 5 measurements were averaged and a buffer average subtracted. The difference in
the refractive index, Δn, is linear with the concentration of sucrose [30]. The concentration of GdnHCl concentration was calculated
with the polynomial presented by Nozaki [31].

Protein stock solutions in 10 mM HEPES buffer pH 7.4 were diluted into the excipient solutions giving final excipient concentrations
of 1.0 M sucrose and 2.0 M GdnHCl. At this concentration sucrose imparts a significant stabilization through preferential exclusion
[32, 33]. A concentration of 2.0 M GdnHCl was chosen because for lysozyme it is well below the denaturing level [34, 35]. These
excipient concentrations were used in all experiments. The protein concentrations were 0.1–2.5 mg/ml depending on technique.
LyzPEG was measured in protein equivalent weight concentration. Concentrations were measured on a NanoDrop-1000 or a
NanoDrop-2000c Spectrophotometer (Thermo Scientific, Wilmington, Delaware). Solutions were filtered through a 0.22 µm filter
prior to DSC, CD and Fluorescence measurements.

CD

Far- and near-UV circular dichroism spectroscopy was used for two purposes: structural assessment of Lyz and LyzPEG in buffer
and in presence of excipients, and to follow temperature induced unfolding of the secondary and tertiary structure of the protein.
Measurements were performed on degassed samples using a Jasco-815 CD instrument (JASCO, Essex, UK). The concentration
was re-measured post degassing.

For recording of isothermal CD spectra for the structural assessment the instrument settings were: 0.1 nm data interval, 1 nm band
width, digital integration time (DIT) of 4 s and 20 nm/min scan speed. 3 spectra were averaged, smoothed using a 25 point
Savitzky-Golay algorithm (2  order), a buffer scan subtracted and the data were normalized to mean residue ellipticity (MRE) using
a molecular weight of 14306 Da. Specifically, spectra of far-UV CD were collected at 2.5 mg/ml in a 50 µm circular quartz cuvette
temperature controlled with a water bath set at 20°C. The spectra were recorded in the range 250–195 nm but are only displayed in
the range 250–203 nm where the high tension always remained below 500 V. Near-UV CD were measured at a concentration of
0.4 mg/ml in a 10 mm quartz cuvette which was thermostated at 20°C using a Peltier element. The samples were recorded in the
interval 320–240 nm and the maximum high tension at 280 nm was less than 420 V in all cases.

Temperature induced unfolding was investigated by analysis of the melting curves in both the far- and near-UV CD region. Samples
were measured using rectangular quartz cuvettes and Peltier temperature control at a protein concentration of 0.5 mg/ml using a
1°C/min ramp rate and a data interval of 1°C in the temperature range 20–96°C. The heating rate used here is common for thermal
unfolding analysis of proteins using DSC (see below).

The instrument parameters were set to 16 s digital integration time and the band width to 2 nm. For the temperature scans a 75 mm
focusing lens was introduced in front of the sample, yielding a light spot of approximately 1 mm x 4 mm on the sample. The relevant
buffer scans were subtracted and subsequently the data were fitted to a folded ↔ unfolded model in Microsoft Excel to obtain the
temperature and the enthalpy of unfolding. Specifically, far-UV CD melting curves were measured at 222 nm for change in
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backbone structure (α-helical content) using a 1 mm cuvette (300 µl, max high tension < 530 V). Near-UV CD melting curves were
measured at 257 nm and at 288.5 nm corresponding to the chiral activity bands of Phe and Trp side chains. Near-UV CD was
measured using a 10 mm cuvette (1000 µl, maximum high tension < 330 V).

DSC

Differential scanning calorimetry (DSC) was conducted on a NanoDSC (cell volume 299 µl, TA Instruments, Lindon, Utah) at 1
mg/ml of protein concentration. Heating was performed at 1°C/min in the temperature range from 20°C to 95°C. This heating rate is
commonly used for thermal unfolding analysis of proteins in general [36] and lysozyme in particular [37–41]. Due to material
restrictions we could not determine whether this scan rate was slow enough to allow sufficient time for the LyzPEG unfolding
reaction to equilibrate or perform a reversibility assessment. Buffer scans were run until full overlay of two consecutive scans was
obtained. Samples were degassed for 10 minutes prior to loading the solutions into the cells. Buffer subtraction, baseline correction
and data treatment (non-2-state model) were conducted with OriginPro 8.6 (OriginLab, Northampton, Massachusetts, USA).

Fluorescence

Fluorescence spectra were recorded as a function of temperature on a Spex Fluorolog 3–22 fluorescence spectrometer (Jobin-
Yvon Horiba, Longjumeau, France) equipped with a 450 W xenon lamp. 1 ml of 0.1 mg/ml protein were placed in a 10 mm quartz
cuvette, covered with a lid and stirred. Samples were excited at 295 nm and emission recorded from 300 nm to 450 nm with an
increment of 0.5 nm. Excitation and emission slits were set to 1 and 3 nm, respectively. The data acquisition time was 0.1 s and 5
spectra were recorded and averaged at every degree from 20°C to 96°C. The temperature was controlled by water bath circulation
and the temperature was measured directly in the water bath. Between each temperature increase the equilibration time was 1
minute and the tolerance for initializing the measurement was ± 0.5°C. Buffer scans were subtracted from the technical spectra
(uncorrected for instrument characteristics) and the data were smoothed with a 25 point Savitzky-Golay algorithm. Maximum peak
analyses were performed by fitting the curves to a Gaussian function around the apparent peak maximum. Due to unexpected
spectral fluctuations for the sucrose-containing solutions the spectrum of Lyz in sucrose was fitted to a Gaussian function of the
whole spectrum. The transition midpoint temperature (T ) and enthalpy of unfolding (ΔH) were determined by fitting the peak
maxima (λ ) as a function of temperature to a 2-state model in Microsoft Excel. GraphPad Prism 5.03 for Windows, GraphPad
Software, San Diego, California, USA was used for the Gaussian fit and graph presentation.

Structural images

The structure of Lyz was represented with PyMOL (The PyMOL Molecular Graphics System, Version 1.7.2.3 Schrödinger, LLC)
using the pdb-entry 1E8L of an NMR based solution structure of hen egg white lysozyme [42] to visualize the most probable
PEGylation sites as well as the protein residues relevant for evaluation of the experimental data. PoPMuSiC 2.0 [43] was used to
calculate the exposure of the tryptophan residues.

Results

Secondary and tertiary structure

The impact of the PEGylation process and the effect of the two model excipients on the structural characteristics of Lyz was
determined using far- and near-UV spectroscopy. The far-UV CD spectra show that LyzPEG (Fig 1A) has a lower (85% at 205 nm)
signal at the same molar concentration as Lyz indicating a change in the secondary structure compared to the non-PEGylated,
native protein [44]. For both proteins addition of 1.0 M sucrose does not alter the secondary structure (Fig 1B and 1C). Addition of
2.0 M GdnHCl has a marginal effect on Lyz (Fig 1B) and a stronger effect on LyzPEG (Fig 1C). The spectral changes are primarily
observed in the region 203–235 nm, indicative of a minor loss of α-helical content.

Fig 1. Far- and near- UV CD spectra measured at 20°C, pH 7.4 in HEPES buffer.
Excipients are 1.0 M sucrose and 2.0 M GdnHCl. (A-C) Far-UV CD spectra of (A) Lyz and LyzPEG without excipients, (B) Lyz
with excipients and (C) LyzPEG with excipients; (D-F) near-UV CD spectra of (D) Lyz and LyzPEG without excipients, (E) Lyz
with excipients and (F) LyzPEG with excipients.
doi:10.1371/journal.pone.0133584.g001

In the near-UV region, the absorbance is dominated by contributions from the 6 Trp residues, and also includes dichroic signals of
the 3 Tyr, 3 Phe and the 4 disulphide groups. Assignment of the CD signals in this region is highly complex, as the chiral
environment of the chromophore plays an important role in determining magnitude and direction of the signal. Furthermore, due to
the large number of absorbing species there is a high probability of sign cancellation. The near-UV CD spectra of the native and
PEGylated protein (Fig 1D) show a clear fine structure with 2 peaks at 300–275 nm at positive ellipticities attributed to Trp signals,
and a shoulder around 265–250 nm at negative ellipticities often attributed to Phe signals [45]. The Lyz fine structure at positive
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ellipticities consists of two strong bands at 294 nm and 286 nm of equal intensity and a weaker fine structure at 278 nm. The fine
structure of LyzPEG is slightly different with a diminished signal at 294 nm and a peak shift from 286 nm to 288 nm. For Lyz the
shoulder has a delicate fine structure with 2 small positive peaks at 257 nm and 264 nm which has been observed earlier in similar
solution conditions [46]. For LyzPEG only the fine structure at 257 nm remains. The LyzPEG CD signal at 257 nm is reduced
compared to Lyz, similar to the signal reduction observed in the far-UV range.

For Lyz (Fig 1E) addition of sucrose does not change the Trp spectral features, but the Phe band gains in negative intensity
confirming some type of reorganization and possible stabilization. Addition of GdnHCl reduces the signal in the full range of the
spectrum. The stabilization of LyzPEG in presence of sucrose (Fig 1F) is only visible at the shoulder at 257 nm, and the response
to sucrose is similar to that seen for native Lyz. GdnHCl reduces the signal of LyzPEG but to a lesser extent than for Lyz, which is
opposite to the observations for the far-UV CD.

Thermal denaturation

Thermal denaturation of Lyz and LyzPEG with and without excipients was followed by DSC, far-UV CD at 222 nm and near-UV CD
at 257 nm (Phe) and 288.5 nm (Trp).

The DSC thermograms were fitted to a non-2-state model after subtraction of a cubic baseline. Lyz fit well to a 2-state model, while
LyzPEG did not. A satisfactory fit of LyzPEG was obtained with a non-2-state model and as Lyz unfolding is reversible [47–49],
reversibility was also assumed for LyzPEG. Material restrictions prevented reversibility assessment and elucidation of potential
scan rate dependency and consequently the calculated thermodynamic parameters must be taken with due caution and are only
meant for qualitative comparisons. For consistency and comparability both Lyz and LyzPEG were fitted to a non-2-state model.
Similar values were obtained for Lyz using the 2 models and a simple analysis of area under the curve (corresponding to the
calorimetric enthalpy) and apparent melting temperature (T  instead of T ) for all samples gave similar values (S2 Table) to the
ones obtained with the non-2-state model. The obtained values for T  and enthalpies are represented in Fig 2 and Table 1 (T
values in S1 Table). Although the T  values are often used as an indication of protein thermodynamic stability at room temperature
[50–52], the correct approach would be to compare Gibbs free energy (ΔG) of the two proteins at physiologically relevant
temperatures. This requires knowledge of the heat capacity change upon unfolding (ΔC ), which can be obtained directly from the
DSC thermograms [53]. Unfortunately, this was not possible in our case, due to uncertainty in drawing the post-denaturational
baselines, which were affected by the post-denaturational aggregation of lysozyme [47]. However, an estimate of the ΔC  can be
made from the mutual dependence between ΔH  and T  (S5 Fig). The CD results were fitted to a simple folding-unfolding model
in Excel as described in the literature [54]. The near-UV CD data at 257 nm and 288.5 nm were fitted globally as well as individually
and the results of the individual fits are available in S3 Table. The LyzPEG CD data fit equally well to a dimer model (S3 Fig, see
also discussion below). In all cases the heat capacity change was fixed to 0 as the fitting quality was not improved upon
introduction of non-zero ΔC . Melting curves and their respective fits can be found in the S1 Fig and S2 Fig, the resulting T  and
enthalpies are shown in Fig 2 and Table 1.
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Fig 2. Melting transition temperatures and changes as a function of excipient presence.
Blue: DSC non-2-state fit, red: far-UV CD at 222 nm (α-helical content) and green: near-UV CD global fit of 257 nm (Phe
signal) and 288.5 nm (Trp signal). The figures show A) melting transition temperatures. B) Sucrose induced change in melting
transition temperatures. C) GdnHCl induced change in melting transition temperatures.
doi:10.1371/journal.pone.0133584.g002

Table 1. Enthalpy of unfolding from various techniques.
doi:10.1371/journal.pone.0133584.t001

The CD and fluorescence derived enthalpies correspond to the DSC derived van’t Hoff enthalpies. Near-UV CD is a global fit of 257
nm and 288.5 nm. Fluorescence peak maximum revealed that Lyz in sucrose had an additional transition at 50°C with ΔH = 495
kJ/mol.

DSC

The DSC data provided an estimate for the T  value for Lyz at 73.5°C and 1.6°C lower for LyzPEG at 71.9°C. In the presence of
sucrose the T  of Lyz is shifted to 79.0°C, an increase of 5.5°C, and in the presence of GdnHCl the T  is decreased by 16.9°C to
56.6°C. LyzPEG shows similar melting temperature shifts as Lyz in response to the addition of excipients, although all melting
temperatures are lower than those for Lyz. In sucrose LyzPEG has a T  of 76.3°C, which is a stabilization of 4.4°C, and GdnHCl
lowers the LyzPEG T  to 56.3°C, which is a decrease of 15.6°C. The transition midpoint temperatures are presented graphically in
Fig 2A and the differences in T  values as a function of sucrose and GdnHCl are presented in Fig 2B and 2C, respectively.

The calorimetric melting enthalpy (ΔH ) of Lyz is 405 kJ/mol which corresponds reasonably well with previous studies [55]. For
LyzPEG, however, the calorimetric enthalpy is less than half (175 kJ/mol) of that value, while the ratio of van‘t Hoff enthalpy (ΔH )
to calorimetric enthalpy ΔH  is ca. two, suggesting that LyzPEG unfolds as a dimer. For Lyz the ΔH  and ΔH , were essentially
the same consistent with Lyz being a monomer. All ΔH , ΔH  values and ΔH /ΔH  ratios are summarized in Table 1. With
ΔH  = 481 kJ/mol sucrose clearly stabilizes Lyz, but for LyzPEG the addition of sucrose decreases ΔH  to 156 kJ/mol. The
denaturant GdnHCl reduces the calorimetric melting enthalpy to 306 kJ/mol and 112 kJ/mol for Lyz and LyzPEG, respectively,
which means both proteins are destabilized to the same extent. The ΔH /ΔH  ratios suggest that LyzPEG stays dimeric in the
presence of both excipients.

T  and ΔH  obtained from the DSC data in all three solution conditions were used to calculate the heat capacity change upon
unfolding, ΔC , of Lyz and LyzPEG (S5 Fig). This approach gives ΔC  of 7.35 kJ/(K*mol) and 2.68 kJ/(K*mol) for the Lyz and
LyzPEG, respectively. The ΔC  for Lyz compares well with earlier studies [39, 56]. The ΔC  for LyzPEG is lower by more than a
factor 2, which is in agreement with the decreased overall structure of the PEGylated protein observed by CD. The heat capacity
change upon unfolding was then used to estimate the Gibbs free energy function for both proteins using the modified Gibbs-
Helmholtz equation, and as anticipated the LyzPEG was less stable at all temperatures between 0°C and T  compared to Lyz. At
room temperature the ΔG value of LyzPEG was about half of that of the native Lyz (S5 Fig).

CD

Thermal denaturation studies by CD show similar trends as the DSC analysis (Fig 2 and Table 1). For the far-UV CD melting the T
values are ca. 1–4°C lower than those measured by DSC for both proteins and in all solution conditions. In sucrose the T  of Lyz
increases by 5.1°C, similar to that observed by DSC, and the LyzPEG T  increases by 2.5°C, almost half of that observed by DSC.
In the presence of GdnHCl the far-UV CD T  is decreased ca. 2°C further for both proteins compared to DSC.

In near-UV CD the changes for both Lyz and LyzPEG also occur at a lower temperature than measured by DSC. The T  values are
also lower than in the far-UV CD experiments except in the presence of GdnHCl, where a slightly higher T  is observed as
compared to that determined by far-UV CD.

The melting enthalpy for Lyz determined from the far-UV CD is lower than that observed by DSC, while the melting enthalpy for Lyz
in presence of both excipients agrees better with the DSC data (Table 1) under both solution conditions. ΔH for LyzPEG is also
lower than expected when comparing to the DSC ΔH  value. The addition of sucrose to LyzPEG apparently decreases the melting
enthalpy, whereas this remains almost constant in the DSC data. Upon addition of GdnHCl the LyzPEG far-UV CD melting enthalpy
remains the same as in buffer, and is twice as high as the corresponding ΔH .

The melting enthalpies calculated from the near-UV CD are generally higher for both modified and unmodified proteins compared to
DSC and far-UV CD. The only exception is that LyzPEG near-UV CD melting enthalpies are lower compared to the DSC van’t Hoff
enthalpies. For Lyz the addition of sucrose does not change the enthalpy. Addition of GdnHCl reduces the enthalpy to the same
extent as observed with DSC and far-UV CD. The near-UV CD enthalpy for LyzPEG in buffer is half that of Lyz. It is a bit higher
than the far-UV CD enthalpy, much higher than the ΔH , but lower than the ΔH . Excipients exert a different effect on LyzPEG
compared to Lyz: for LyzPEG the enthalpy is greatly increased by addition of sucrose, whereas addition of GdnHCl has no effect.
The latter was also observed with far-UV CD. S1 Text contains a more elaborate discussion on data quality, including explanations
for the apparent discrepancies in the enthalpy values obtained by the different techniques.
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Characterization of the temperature-induced unfolding was also attempted using fluorescence spectroscopy. Lyz displays a clear
melting transition (Fig 3A) while LyzPEG merely shows a gradual redshift during heating (Fig 3B) which does not allow calculation
of the denaturation parameters. The ΔH (Table 1) and T  values of Lyz correspond well with the calorimetric data. The melting
points of Lyz are 75.2°C, 79.7°C and 56.6°C for no excipient, sucrose and GdnHCl containing solutions, respectively. An additional
minor transition at 50°C is observed for Lyz in sucrose.

Fig 3. Peak maximum of fluorescence spectra as function of temperature and excipient.
A) Lyz B) LyzPEG.
doi:10.1371/journal.pone.0133584.g003

The fluorescence traces of the LyzPEG solutions lack clear melting transitions and the λ  values are consistently red shifted by
5–7 nm throughout the whole temperature range compared to Lyz, indicating an increased solvent exposure of the active
tryptophans.

Discussion

Structural features exploited in lysozyme

Lysozyme is a very-well characterized protein and the 3D structure has been determined both in solution by NMR and in crystal
form by protein X-ray crystallography. Fig 4 depicts the structure of Lyz from Schwalbe et al. [42], with the two lysines that are most
likely PEGylated marked in yellow. The fold of the protein is characterized by two sub-domains, α and β. The α-domain consists of
a 3 -helix and 4 α-helices (res. no. 1–35 and 85–129), and the β-domain is composed of a short triple-stranded antiparallel β-
sheet, a loop and a 3 -helix (res. no. 36–84). The α-domain is stabilized by a hydrophobic core. Additionally, 4 disulphide bonds
play an important role for the stabilization of the tertiary and secondary structure [57]. There is a general consensus that Lyz
unfolds in a 2-state unfolding process [58, 59] although some studies have suggested a more complicated unfolding process at low
pH [53]. Of spectroscopic relevance there are 6 Trp and 3 Tyr and 3 Phe units in the native protein. The bulk of Lyz fluorescence is
attributed only to Trp residues 62 and 108 (Fig 4, marked in green) [60]. The accessible surface area (ASA) calculated by
PoPMuSiC shows that in the native state the side chain of Trp-62 is somewhat solvent-exposed (ASA = 42%) while Trp-108 is
buried (ASA = 5.7%). Emission from the other Trp units is likely quenched by nearby cystine groups [60, 61].

Fig 4. Ribbon structure of hen egg white lysozyme (pdb entry 1E8L).
The PEGylated lysines are indicated in yellow and the fluorescence active tryptophans are indicated in green. The sequence
of lysozyme is given below the structure with the same color indications for the mentioned lysines and tryptophans.
doi:10.1371/journal.pone.0133584.g004
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Effect of PEGylation

All analytical techniques used in the current study indicate that our PEGylated lysozyme has an altered conformation and stability
compared to the native lysozyme, which corresponds to our earlier finding [13]. The far- and near-UV CD spectra indicate a loss of
α-helical structure in PEGylated protein and some local changes around the Trp residues. As depicted in Fig 4 both PEG-chains are
attached to α-helical motifs which may destabilize the implicated helices resulting in a reduced α-helix signal. A reduced far-UV CD
signal has been observed before for LyzPEG monoPEGylated at Lys-33 [28].

The thermal denaturation studies show both a reduced thermal stability of LyzPEG, indicated by a lower melting temperature, and a
reduced thermodynamic stability, with the ΔG  value at 25°C being about half of that found for Lyz, suggesting that the LyzPEG is
not fully folded. The latter is reflected in the lower enthalpy of denaturation at the T  and the diminished Gibbs free energy function
in the temperature range of 0°C—T  (S5 Fig). While denaturation of the native lysozyme is consistent with the 2-state model, the
DSC melting profile of LyzPEG can only be fitted to the non-2-state model, indicating a change in the denaturation mechanism of
LyzPEG. Unfortunately, material limitations prevented further elucidation of the unfolding mechanism and the potential contribution
of kinetically controlled events. This introduces an uncertainty in the validity of the thermodynamic analysis, which in turn means the
results can only be used for qualitative comparative purposes. The ratio of van‘t Hoff to calorimetric enthalpy of 2:1 (Table 1)
suggests that the PEGylated protein forms a dimer. At the same time, the total calorimetric enthalpy of LyzPEG is lower, indicating
that the energy of dimerization is insufficient for compensating the enthalpy loss from the partial unfolding. The dimeric nature of
LyzPEG is supported by the small-angle X-ray scattering studies reported in our previous publication [13]. However, fitting the
melting curves of LyzPEG to a model where the protein unfolding is coupled to dimer dissociation was unsuccessful, failing to
reproduce the sharp shape of the LyzPEG denaturation transition. Inability of the dimer-denaturation model to properly describe
DSC data could be due to the fact that this model does not take into account the partially denatured starting state of LyzPEG. In
addition, it is unclear to what extent the potential interference from the PEG moiety could affect the shape of the DSC profile. In
contrast, the dimer-denaturation model described the CD data very well, indicating that the spectroscopic techniques were
insensitive to the selection of the fitting model as both monomer and dimer fitting results were of equally good quality.

The fluorescence spectroscopic analysis of LyzPEG spectra shows a significant red-shift of the peak maximum suggesting
increased solvent exposure of the fluorescent tryptophans. This is another indication of the partially denatured initial state of
LyzPEG with a consequent exposure of Trp residues that are normally buried in the native Lyz. In addition, the absence of a clear
transition in the LyzPEG fluorescence melting data suggests that the local environment around the tryptophans is already disrupted
at room temperature, so that increasing temperatures lead only to the gradual shifts in Trp fluorescence properties.

Another potential explanation for the altered fluorescent properties of LyzPEG is the presence of PEG. It is unlikely that the dimer
formation causes a quenching of the two active tryptophans by cysteine groups of the neighboring protein. Such a quenching would
have reduced the overall fluorescence intensity, but the fluorescence intensity was found to be constant within the concentration
uncertainties for all solutions (S4 Fig). Furness et al. found that the cleft between the α- and β-domain is a binding site for free 4
kDa PEG [62]. Both Trp-62 and Trp-108 are positioned close to the cleft and thus close proximity to PEG could shield or interfere
with the spectroscopic changes during unfolding.

Effect of sucrose

Addition of the preferentially excluded excipient sucrose to Lyz and LyzPEG has no impact on the secondary structure, and a minor
effect on the tertiary structure of the protein, as indicated by far- and near-UV CD spectra, respectively (Fig 1). This minor effect is
not unexpected, as the preferential exclusion of sucrose is known to reduce the structural flexibility of a protein [63] without affecting
the secondary structure [64]. As also expected, the addition of sucrose resulted in increased T  values [32, 40, 65]. This increase
(Fig 2B), 5–6°C for Lyz, and 2.5–5°C for LyzPEG, is observed in all techniques used. The large variability of the change in T  for
LyzPEG is unexpected, with the T  determined by far-UV CD (222 nm) responsible for the low extreme. We have no unequivocal
explanation for this variability, but it may be due to the dimeric nature of the LyzPEG and the associated complex unfolding process.
The effect of sucrose on the LyzPEG appears to have the largest impact on the tertiary fold around some Phe residues, as
suggested by the relatively large change in the near-UV CD spectrum around 257 nm. The relative change in van’t Hoff enthalpy as
a result of excipients (Fig 5) is fairly constant for Lyz with no ΔH  change in the sucrose solution, except in far-UV where it is
higher.

Fig 5. Relative change in enthalpy of unfolding upon excipient addition.
Yellow: DSC calorimetric enthalpy from non-2-state fit, Blue: DSC van’t Hoff enthalpy from non-2-state fit, red: far-UV CD at
222 nm (α-helical content) and green: near-UV CD global fit of 257 nm (Phe signal) and 288.5 nm (Trp signal). The LyzPEG
ratios are calculated based on lower absolute values (see Table 1) likely with a larger impact of fitting uncertainty and thus
resulting in an apparent larger variation.
doi:10.1371/journal.pone.0133584.g005
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The changes in enthalpy of unfolding for LyzPEG are more variable (Fig 5), with a slightly increased van’t Hoff enthalpy, a strong
decrease for the far-UV data and an increase for the near-UV data. This variability could be due to the lower transition enthalpies of
the LyzPEG and concomitant larger noise levels that impacted the fitting. As noted earlier, an increase for the unfolding enthalpy is
expected upon addition of a preferentially excluded excipient [33, 66], and in principle this should be observed irrespective of the
protein folding characteristic that is being followed. In summary, our data do not show any unequivocal differences of the impact of
sucrose on the thermal stability between Lyz and LyzPEG.

Effect of GdnHCl

Lyz denaturation by GdnHCl is known to be pH dependent. At room temperature and neutral pH Lyz starts to unfold at GdnHCl
concentrations around 3 M [34, 35], at pH 4–6 it is denatured above 2 M [67–70] and 2 M is sufficient to start denaturing Lyz below
pH 4 [49, 71]. Thus, at the pH used in this study (7.4) no significant unfolding is expected. This is confirmed by the far- and near-UV
CD (Fig 1), which show no change in the Lyz secondary structure, minor changes in the Lyz tertiary structure, and also minor
changes in the secondary and tertiary structure of LyzPEG. As anticipated, GdnHCl does have a destabilizing effect, as shown by
the significant reduction in unfolding temperature. In our case the Lyz T  is decreased by ca. 16.5–18.5°C and the LyzPEG T  is
decreased a bit less by 14.5–18.0°C (Fig 2C). As expected upon a decrease in melting temperature, the unfolding enthalpy is
reduced by a fourth for Lyz in the presence of GdnHCl (Fig 5) in both DSC, far- and near-UV CD. For LyzPEG this is not the case. A
similar reduction is observed in ΔH , but there are no changes for the far-UV or near-UV CD analyses. The DSC results suggest
that LyzPEG responds similarly to GdnHCl as Lyz. While there are some inconsistencies between CD spectral data and CD thermal
denaturation data both for far- and near-UV CD on the effect of GdnHCl, these are small. In conclusion, GdnHCl also does not
cause any major difference in behavior of Lyz versus LyzPEG.

Conclusion

Overall, our results show that within the limits of the different methods PEGylation of lysozyme has no, or a minor, impact on the
preferential interaction with our model excipients. The preferential exclusion of sucrose and preferential binding of GdnHCl are
somewhat lower for LyzPEG, as shown primarily by the change in melting temperature, but this may well be a result of the altered
folding of LyzPEG caused by the PEGylation itself. Thus, the thermodynamic stabilization and destabilization of PEGylated proteins
by preferentially active excipients is likely similar to that observed for the unmodified protein. This then means that PEGylated
proteins can be stabilized using the same preferential interaction formulation principles as used for non-PEGylated proteins. Further
experiments including multiple proteins should be performed to support this conclusion.

Supporting Information

S1 Fig. DSC results and fitting.

The first row shows raw data (insert: protein and buffer) as well as the data with buffer subtracted and the cubic baseline to be
subtracted before fitting. The second row shows area under the curve (AUC) which is comparable with the enthalpy (only this
number is based on the true data whereas ΔH is based on the fit of the data). The 3  row shows the simplest fitting model: a 2-
state fit (data in black, fit in red). The fit is very poor for LyzPEG in GdnHCl and these values were therefore not used. The 4  row
shows the fit to a non-2-state model and the T  values are listed in S2 Table. It was not possible to fit LyzPEG in presence of
sucrose to a 2-state model.
doi:10.1371/journal.pone.0133584.s001
(PDF)

S2 Fig. CD melting curves (buffer subtracted) and fitting to a 2-state model where ΔC  = 0.

1  row shows far-UV CD melting at 222 nm corresponding to the change in secondary structure (especially α-helix content). The
2  row shows near-UV CD melting at 257 nm corresponding to the phenylalanine signal. The 3  row shows near-UV CD melting
at 288.5 nm corresponding to the Trp fine structure. The 4  row shows the global fit of the two near-UV CD data sets. The T -
values for the far-UV and global fit of near-UV data are presented in S1 Table. The T  and ΔH values for the individual near-UV fit
are presented in S3 Table.
doi:10.1371/journal.pone.0133584.s002
(PDF)

S3 Fig. Global fit of near-UV CD data (257 nm and 288.5 nm) of LyzPEG to a dimer model.

A) no excipients B) 1.0 M sucrose C) 2.0 M GdnHCl. For the simple monomer unfolding model the transition midpoint temperature
(T ) coincides with the temperature, where the change in Gibbs free energy is equal to 0 (T ). In case of the dimer unfolding
model the fitted T  values are higher than the T  values [57]. However, inspection of the fit indicates that population of the
denatured state becomes 50% at the temperatures close to the T  values calculated from the monomer unfolding model.
doi:10.1371/journal.pone.0133584.s003
(PDF)

S4 Fig. Fluorescence spectra of Lyz and LyzPEG in HEPES buffer pH 7.4 at 20°C.

The graphs demonstrate the apparent red-shift in LyzPEG whereas the fluorescence intensity remains the same.
doi:10.1371/journal.pone.0133584.s004
(PDF)

S5 Fig. Gibbs free energy function, calculated with the help of ΔCp values obtained from the slope of ΔHcal vs Tm dependence.

The insert shows the thermodynamic parameters used for ΔCp determination. ΔG was calculated using the modified Gibbs-
Helmholtz equation as described in Vaz DC, Rodrigues JR, Sebald W, Dobson CM, Brito RMM. Enthalpic and entropic
contributions mediate the role of disulfide bonds on the conformational stability of interleukin-4. Protein Sci. 2006;15(1):33–44.
doi:10.1371/journal.pone.0133584.s005
(PNG)

S1 Table. Melting transition temperatures from DSC and CD with Lyz and LyzPEG in various solution conditions.
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S2 Table. DSC results of values obtained with different models.

Integration was performed using a linear baseline while the 2-state and non-2-state were fitted using a cubic baseline as seen in S1
Fig. Integration results are AUC which is comparable to ΔH and T  which is comparable to T . Lyz fitted well to a 2-state model
and are included here. Values from the non-2-state fit presented in the article are included here for comparison.
doi:10.1371/journal.pone.0133584.s007
(DOCX)

S3 Table. Near-UV CD 2-state fit of single data sets recorded at 257 and 288.5 nm.

doi:10.1371/journal.pone.0133584.s008
(DOCX)

S1 Text. CD data quality
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