

The National Institute for Pharmaceutical Technology and Education

Improving quality and lowering costs of pharmaceuticals™

Research needs in pharmaceutical excipients: implications of a global supply chain

FY 2015 GDUFA Regulatory Science Initiatives Part 15 Public Meeting June 5, 2015 Silver Spring, MD

Stephen W. Hoag, Ph.D. University of Maryland, Baltimore; School of Pharmacy **A NIPTE Institution** Email: shoag@rx.umaryland.edu

Improving quality and lowering costs of pharmaceuticals™

Outline

- Introduction
- Research needs for excipients:
 - Fundamental research
 - Material science and process understanding
 - Risk management metric development
 - Identify excipient metrics
 - That relate excipient properties to clinical performance
 - Facilitate change control
 - Cataloging material properties
- Summary

Topic #6. Strategies for enhancing quality and equivalence risk management during generic drug product development, during regulatory review, and/or throughout the drug product's lifecycle following initial approval.

Should be done together

 $\sigma_{Tot} = \sigma_{Exc} + \sigma_{API} + \sigma_{PC} + \sigma_{Int} + \sigma_{Mes}$

Excipient Property Relations

Material Properties

- Particle size
- Molecular weight
- Degree of substitution
- Bulk, true density
- Etc.

<u>QTPP</u>

- Clinical use factors
- USP specs.
- PK/PD performance
- Bioavailability
- Misuse risk minimization
- Shelf life

Lack of knowledge makes risk management difficult & empirical

- Empirical analysis is only as good as studies done to develop risk models
- Excipient variability complicates studies that need to be done
 - Lot-to-lot, grade, manufacturing site, manufacturer, etc.
- Makes change control difficult

Fundamental Research \rightarrow **Ideal End Point**

sciencephotolibrary

-Determining material properties and material variation is essential to reach desired end point
-FDA should partner with other agencies to support this research

Image source: http://www.sciencephoto.com/media/350843/enlarge; http://www.sciencephoto.com/media/350846/enlarge http://programminggeeks.com/building-airplanes-on-a-computer/

Identifying Performance Metrics

- By nature excipients are highly variable materials
 - Thus, material science is key to process understanding
 - For each dosage form type: need to identify properties that affect QTPP
 - For some properties this is well known
 - E.g., particle size and flow
 - For most properties this is not well known
 - E.g., water activity and stability
 - Degree of substitution on a polymer and bioavailability
 - Should develop risk evaluation scheme for excipients section of the CMC
 - Should be open to public and built with in put from FDA, industry and academics

Global Supply Chain

- With globalization of the supply chain there has been a dramatic increase in the kinds and sources of excipients
 - Excipient vendors from all over the world now sell excipients in many markets
 - Products are now manufactured all over the world and imported to the USA, often using local excipient suppliers
 - In an effort to meet drug manufacturers needs excipient vendors have developed many new excipients
 - E.g., new excipients for low solubility drugs

Comparison of different grades of MCC

NMT= not more than

Comparison of different grades from different manufacturers--MCC

FMC_= FMC BIOPOLYMERS

JRS = J Rettenmaier & Söhne GmbH and Co.KG

AKC = Asahi Kasei Corporation

Manufactures	Grades	Particle Size, µm	Moisture, %	Loose Bulk Density, g/cc	
FMC	Avicel PH101	50 3.0-5.0		0.26-0.31	
IDE	Vivapur 101	65		0.26-0.31	
JRS	Emcocel 50M	65		0.25-0.37	
	PH-101	- 50	2.0-6.0	0.22	
AKC	UF-711			0.21	
	KG-802			0.12	
	KG-1000			0.29	
FMC	Avicel PH-102	100	3.0-5.0	0.28-0.33	
IDC	Vivapur 102	100		0.28-0.33	
JRS	Emcocel 90M			0.25-0.37	
AKC	PH-102	90	2.0-6.0	0.30	

Change Control in a Global Supply Chain

- Often excipients are considered an interchangeable commodity item
 - In addition to the Certificate of Analysis, one needs to identify critical material attributes that need to be the same for a change not affect the patient
 - Key material attributes depends on the type of dosage form
 - Given our knowledge of excipient properties, assessing what changes won't affect the patient can be difficult
- Industry, FDA and academics should develop a set of metrics for assessing excipient changes

Cataloging Material Properties

- Risk assessment methods are expensive and time consuming to develop
 - It would be very beneficial if all these efforts could be cataloged into a central location
- This information should be cataloged into a database that can track excipient properties:
 - Different vendors
 - Lots
 - Grades
 - Etc.
- The database should have tools to take information from the database and use it in a risk analysis
- Also, we are entering the area of "Big Data"
 - It would go a long way to improve product quality to be able to data mine excipient properties to identify unknown properties that affect product performance
 - Data mining can be used to guide theoretical studies on excipients

A Publicly Available Database

Nomenclature

- Compendial Name
- CAS Number
- Chemical structure
- Common & Product Name
- Description & Functional Category

Property Measurements

- Traceable
- Searchable
- Sortable
- Organized data into families by
 - Measurement type or chemical class

8	P	Excipients Catalo	9						
Show	ow 10 🔻 entries First Previous 1 2 Next Last								
^ ID	7	Compendial Name	CAS Number	© Chemical Name	Description	≎ Narrative	≎ Image		
1		α Lactose Monohydrate	5989-81-1	Lactose	-	LactoseNarrative			
2		Anhydrous α-Lactose	63-42-3	Lactose	270	LactoseNarrative	- Chy		
3		Anhydrous β-Lactose	63-42-3	Lactose	and the	8			
4		Microcrystalline cellulose	9004-34-6	Microcrystalline cellulose	A CONTRACTOR	a Branding			
5		Partly Amorphous Lactose	63-42-3	Lactose			Ø		
6		Lactose Monohydrate	5989-81-1, 10039-26-6, 64044-51-5	$O-\beta$ -d-Galactopyranosyl-(1 \rightarrow 4)- α -d-glucopyranose monohy	1.15		22		
7		Anhydrous Lactose	63-42-3	$O-\beta$ -d-Galactopyranosyl-(1 \rightarrow 4)- β -d-glucopyranose	and the second second				
8		Lactose, Spray-Dried	5989-81-1, 10039-26-6, 64044-51-5 and 63-42-3	mixture of α -and- β -lactose, and O- β -d-galactopyranosyl-(1– d-glucopyranose monohydrate	10kU ×1+868 1 3.4m	BATHU CEOS	0		
9		Maltodextrin	9050-36-6	Maltodextrin	-	-	1.71		
10		Mannitol	69-65-8	D-Mannitol	-		-		
ID		Compendial Name	CAS Number	Chemical Name	Description	Narrative	Image		

Improving quality and lowering costs of pharmaceuticals[™]

Summary

- Greatest needs
 - Fundamental material science research on excipient performance
 - For each dosage form type identifying performance metrics that relate to product efficacy and can be used in a risk analysis
 - Develop risk analysis schemes for excipient change control for excipients coming for different sources
 - Cataloging excipient information in a database or knowledge management system