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Abstract 
 

Antibiotic-loaded bone cement (ALABC), is the common designation for polymethylmethacrylate 

bone cement (BC), used as drug-delivery system to prevent or to treat bone related-infections. 

Although presenting some disadvantages, the use of ALABC is still considered the standard of 

care for patients with chronic bone and joint infection, providing local delivery of high levels of 

antibiotics for an extended period without exceeding systemic toxicity, while being a more cost-

effective procedure when compared to cementless implants. Described and reported ALABCs 

drawbacks include the inadequate release of the loaded antibiotic, the lack of bioactivity and the 

poor diversity of antibiotics available in commercial premixed formulations.  

The base-concept of this study was to develop a novel ALABC with improved antibiotic release 

through the inclusion of particulate drug delivery systems and a release modulator without 

hampering the antibacterial activity of antibiotics or the BC mechanical and biocompatibility 

properties.  

Levofloxacin, a 3rd generation fluoroquinolone, and minocycline, a tetracycline, were the elected 

antibiotics to load into BC. The rationale behind this choice was related to their adequate 

microbiological and physicochemical characteristics. Both antibiotics present a broad-spectrum of 

activity against the main organisms responsible for bone and joint infections, namely 

Staphylococcus spp. Physicochemically, both are molecules with amphiphilic characteristics - 

greater for levofloxacin; soluble in acidic aqueous media; with high melting points (over 200ºC) 

and available in powder form; the latter two characteristics being restrictive when choosing for 

antibiotics to load into BC. 

Two main strategies were explored for the inclusion of antibiotics into particulate systems 

previous to incorporation into BC: 1) by encapsulation into PMMA; 2) by adsorption into calcium-

phosphate particles (CaPs).  

To improve drug release from the matrix, a pharmaceutical excipient was used as release 

modulator, lactose, and loaded into the BC powder component. 

A step-by-step approach was pursued: 

1st. Assessment of antibiotics encapsulation into PMMA particles and of antibiotics in vitro release 

followed by loading antibiotic-loaded-particles into BC; 
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The PMMA biopolymer was chosen to prepare PMMA-particles (PMMAp) foreseeing a 

mechanical reinforcement of the final ALABC matrix, because PMMA is the base-polymer of both 

systems. Plain, levofloxacin- and minocycline-loaded particles were successfully prepared using 

the double-emulsion solvent evaporation method. Since only minocycline-PMMAp registered an 

interesting in vitro release profile, studies proceeded with these particles and 15% (wparticles/wBC) 

were loaded into BC, which, on the other hand, hindered BC setting. 

2nd. Effect of the inclusion of lactose into BC, monitoring antibiotics in vitro release, quasi-static 

mechanical properties and biocompatibility of the resultant matrices; 

Each powdered antibiotic was directly loaded into BC, and lactose, was added to each 

formulation. The amount of antibiotic loaded corresponded to the low-dose currently used in 

commercial ALABCs formulations - 2.5% (w/wBC) - in order to provide an effective antimicrobial 

activity and preserve the mechanical properties. As to lactose, 10% (wL/wBC) resulted in the 

optimised amount to be loaded into BC. This lactose-modified BC matrix allowed total release of 

the minocycline after a one-week period, and a 3.5-fold increase of levofloxacin release compared 

to control without lactose, over a 7-week period. 

3rd. Inclusion of levofloxacin-adsorbed doped CaPs into BC and monitoring of the antibiotics in 

vitro release, quasi-static mechanical properties and biocompatibility of the resultant matrices; 

Intending to improve antibiotic release and bioactivity calcium-phosphate particles (CaPs) were 

tested as drug delivery system. Mg- and Sr-doped CaPs were prepared as levofloxacin carriers 

and were loaded into the 10% (wL/wBC) lactose-modified acrylic BC at 2.5% (wCaPs/wBC). This 

novel BC composite revealed a sustained release of levofloxacin over an 8-week period, with 

concentrations over the Staphylococcus spp. minimum inhibitory concentration values after 48 h. 

 

The novel 10% (wL/wBC) lactose-loaded ALABC, independently of the antibiotic or CaPs loaded, 

followed the same release mechanistic based on dissolution and subsequent diffusion of the 

antibiotic from the matrix. Both minocycline and levofloxacin maintained antibacterial activity against 

the Staphylococcus spp. after being released from ALABC matrix. Though this result suggest that 

polymerization setting did not affect these antibiotics, a novel in silico approach revealed the 

existence of covalent and non-covalent interactions between the levofloxacin and the BC matrix.  

Evaluation of the antibiotic-lactose-modified BC matrices regarding the quasi-static mechanical 

properties according to standard ISO 5833, clearly demonstrated that the mechanical performance 

was not compromised.  

Biocompatibility was also successfully evaluated following standard ISO 10993-5 with fibroblasts 

and osteoblasts cell lines incubated with extracts or in direct contact with BC composites, 

respectively. Results have shown that neither lactose nor the loaded antibiotics compromised the 

biocompatibility of the BC. 
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All considered, these features justify the potential of lactose-loaded BC as a valuable step forward 

on the development of novel BC composites, namely with lactose, as release modulator, and 

doped CaP particles, as antibiotic carriers, for the control of bone and joint infections. 

 

Keywords: Acrylic bone cement; Antibiotic delivery systems; Calcium phosphate in bone cement; 

Mechanical properties; Biocompatibility 
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Resumo 
 

A designação de cimento ósseo acrílico com antibiótico incorporado (ALABC - acrónimo 

proveniente da designação inglesa), refere-se ao cimento ósseo (BC - acrónimo proveniente da 

designação inglesa) cujo polímero-base é o polimetilmetacrilato (PMMA), e que é vulgarmente 

utilizado como sistema de administração local de antibióticos para prevenir ou tratar infeções 

ósseas.  

O uso de ALABC foi introduzido nos anos 1970 por Buchholz e Engelbrecht com um intuito 

profilático ao desenvolvimento de infeções ósseas e que permanece até hoje. Atualmente, na 

Europa a realização de artroplastia cimentada continua a ser preferencialmente realizada, e com 

menores custos do que a artroplastia não cimentada. A utilização do PMMA permitiu reunir a 

função estrutural do BC de fixação da prótese ao osso a uma função profilática ao 

desenvolvimento de infeções por conter antibióticos de largo espetro de ação incorporados. É 

também considerado o tratamento de eleição para pacientes com infeções crónicas das juntas ou 

do osso através da aplicação em procedimentos de revisão de infeção em artroplastia, na forma 

de esferas ou de espaçadores, permitindo uma veiculação in situ de elevadas concentrações de 

antibiótico durante um período de tempo prolongado sem, contudo, exceder a toxicidade 

sistémica nos tecidos circundantes. Existem formulações comerciais de BC contendo antibióticos 

de largo espectro de atuação contra os microorganismos responsáveis pelo aparecimento da 

infeção óssea. Contudo, os problemas associados à inadequada cinética de libertação do 

antibiótico a partir da matriz, tem permitido o desenvolvimento de formas de bactérias 

resistentes. 

Outras desvantagens destes cimentos incluem a baixa bioatividade da matriz, que dificulta a 

osteointegração do tecido ósseo na superfície do BC podendo no limite conduzir à falência do 

implante, e a pouca diversidade de antibióticos disponíveis nas formulações comerciais do 

ALABC que se resumem à gentamicina e tobramicina (aminoglicosideos), incorporados 

individualmente para os casos de uso profilático, ou combinados com vancomicina 

(glicopeptideo) ou clindamicina (lincosamida) para situações de revisão da artroplastia 

diagnosticada com infeção. 
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A matriz do ALABC é considerada uma estrutura monolítica na qual a porosidade tem um papel 

primordial na libertação dos antibióticos. O número de poros disponíveis, o seu tamanho e a 

intercomunicação entre si, muitas vezes, tortuosa e sem vias de saída, influi no processo de 

penetração dos fluidos até ao interior da matriz assim como na difusão do antibiótico para o 

exterior da mesma, após a sua dissolução. Por sua vez, a entrada do fluido, de carácter aquoso, 

é dificultada pela hidrofobicidade destas matrizes que impede o seu avanço para o interior do 

biomaterial.  

As propostas para melhorar estes problemas passam muitas vezes pela adição de componentes 

hidrofílicos e hidrossolúveis que, por um lado, diminuem a hidrofobicidade permitindo um melhor 

contacto entre o fluido e a matriz e, por outro, promovem o aumento da porosidade e 

consequentemente da libertação do antibiótico durante o movimento de saída do fluido do interior 

da matriz do biomaterial.  

A grande desvantagem destas propostas reside no fato de a inclusão de novos constituintes ao 

alterarem a microestrutura base do BC poderem comprometer o seu desempenho, impedindo a 

sua utilização em artroplastia como profilaxia das infeções ósseas, na qual a função estrutural 

tem um papel preponderante e incontornável. 

 

O conceito base deste estudo foi desenvolver uma matriz inovadora de ALABC com um melhor 

desempenho na libertação do antibiótico, através da inclusão de particulas como sistemas de 

libertação dos antibióticos, e de um excipiente com comprovada eficácia e segurança como 

modelador de libertação sem, contudo, prejudicar as suas propriedades mecânicas ou a 

biocompatibilidade. 

Os antibióticos selecionados para incluir no BC foram a levofloxacina, uma fluoroquinolona de 3ª 

geração, e a minociclina, uma tetraciclina. O racional da escolha está relacionada com as 

características microbiológicas e físico-químicas destes antibióticos. Ambos apresentam largo-

espectro de atividade contra os principais microorganismos responsáveis pelo desenvolvimento 

das infeções ósseas e articulares, nomeadamente as estirpes Staphylococcus spp. Físico-

quimicamente estes antibióticos são moléculas pequenas; com características anfifílicas, mais 

acentuadas na levofloxacina; facilmente solúveis em meio aquoso a pH inferior a 6; com ponto de 

fusão acima dos 200ºC; disponíveis na forma de pó, sendo estas últimas características 

condicionantes na escolha de antibióticos para serem incorporados no BC.  

Duas principais estratégias foram exploradas para incorporar estes antibióticos em partículas 

previamente à inclusão na matriz do BC: 1) por encapsulamento em partículas de PMMA; 2) por 

adsorção em partículas de fosfato de cálcio. 

Para melhorar a libertação do antibiótico foi utilizado um excipiente como agente modulador de 

libertação, a lactose, incorporado diretamente na componente em pó do BC. 
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A metodologia seguida foi a seguinte: 

1.º Caracterização do sistema de partículas de PMMA contendo os antibióticos encapsulados e 

estudo in vitro do perfil de libertação dos antibióticos antes de incluir as partículas na matriz do 

BC; 

A escolha do polímero PMMA para a preparação das partículas para encapsular os antibióticos 

teve como principal motivo o fato de ser o mesmo biomaterial base do BC prevendo-se assim 

evitar o detrimento das propriedades mecânicas finais do novo ALABC. A inclusão de 

substâncias “estranhas” na matriz leva sempre a alterações e reajustes ao nível da 

microestrutura e consequentemente na resistência mecânica; sendo o mesmo material a incluir 

na matriz, esperava-se que esse efeito não fosse significativo. 

O método da dupla-emulsão por evaporação de solvente foi utilizado com sucesso na preparação 

de lotes de partículas sem antibiótico e com os antibióticos encapsulados. Após o estudo in vitro 

da libertação dos antibióticos em meio aquoso, apenas as partículas de minociclina-PMMAp 

libertaram antibiótico, e consequentemente o estudo prosseguiu para a etapa seguinte tentando 

incorporar 15% (wpartículas/wBC) no BC, que impediram a cura do cimento. 

2.º Estudo do efeito da inclusão da lactose na matriz do BC, monitorizando a libertação in vitro 

dos antibióticos também introduzidos na matriz do BC, as propriedades mecânicas estáticas e as 

propriedades de biocompatibilidade das matrizes resultantes; 

Cada antibiótico, em pó, foi incorporado diretamente no BC juntamente com a lactose também 

em pó. A quantidade de cada antibiótico incorporada correspondeu à dose-baixa usualmente 

utilizada nas formulações comerciais de ALABCs - 2,5% (w/wBC) - a fim de proporcionar quer uma 

atividade antimicrobiana eficaz quer a preservação das propriedades mecânicas. Relativamente 

à lactose, o melhor valor a incorporar no BC resultou ser 10% (wL/wBC). Esta matriz de BC 

modificado com lactose permitiu a libertação total da minociclina após uma semana e um 

aumento de libertação de levofloxacina de 3,5 vezes o valor libertado de uma matriz controlo sem 

lactose, ao longo de 7 semanas.  

3.º Inclusão no BC de particulas de fosfato de cálcio com levofloxacin adsorvida e monitorização 

da libertação in vitro do antibiótico, das propriedades mecânicas e da biocompatibilidade das 

matrizes resultantes; 

Com a intenção de melhorar a bioatividade da matriz do BC modificada com lactose, foi testada a 

incorporação no BC o uso de partículas de fosfato de cálcio com duas funções, a de agente 

bioativo e a de sistema de libertação de fármacos, o que até ao momento nunca foi descrito. 

Assim, foram preparadas partículas de fosfato de cálcio dopado, quer com iões magnésio (Mg) 

quer com iões estrôncio (Sr), e com o antibiótico – a levofloxacina – adsorvida na sua superfície. 

A opção de utilizar fosfato de cálcio dopado com Mg e Sr deveu-se a estes catiões terem vindo a 

ser apontados como potenciadores do efeito de osteocondutividade dos fosfatos de cálcio, o que 

ia de encontro ao objetivo do trabalho. De seguida, 2,5% (wCaP/wBC) destas partículas (fosfato de 
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cálcio com levofloxacina adsorvida) foram incorporados, conjuntamente com 10% (wL/wBC) de 

lactose, no cimento ósseo. Como resultado, ocorreu uma libertação sustentada de levofloxacina 

durante 8 semanas, em que após 48 h as concentrações de levofloxacina estavam acima dos 

valores das concentrações mínima inibitória das Staphylococcus spp. 

 

Este novo ALABC modificado com 10% (wL/wBC) lactose, independentemente do antibiótico ou 

dos fosfatos de cálcio incorporados, seguiu sempre o mesmo mecanismo de libertação baseado 

em duas etapas, a dissolução do antibiótico seguida da sua difusão através da matriz do ALABC. 

Tanto a minociclina como a levofloxacina mantiveram sempre a sua atividade antibacteriana 

contra as estirpes Staphylococcus spp. após a libertação da matriz do ALABC. Este resultado 

sugere que a reação de polimerização não afetou os antibióticos incorporados e que estes se 

libertaram da matriz. Um estudo inovador in silico revelou a formação de ligações químicas 

covalentes e não covalentes entre a levofloxacina e a matriz de ALABC durante a reação de 

polimerização, o que terá contribuído para a não libertação total da levofloxacina. 

As matrizes dos ALABCs modificados foram avaliadas em relação as suas propriedades 

mecânicas quasi-static seguindo a norma ISO 5833 e o seu desempenho mecânico não foi 

comprometido devido à inclusão dos aditivos referidos. Foram ainda efetuados estudos de 

biocompatibilidade das matrizes por contato direto e de citotoxicidade dos extratos de libertação 

dos antibióticos seguindo as especificações da norma ISO 10993-5 em linhas celulares de 

osteoblastos e fibroblastos que demonstraram quer a biocompatibilidade quer a ausência de 

toxicidade dos antibióticos libertados e da lactose incorporada.  

No global, os resultados obtidos justificam o potencial do BC modificado com lactose como um 

valioso passo em frente no desenvolvimento de novos compósitos bioativos de BC, 

nomeadamente com lactose, como agente modulador da libertação de antibióticos, e com 

partículas de fosfato de cálcio, como portadores de antibióticos, para o controle de infeções 

ósseas e articulares. 

 

Keywords: Cimento ósseo acrílico; Sistemas de libertação de antibióticos; Fosfatos de cálcio no 

cimento ósseo; Propriedades mecânicas; Biocompatibilidade 
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(n = 15). 
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Fig. 7 Phase-contrast micrographs of the interface of the cell layer, L929 and MG63, with outer 

contact areas of the Lev[BC10L] matrix.  

Fig. 8 Fluorescence images of MG63 and L929 cell lines on glass slides and surface of 

biomaterial (red staining of actin in cells cultured on the surface after 3 days of culture; ×10 

zoomed to ×40 magnification) 
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Fig. 1 Mechanical properties of the BC composites (mean±SD; n=5), compressive strength, 

flexural strength and flexural modulus. Dashed lines represent the ISO 5833 recommended 

values for each mechanical property. 

Fig. 2 FEG-SEM micrographs, with ×30 magnification, of the BC compression specimens cut-off 

surface (upper-row); BSE images, with ×200 magnification, of the same area but with higher 

magnification (middle-row); and EDS spectra presenting the elemental composition of each CaPs 
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Fig. 3 XRD patterns for comparison of the BC composites loaded with Lev[CaPs] particles. 

Fig. 4 In vitro release profiles for [Lev(HA)]BCL, [Lev(Sr-HA)]BCL and [Lev(Mg-HA)]BCL matrices 

over a 8-week period (mean±SD; n=9). Dashed curved lines show the fitting curves obtained from 

the coupled mechanism kinetic model. Dashed straight lines represent de MIC values for S. 

aureus and S. epidermidis. 

Fig. 5 Zoom of the time-period [0 h; 48 h] from Fig. 4, evidencing the time-points to which each 

matrix delivered an amount of levofloxacin above the MIC values for S. aureus and S. 

epidermidis. 

Fig. 6 Cell viability of the BC composites regarding the MG63 (up) and the L929 (down) cells. 

(t1) and (t2) represent the release time of levofloxacin extract solutions, 30 min and 24h, 

respectively (mean±SD; n = 12). 

Fig. 7 Phase-contrast micrographs of the interface of the cell layer, L929 and MG63, with outer 

contact areas of the different BC composites and controls. 

Fig. 8 Fluorescence images of MG63 and L929 cell lines on glass slides and surface of BC 

composites (red staining of actin in cells cultured on the surface of the materials; ×40 

magnification). 
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Annex: Development and validation of similar HPLC-UV methods for 
fluoroquinolone and tetracycline monitoring in relevant biomimetic media 

Fig. 1 UV-absorption spectra of levofloxacin (A) and minocycline (B) with the respective 

molecular structure representation. The maxima absorption wavelengths are pointed out in each 

UV-spectra. 

Fig. 2 HPLC chromatograms at 284 nm of a levofloxacin (L) solution at 2 µg/mL and IS 

(minocycline, M) in H2O (A), NaCl (B), PBS (C) and Müeller-Hinton broth (D). 

Fig. 3 HPLC chromatograms at 273 nm of a minocycline (M) solution at 2 µg/mL and IS 

(levofloxacin, L) in H2O (A), NaCl (B), PBS (C) and Müeller-Hinton broth (D). 
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Aims and Organisation of the Thesis 
 

The base-concept of this work was to develop a novel ALABC by including particulate antibiotic 

delivery system, and a pharmaceutical excipient, lactose, into commercial bone cement (BC) to 

attain an improved antibiotic release profile without hampering antibacterial activity of antibiotics 

or the mechanical and biocompatibility properties of the BC. 

Different approaches were explored to load the antibiotics into BC and improve drug release from 

the matrix, each carried out through a sequence of steps described as follows: 

1. Antibiotic encapsulation into PMMA particulate systems. 

ª Characterisation of the PMMA particles 

PMMAp were produced using the double-emulsion solvent evaporation method and 

characterised regarding morphology, size distribution, surface charge, encapsulation 

efficiency and drug loading. 

ª Assessment of antibiotic stability after particle formulation 

PMMAp preparation involves harsh conditions including high-shear agitation, contact 

with organic solvents, as well as temperature and pressure variations during freeze-

drying. Therefore, antibiotics were evaluated for physicochemical integrity and stability 

using standard techniques (e.g. FTIR). Antimicrobial activity was studied using standard 

microbiology assays with relevant bacteria strains, such as Staphylococcus aureus and 

Escherichia coli. 

ª Antibiotic release from PMMA particles 

In vitro antibiotic release experiments were performed in sink conditions according to 

standard methodology. Different kinetic models were applied to study the release profile 

of antibiotics from the different antibiotic-loaded PMMAp formulations. 

ª Loading of PMMA particles into BC 

An amount of particles with microbiological significance was thoroughly mixed with the BC 

powder component before adding the monomer to proceed with polymerisation according 

to the product specifications. The BC curing process was then monitored. 
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2. Use of lactose as a release modulator of the BC matrix. 

ª Assessment of the bulk structure after antibiotics and lactose loading 

In the presence of foreign-molecules the PMMA polymer suffers changes and 

readjustments resulting in increased porosity. SEM analysis, FTIR, XRD and porosity 

evaluation were performed to assess these structure changes. 

ª Release profile of antibiotics from ALABC 

In vitro release experiments were performed in sink conditions using different matrices 

of ALABCs. Standard methodology and a relevant release medium were used. Different 

kinetic models were applied to better understand the mechanistic profile of antibiotic 

release from the different matrices. 

ª Assessment of antibiotic stability after loading into BC 

The occurrence of a free radical vinyl polymerisation reaction of the monomer 

methylmethacrylate (MMA) occurs during BC setting, which is an exothermic reaction. 

Antibiotics were evaluated for physicochemical integrity and stability using FTIR and 

XRD. Also, antimicrobial activity after antibiotic release was assessed against relevant 

bacteria strains (S. aureus, S. epidermidis and E. coli) using standard microbiological 

assays. 

ª Assessment of mechanical properties and biocompatibility 

The incorporation of “foreign-molecules”, like the antibiotics and lactose, always induces 

matrix structure changes. Quasi-static mechanical properties and biocompatibility 

compliance of the novel ALABC were evaluated according to international guidelines, 

ISO 5833 and ISO 10993-5, respectively. 

 

3. Loading doped-CaP particles, as levofloxacin delivery systems, into BC. 

ª Assessment of the bulk structure after CaPs loading 

Eventual structural change of the modified-BC composite was monitored through SEM, 

XRD and surface energy analysis. 

ª Release profile of antibiotic from the CaPs-loaded BC 

In vitro release experiments were performed following the same methodology refered 

above. Mathematical kinetic modelling was applied to describe the mechanistic profile of 

levofloxacin release from this BC composite. 

ª Assessment of antibiotic stability after release from the CaPs-loaded BC 

For the same reason referred above, antimicrobial activity of the levofloxacin released 

from BC-composites was assessed against relevant bacteria strains (S. aureus, S. 

epidermidis and E. coli) using standard microbiological assays.  
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ª Assessment of mechanical properties and biocompatibility of the CaPs-loaded BC 

For the same reason explained earlier in 2., quasi-static mechanical properties and 

biocompatibility compliance of the novel CaPs-loaded BC composite were evaluated 

according to international guidelines, ISO 5833 and ISO 10993-5, respectively. 

 

 Therefore, this thesis is organized as follows: 

 Chapter 1 provides a brief overview of BC historical and chemical background, and of the 

development of related infections and causative microorganisms, including the concept of ALABC 

as a breakthrough in prophylaxis and treatment of related-bone infections. A summary of the 

kinetic models for drug release from the biomaterial matrix is also given, as well as the role of 

different additives and their effect on the mechanical performance. 

 

Chapter 2 describes the preparation of PMMA particulate systems for the encapsulation of 

levofloxacin and minocycline, using the double-emulsion solvent evaporation method, full 

characterisation of particles, in vitro release studies, microbiological assessment of the released 

antibiotics and loading of the selected particle formulation into BC. 

 

Chapter 3 presents the assessment of the main properties of the ALABC prepared by direct 

loading of antibiotics into a lactose-modified BC. Is divided in two sections:  

 

 Section 1 describes the loading of minocycline into lactose-modified acrylic BC, solid-

state characterisation, in vitro release profile, antimicrobial stability, biomechanical properties, and 

in vitro biocompatibility studies. An optimised lactose-loaded BC matrix is proposed. It is 

published as a full paper. 

 Section 2 describes the loading of levofloxacin into the previously optimised lactose-

loaded acrylic BC. Studies include preparation, solid-state characterisation, in vitro release profile, 

antimicrobial stability, in silico evaluation of levofloxacin-BC chemical bonding, biomechanical 

properties, and in vitro biocompatibility tests. It is published as a full paper. 

 

Chapter 4 describes the loading of Mg- and Sr-doped calcium-phosphate particles (CaPs), as 

bioactive agents and levofloxacin carriers, into the optimised lactose-loaded acrylic BC. 

Preparation and inner structure characterisation, in vitro release profile, antimicrobial stability, 

biomechanical properties, and in vitro biocompatibility tests are presented. It is published as a full 

paper. 
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Chapter 5 presents a general discussion of the obtained results, conclusions and near-future 

perspectives  . 

 

Annex describes the HPLC-UV method validation developed to quantify the levofloxacin resultant 

from all in vitro release studies. 
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Foreword 
The will of helping people live longer and healthier lives is leading breakthrough research and 

innovative medicines.  

Fighting against serious diseases and bringing cure hope to patients in suffer is the commitment 

of worldwide researchers, clinicians and pharmaceutical companies. All engaged in finding new 

solutions – from early discovery to market access – that may help prevent and/or treat diseases. 

One of those breakthroughs was the concept of drug targeting introduced by Paul Ehrlich in the 

mid-1950s (Kreuter, 2007).  

Drug targeting, in opposition to traditional systemic treatments, has the ability to achieve rapidly 

the site of illness and control the drug release over a specified period of the treatment, ensuring 

high drug efficiency with minimal systemic toxicity (Meani and Romanó, 2007). This was a 

tremendous and promising challenge that conducted the drug-delivery domain from being a 

simple part of the pharmaceutical production process to become a driving force for innovation and 

benefit to the patients, with improved compliance and medical outcomes (Thassu et al., 2007). 

Clearly, this strong development closely related to materials science burst development, 

specifically influenced biomaterials science research and ultimately led to an adjustment in its 

updated definition: “A biomaterial is a substance that has been engineered to take a form which, 

alone or as part of a complex system, is used to direct, by control of interactions with components 

of living systems, the course of any therapeutic or diagnostic procedure, in human or veterinary 

medicine”, which was introduced by D.F. Williams (2009) in his leading opinion paper.  

This was of particular importance in the history of biomaterial-related infections where different 

methods for antibiotic encapsulation intended for local delivery without invasive procedures have 

been under investigation (Kreuter, 2007). In fact, after Sir John Charnley in the 1960s succeeded 

in anchoring femoral head prostheses using acrylic bone cement (BC) and established its use for 

orthopaedic purposes, Buchholz and Engelbrecht in the late 1970s used the acrylic BC as a drug 

delivery system for gentamicin, a broad-spectrum antibiotic, aiming prophylaxis and treatment of 

prosthetic joint infection (Buchholz and Engelbrecht, 1970).  

Subsequently, the use of antibiotic-loaded acrylic bone cement (ALABC) has been considered the 

standard of care for patients with chronic bone and joint infection, providing local delivery of high 

levels of antibiotics for an extended period without exceeding systemic toxicity, while being a cost-

effective procedure when compared to cementless implants (Jameson et al., 2015; Zilberman and 

Elsner 2008). 
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Herein a comprehensive insight on the ALABC as a well-established procedure in cemented 

arthroplasties and its importance for prophylaxis and treatment of prosthetic joint infection will be 

presented. Also, the attempts on the development of customisable acrylic BC, almost on demand 

for each particular case, will be described. 
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1. The Bone Cement  

1.1. History and Biological Backgrounds of Bone Cement 

The core material of BC is the synthetic polymer polymethylmethacrylate, commonly referred to 

as PMMA. Its history dates back to 1901 when the chemist Otto Röhm wrote a dissertation 

entitled “Polymerization Products of Acrylic Acids” (Kuhn, 2005). But it was not until 30 years later 

that it found commercial use first in the automobile market and then as a structural material 

through the well-known Plexiglas®, a glass-like hard material. This material presented formidable 

properties such as toughness, highly transparency with excellent resistance to ultraviolet radiation 

and weathering. Moreover, it could be coloured, moulded, cut, drilled, and formed. PMMA belongs 

to the first generation of biomaterials, according to Hench’s classification, characterised for being 

bioinert (Hench, 1980).  

Currently, in the biomedical domain, PMMA is ineluctable in areas such as ophthalmology 

(contact and intraocular lenses), nephrology (dialysis membranes), dentistry (dental crowns and 

bridges) and on orthopaedics. In pharmaceutical technology it has been proposed for the 

microencapsulation of vaccines and coatings for oral drug delivery (Kreuter, 1992). 

PMMA is a macromolecular polymer structure obtained by a free radical vinyl polymerisation 

reaction of the monomer methylmethacrylate (MMA) (Fig.1). 

	
  
Fig. 1 Polymerization reaction leading to a PMMA chain with n monomers. 

 

Due to its remarkable rigidity properties PMMA was coveted to clinical use in orthopaedics. The 

first attempt was made with the polymer resultant from a polymerisation at 100°C by mixing 

ground PMMA powder to a liquid monomer MMA and benzoyl peroxide. This polymer was used 

as an attempt to close cranial defects in monkeys in 1938 and later for closing cranial defects in 

humans by producing plates in laboratory to adjust the hardened material on place. Then, the 

important discovery by Degussa and Kulzer (1943), of the self-polymerization of MMA at room 

temperature when added a tertiary amine as co-initiator, was considered the hour of birth of 

PMMA-bone cements, in a process still valid until today (Kuhn, 2005). From that moment on, 

PMMA attracted interest in the field of orthopaedics. In the middle 1940s Jean and Robert Judet 

reported the development of acrylic femoral hemiarthroplasties and in the early 1950s, Kiaer and 

Haboush reported the femoral fixation implants. Also, the occurrence of the II World War and the 
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thousands of resulting injuries with amputated limbs and serious skull damages bursted the 

biomedical use of PMMA in orthopaedics (reviewed by Kuhn, 2005). 

However, modern success and recognition of PMMA in orthopaedics is attributed to Sir John 

Charnley, a British orthopaedic surgeon who pioneered the hip replacement operation when in 

1960s he succeeded in anchoring femoral head prostheses using PMMA as BC (Fig. 2). 

Charnley’s early clinical accomplishments established a foundation for the continued use of 

PMMA in orthopaedics (reviewed by Kuhn, 2005) and is recognised as one of the medical 

breakthroughs of the 20th century (Fig. 2). 

 
 

Fig. 2 Sir George Charnley and a stamp tributing in 2010 “Total hip replacement operation pioneered by 
Sir John Charnley 1962” as a Medical Breakthrough (images adapted from: http://www.nw-hip-knee-
clinic.com/total-hip-replacement.html and http://www.collectgbstamps.co.uk/explore/issues/?issue=22580) 
 

PMMA-based BC, simply called as BC, is an inevitable biomaterial across the orthopaedic 

domain, being currently used in arthroplasties (Lewis, 2015), vertebroplasthy, kyphoplasty (Meng 

et al., 2013; Papanastassiou et al., 2014; Robinson et al., 2011), cranioplasty (Aydin et al., 2011), 

and craniomaxillofacial reconstruction surgery (Fernandes da Silva et al., 2014). Its main 

indications are in joint rebuild due to osteoarthritis, rheumatoid arthritis, traumatic arthritis, 

vascular necrosis, osteoporosis and severe secondary joint destruction after trauma and review of 

previous techniques of arthroplasty as well as definitive skull implants. In spite of its non-adhesive 

properties, BC provides a good mechanical anchorage between the irregular bone surface and 

the prosthesis. By filling the free space between the implant and bone tissue, the BC allows an 

even distribution of weight, and other forces, between the various components and bone (Fig. 3). 

Through the years, however, the “bone cement” designation became also indifferently used for 

the second generation of biomaterials that gradually introduced requirements as bioactivity and 

osteoinduction into their design, thus promoters of bone regeneration. Namely, vertebroplasty and 

kyphoplasty domains adopted injectable BCs introducing calcium phosphates, calcium sulphates 

and composites along with the acrylic BCs. These materials, now commercialized under a 

plethora of compositions and different brands, present the upside of being resorbable at different 

rates, depending on composition, but the downside of the poor mechanical performance making 

them unsuitable for load-bearing applications (Kuhn, 2005; Lewis, 2006; Spierings, 2005). 
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Fig. 3 Schematic illustration of BC use in arthroplasties (hip, shoulder and knee) and vertebroplasty. 
Images were adapted from http://www.eorthopod.com/content/.  
 

 

1.2. Chemical Background of Bone Cement 

The BC base-composition has not greatly changed and is commercially presented as a sterilised 

two-component system - a powder and a liquid - that is allowed to polymerize inside the patient. 

The powder component consists of pre-formed PMMA beads-shaped and/or methacrylate 

copolymers with a radiopacifier included in the chains and benzoyl peroxide included in the 

polymer beads or simply admixed to the PMMA powder (Table 1). The liquid component contains 

the monomer stabilised with hydroquinone and also a tertiary amine (N,N-dimethyl-p-toluidine) as 

the reaction activator. Both components may also have other constituents such as colouring 

agents, viscosity and rigidity modifiers or antibiotics (Kuhn, 2005; Lewis, 2009). 

When both components are joined at room temperature, the activator from liquid component 

reacts with the initiator from the powder component and radicals are formed as shown on Table 2. 

These very reactive species, promote chain growth from reaction with other MMA molecules as 

well as with the pre-formed PMMA chains by adding to the reactive C=C doubled bond, 

conducting to polymer chains reaching molecular weights of 100,000 to 1,000,000 g/mol. During 

reaction the viscosity of the mixture will increase and a dough is formed. As viscosity increases 

monomer molecules decreases mobility and chain recombination takes place conducting to the 

end of polymerization. Surgeons have to monitor time very carefully because dough-handling time 

is short, after which it gets impossible to work with. The overall setting time of BC depends on its 

composition. However, according to commercial available information, it never exceeds 15 

minutes (Depuy, 2004). 

In the first years two factors were often considered adverse to the use of acrylic BC. The 

temperature achieved during polymerization and the residual monomer-leaching were frequently 

related to BC failure. PMMA polymerization is an exothermic chemical reaction (with 57 kJ per 

mole MMA), so dough temperature increases during hardening. As this occurs inside the patient 
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this fact was mentioned to cause necrosis in the implant boundary bone tissue and, in turn, the 

implant aseptic-loosening. 

 

 

Table 1. BC components constitution and information about its identification and function (based on 
Kuhn, 2005 and Lewis, 2009). 

BC 
Component 

Constituent Name Chemical Structure Function 

Powder 

Polymer PMMA or MMA-
copolymers 
(varied molecular 
weights) 

 

Pre-formed polymer chains as 
bead-shape microparticles 
diameters (generally 40 µm) 
that will grow in the presence of 
the activated monomer.  

Initiator Benzoyl Peroxide 

 

Initiator of the radical 
polymerization creating radicals 
that will promote chain growth. 

Radiopacifier Barium Sulphate  
Zirconium dioxide 

BaSO4 
ZnO2 

Allows x-rays-monitoring and 
eventually BC failure.  

Additives Antibiotic(s) 
Dye 
Plasticizer 
Stiffer 

 
 

Prevent or treat infection; 
Improve distinction from body 
tissues during surgery;  
Increase viscosity;  
Increase resistance. 

     

Liquid 

Monomer MMA  
(varied molecular 
weights) 

 

Base-unit of the PMMA that will 
be activated in the presence of 
free radicals. It will promote 
chain growth.. 

Activator N,N-dimethyl-p-
toluidine  

 

Enables cold curing of the 
polymer by activating benzoyl 
peroxide to start radical 
formation.  

Inhibitor Hydroquinone 

 

Avoids premature 
polymerization during storage. 
 

Additives Dye  Improve distinction from body 
tissues during surgery. 
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Table 2. Principal reactions occurring during BC setting (adapted from Bettencourt, 2006 and Kuhn, 2005). 

1st step – Radical formation 

._.

 

2nd step – Chain Growth 

. .

n

n

 

3rd step – Chain recombination (end of polymerisation) 

(            )2 (                                 )n n

 
 

Yet those assumptions were based on the in vitro measurements of temperature during BC 

hardening (Spierings, 2005), which however do not correspond to those actually reached in vivo, 

varying between 40 and 46ºC at the bone tissue-BC interface (Kuhn, 2005). In vitro BC assayed 

specimens were at least two-fold thicker than that encountered in vivo, 3 to 5 mm (Fig. 4). Also, in 

vivo, blood circulation and metallic implant are important paths for heat dissipation. 

 

  
Fig. 4 Images of the BC thickness, in black at the schematic illustration (left) and in whitish at the photo of 
a real surgery procedure (right). 
 

 

As temperature peaks are strongly dependent on the cement composition, manufactures have 

found ways of changing constituents in order to diminish this problem – e.g. by decreasing the 

amount of monomer added and PMMA pre-polymer weight (Spierings, 2005). This action also led 

to less residual monomer leaching. It is now currently accepted that this effect is negligible on 

causing failure of bone cement (Bettencourt et al., 2000; Hendricks et al., 2004). 
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2. Bone cement related infection 

Arthroplasties are, throughout the world, the most common surgical procedure using BC to anchor 

implants to the bone (Lewis, 2015). With the sustainable aging of the population, the number of 

elderly and trauma patients requiring joint replacement or internal fixation devices is steadily 

increasing. The surgery eliminates pain and patients dramatically regain mobility and functionality 

of the joint, therefore, quality of life (Malchau and Breusch, 2005). 

Although those surgical procedures are generally highly successful, with satisfactory longevity 

and clinical results, they still experience numerous failures, like aseptic loosening, as a result of 

wear debris of the materials used in procedure, or infection, mainly related to the risk of inclusion 

of a foreign-material along with an exposed incision during surgery. Infections associated with 

prosthetic joints occur less frequently than aseptic failures, but represent the most devastating 

complication with high morbidity and substantial cost (Trampuz and Widmer, 2006). Depending 

on the number of bacteria introduced during surgery, on the virulence of the bacteria and on the 

condition of the host’s defence, eventually deep surgical infection appears (Frommelt, 2005). 

The actual rate of infection of total hip replacement ranges from 0.5-3.0% for primary total hip 

replacement and 3-6% after revision hip surgery. However, the increasing number of joint 

replacements being performed means the absolute number of such infections will remain 

significant and pose substantial costs to healthcare systems worldwide. Often, the key for the 

management of these infections, designated as periprosthetic-joint infections, is the removal of 

the infected prosthesis and debridement of the infected bone tissues, although recent studies 

suggest the retention of the infected implants may be an acceptable option in selected patients 

(Legout and Senneville, 2013; Song et al., 2013). 

Difficulty on the treatment arises on the diagnosing of less explicit infection. Many of the current 

laboratory tests are indirect measurements lacking specificity for diagnosis of infection as they 

can also be seen in aseptic, mechanical loosening. Researchers are engaged on finding new 

diagnosis methods to improve specificity and sensitivity, such as sonication of removed implants, 

molecular methods, and mass spectrometry (Hendricks et al., 2004; Legout and Senneville, 2013; 

Springer, 2015). 

 

 

2.1. Aetiology and pathogenesis of periprosthetic-joint infection 

Understanding both aetiology and pathogenesis of bone infection is relevant to improve 

precautions and measures towards prevention and/or treatment. 

Every operation harbours the risk of surgical infection because it is impossible to avoid completely 

the bacterial contamination in the operating theatre. The environment conditions along with the 
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patient bacterial flora provide the source for these infections. Whether contamination leads to 

infection depends on the number of bacteria introduced during surgery, the virulence of the bacteria 

and the condition of the patient’s defence. If the latter is unable to balance the bacterial attack, 

surgical infection will result (Frommelt, 2005). Despite considerable progress in prevention the use of 

PMMA, as other biomaterials, suppresses the patient’s defence locally entailing the risk of attracting 

infectious microorganisms (Van de Belt et al., 2001). 

According to the mechanism of bacterial inoculation Hendricks et al. (2004), grouped in three the 

causes of prosthesis-related infections: direct contamination of the biomaterial or the surrounding 

tissues; contamination by the spread of a superficial infection; and blood-borne contamination. In 

spite of the importance of the latter two, the direct relation to the occurrence of deep-infection is not 

yet clarified. However, direct contamination is likely to cause the greater part of prosthesis-related 

infections. There is a generalised agreement that 90% of infections during the first year after 

implantation are due to bacterial contamination during surgery (Charnley, 1972; Zimmerli, 2015). 

Therefore, precautions before surgery are well established as the most effective way of protecting 

orthopaedic devices from contamination and eventual infection. Prophylactic actions regarding the 

patient and the operating room are carefully monitored and implemented, including: the patient good 

general health condition; previous patient screening for most prevalent microorganisms causing bone 

infections and eventual decontamination; and proper hygiene of patient’s skin (Frommelt, 2005; Van 

de Belt et al., 2001).  

Implant-associated infections result from bacteria adhesion to an implant surface and subsequent 

biofilm formation at the implantation site (Ribeiro et al., 2012; Zimmerli, 2015). The interaction between 

the device and the patient’s bacterial flora starts as soon as the implant is fixed with BC. At that moment 

the foreign-body remains devoided of a microcirculation, which is crucial for host defence and the 

systemic delivery of antimicrobial agents. From that interaction, specialised bacteria begin a self-

protection process from the patient’s defence mechanism, resisting against external and internal 

environmental factors, by growing in structures known as biofilms, which are highly resistant to 

antibiotics (Trampuz and Widmer, 2006). Biofilms allow bacteria to spread along the surface of the 

implant and BC. Periprosthetic infection starts when some of the bacteria switch back to planktonic forms 

(freely suspended bacteria) (Fig. 5) inducing infection in the adjacent bone tissue, in a process known as 

periprosthetic osteomyelitis (Frommelt 2005; Legout and Senneville, 2013; Ribeiro et al., 2012). 

The process of bacterial adhesion to implant is influenced by environmental factors, bacterial 

properties, biomaterial surface properties and by the presence of serum or tissue proteins. Also, the 

nature of the surface material, such as chemical composition of the material, surface charge, 

hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all 

thought to be important in the initial cell attachment process. Consequently adjustments of the 

biomaterial´s surface may contribute to inhibiting bacterial adhesion and prevent implant-associated 

infection (Ribeiro et al., 2012). 
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Fig. 5 A scanning electron micrograph of a Staphylococcus epidermidis biofilm on a foreign material 
(adapted from Zimmerli et al., 2004) (left); Schematic representation of the stages of a biofilm development 
on a medical device surface (right). Label for right image: 1 - Bacteria attraction; 2 - Joint replacement surface 
adhesion; 3 - Embedded biofilm growth; 4 - adhesive exopolymers composed mainly of polysaccharides; 5 - Small 
canaliculi; 6 – Transmission (adapted from http://www.entkent.com/biofilms.html, Graphic by Peg Dirckx and David 
Davies, ©2003 Center for Biofilm Engineering Montana State University). 
 

 

2.2. Microbiology of periprosthetic-joint infection  

When on biofilm form, even low-virulence microorganisms, such as Gram-positive staphylococci 

and Propionibacterium acnes may cause infection. Staphylococci, as S. aureus and S. 

epidermidis, account for more than 50% of the periprosthetic infections related with hip and knee 

arthroplasties (Table 3). They represent, in absolute, the main causative agents in orthopedics 

(Ribeiro et al., 2012; Zimmerli, 2015) as they possess several cell-surface adhesion molecules 

that facilitate its binding to bone matrix, stronger for S. aureus. In addition, S. aureus produces 

virulence factors and rapidly develops antimicrobial resistance. As shown on Table 3, S. 

epidermidis is the most frequently isolated member of the group of coagulase-negative 

staphylococci from implant-associated infections mainly related to nosocomial infections, and 

have been found to be more antibiotic resistant than S. aureus. The strong virulence of S. 

epidermidis is attributed to its ability to adhere strongly to surfaces, form a biofilm that confers 

protection from phagocytosis and other major components of the host defence system (Ribeiro et 

al., 2012). 

The period between colonisation and clinically detectable infection may last for 3 months (early 

infection), for 3—24 months (delayed infection) or even up to two years (late infection). In 

prosthetic joint infections, early infection occurs perioperatively and is generally caused by virulent 

microorganisms as S. aureus (Trampuz and Widmer, 2006). This problem is aggravated by the 

emergence of multirresistant bacteria against which applied therapy is not efficient (Anagnostakos 

et al. 2008; Lewis, 2009). Delayed infection is mainly caused by microorganisms of low virulence, 

e.g. Propionibacterium acnes. Late infection results mostly from haematogenous seeding 

originating from skin, respiratory, dental, and urinary tract infections. In internal fixation devices, 

haematogenous infections are less frequent than in prosthetic joint infections (Trampuz and 

Widmer, 2006). 
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Table 3. Microbiology of prosthetic joint infections (adapted from Zimmerli et al., 2004; 
Zimmerli, 2015). 

Microorganism Frequency (%) 

Gram-positive cocci ~ 65% 
Staphylococcus epidermidis (50% of late infections) ~ 30—43% 

Staphylococcus aureus (early infections) ~ 12—23% 

Streptococcus spp. ~ 10% 

Enterococcus spp. ~ 3—7% 

Aerobic Gram-negative bacilli ~ 6% 
Enterobacteriaceae (such as Escherichia coli) 

 
Pseudomonas aeruginosa 

Anaerobic bacteria (Gram-positive) ~ 4% 
Propionibacterium spp. 

 
Finegoldia magna 

Polimicrobial ~ 20% 
Culture-negative ~ 7% 
Fungi ~ 1% 

 

Systemic administration of antimicrobial agents is an easy and frequently used way to control 

biofilms. However, the majority of antimicrobial agents that are effective against planktonic 

bacterial cells are ineffective against the same bacteria when growing in a biofilm. Combinations 

of multiple antimicrobial agents with different spectrum of activity and modes of action are being 

used as strategy to improve the performance of these antimicrobial agents and circumvent 

bacterial adaptation. The tremendous resistance of biofilms to conventional antibiotic therapy has 

prompted intense research on finding solutions of modifying surfaces capable of resisting to 

bacterial colonization.  

One of these solutions is the use of ALABC for prophylaxis and treatment of implant-associated 

infections. 
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3. Antibiotic-Loaded Bone Cement 

Albeit the success of acrylic BC for anchoring implants to the bone on arthroplasties, the 

problematic of infections remained unsolved. Buchholz and Engelbrecht (1970) envisaged the 

inclusion of antibiotics into the PMMA-bone cement using it as a local antibiotic delivery to treat 

implant-related infections. They hypothesised antimicrobial agents could release from the BC 

matrix as the monomer did. At that time, it was discovered a new broad-spectrum 

aminoglycoside, gentamicin, which presented good antimicrobial activity against the main 

pathogens causing prosthetic joint infections, such as, Staphylococcus spp. (coagulase-positive 

and coagulase-negative), P. aeruginosa or E. coli (Frommelt and Kuhn, 2005). Hence, Buchholz 

and Engelbrecht decided to add powdered gentamicin to the BC powder component and 

performed one-stage revision in patients suffering from periprosthetic infection using that ALABC. 

Although the release mechanism of gentamicin was largely unknown (Buchholz et al., 1981), it 

proved to be very effective in producing long-term high-level drug concentrations. With this 

procedure, infection rate after primary implantation of artificial joint replacement reduced from 

about 7% to lower than 1%. Since then, the use of ALABC has been considered to be the 

standard of care for patients with chronic infection, for local delivery of antibiotics.  

In spite of its current and well-established use this biomaterial presents some drawbacks related 

to the: 

ª matrix structure: influence on the antibiotic deliver and on biofilm development; 

ª limited number of antibiotics pre-loaded: only a reduced number of antibiotics are 

available on commercial formulations; 

ª bioactivity: due to the smooth surface there is poor osteointegration, which is often 

referred as one of the main causes for implant failure. 

Proposed solutions to address these drawbacks often imply the addition of other substances over 

the base-components of the BC, which directly affect its mechanical performance, hampering its 

use for prophylaxis. Therefore, improve ALABCs performance without jeopardising the 

mechanical behaviour represent the big challenge of research on this domain. 

 

 

3.1. Rationale for ALABC use 

Considering that bone is a mineralised tissue and cannot expand, when inflammation occurs 

blood flow is reduced. Consequently, drugs cannot be transported via blood circulation and do not 

reach the inflamed bone tissues, which, ultimately became infected. This is the main reason why 

local application is the preferable way to administer antibiotics in a situation of bone infection 

(Frommelt and Kuhn, 2005).  
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Moreover, whenever an arthroplasty is performed, both the implant and the BC, used to anchor it 

to the bone tissue, are indwelling medical devices intended for long-term presence inside the 

patient. All biomaterials in man entail the risk of attracting infectious microorganism to the surface 

where they may develop biofilm. To effectively eliminate bacteria in a biofilm, local antibiotic 

concentrations must achieve 10 to 100 times the usual bactericidal concentration. This renders 

treatment with systemic antibiotics ineffective against biofilm (Samuel, 2012). As a consequence 

periprosthetic infection arise and a surgical revision is needed for total eradication of these 

pathogens, which may include partial or total removal of the foreign-materials and debridement of 

the infected tissues along with the local administration of antibiotics at the site of infection. 

Under these conditions, ALABC is useful for both treatment, by delivering extraordinary high 

levels of antibiotic concentration at the site of infection, and prophylaxis, by direct delivery of 

antimicrobial agents on the surface of implants at risk for bacterial colonisation.  

There is also an economic reasoning as the ratio cost-efectiveness has a great influence on 

decision-making. Recent data show that cemented implants outperform cementless besides being 

cheaper. The development of non-cemented arthroplasty dates back to the 1980s, as an attempt 

to avoid BC use due to the reported early loosening and implant failure attributed to the effect of 

BC application procedure on the surrounding implant bone tissues. The implants used in non-

cemented arthroplasty possessed modified-surfaces to directly fix to the bone tissues without 

cement. However, these implants continued to fail, although, differently, due to metal wear debris 

reactions (Haddad, 2011; Smith et al., 2012). 

Reports on BC failure are now seen as being influenced by previous generations of implants with 

poor cement mixing and inadequate cementation techniques. With evolution of materials, 

acquired knowledge from failing and improved mixing techniques, cemented arthroplasty has 

regain followers and contemporary data reflects equivalent or better survival of cemented 

compared to cementless implants. Jameson et al. (2015) found that cementless implant almost 

doubles cemented implant costs, on needed materials. Furthermore, cementless implants did not 

reduce rates of aseptic revision and demands adequacy to the patient, e.g. depending on femoral 

size the implant must be different, whereas on using BC the same implant fits to different users. 

 

 

3.2. Types of ALABC and Clinical use 

ALABC is used for both prophylaxis and therapy of periprosthetic infections. The requirements for 

these two purposes are different, as prophylactic use is determined by the pathogens expected at 

the site of the prosthesis, and therapeutic use demands identification of the pathogens prior to the 

revision surgery (Frommelt and Kuhn, 2005).  
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In either case there are two ALABC alternatives:  

1) premixed commercially available brands, in which the powdered antimicrobial agent(s) is 

mixed in the cement powder;  

2) off-label formulations in which the selected antibiotic is hand-mixed with the cement 

powder of a plain commercial brand, by the surgeon, in the surgery room under strict and ruled 

hygienic conditions, during the arthroplasty implantation procedure (Lewis, 2009). 

When proposed for prophylaxis, low doses of antibiotics are required in order to avoid adverse 

drug effects and jeopardising of the mechanical properties of the BC intended for mechanical 

fixation of the implant (Jiranek et al., 2006). In general, a low-dose ALABC contains 0.5—1 g of 

powdered antibiotic(s) per 40 g of BC powder. In Europe, it is used regularly in primary 

arthroplasties aiming to prevent bacteria from colonising the surface of the artificial joint 

replacement. However, since 2006, six commercial low-dose ALABC have been approved by the 

FDA for prophylactic use in the second stage of a two-stage total joint revision, after the complete 

eradication of infection, and specifically not for prevention on primary or first revision total joint 

arthroplasty (Lewis, 2015). Gentamicin turned out to be a suitable agent for prophylactic use in 

ALABC and it is consensual for all commercial brands.  

ALABC is used therapeutically in situations of arthroplasty revision when infection is already 

installed. After debridement of infected tissues and depending on the extension of the infection, 

ALABC is used differently: when implant is substituted during revision surgery, ALABC is used 

prophylactically for the new prosthesis fixation; in cases of deeper debridement ALABC is used to 

prepare a spacer (Fig. 6) for implantation during several weeks before a second surgery to insert 

a new prosthesis (Liu et al., 2014). Also ALABC beads (Fig. 7) have been used to treat chronic 

osteomyelitis. These two devices are self-made off-label ALABCs that are loaded with high 

amounts of antibiotic for local delivery in high concentrations to fight bacteria; it is also used 

during revision to fill up the space of debrided tissues at the site of bone infection (Gomes et al., 

2013). 

 

 

Fig. 6 Photo of a spacer mould (left) and of the spacer containing the antibiotic ready to insert inside the 
patient as a functional prosthesis (right) (adapted from Liu et al., 2014).  



General Introduction 
 

17 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

On first revision situation, ALABCs may contain up to 4 g of powdered antibiotic(s) per 40 g of BC 

powder for an effective release of the drug with therapeutic concentrations. To circumvent cases 

of known resistance to gentamicin, confirmed allergic reactions to antibiotics from patient, or even 

in the case of chronic recurrent infection, there are other options of antibiotics with different 

mechanisms of action commercially available. For example, tobramycin alone or combinations of 

clindamycin or vancomycin with gentamicin are available as commercial brands to use in revision 

surgery (Frommelt and Kuhn, 2005). Moreover, higher doses ranging 6 to 8 g of powdered 

antibiotic(s) per 40 g of BC powder are used in the form of beads or spacers to guarantee a local 

sustained release of the antibiotics to eradicate the biofilm causing the infection (Jiranek et al., 

2006). Retrospective studies suggest that the combination with antibiotic systemic administration 

has a favourable effect in the prevention and treatment of periprosthetic infection (Frommelt and 

Kuhn, 2005). 

 

 

Fig. 7 Illustration of antibiotic-loaded beads preparation and in situ implantation close to bone tissue 
(adapted from Gomes et al., 2013). 
 

 

3.3. The antibiotics 

Antibiotics to be loaded into BC must present not only a broad-spectrum of activity but also fulfil 

requirements as availability in powder form, termostability and water-solubility (Samuel, 2012). 

Table 4 shows the main antibiotics used in systemic treatment of orthopaedic infections. 

As referred earlier, the first antibiotic to fulfil those requirements used in ALABC was gentamicin 

which is an aminoglycoside antibiotic with both bactericidal and bacteriostatic effect, depending 

on concentration, against the main pathogens causing prosthetic joint infections, such as, 

Staphylococcus spp. (coagulase-positive and coagulase-negative), P. aeruginosa or E. coli.  

The main commercial brands of BC intended for prophylaxis consist of a gentamicin- and 

tobramycin-loaded PMMA-BC, with broad-spectrum activity regarding bone infections (Arora et 

al., 2013; Gallo et al., 2005). In revision surgery for treatment of infection commercial-brands may 

also offer alternatives to gentamicin by adding specific antibiotics (e.g. clindamycin and 
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vancomycin) according with the identified microorganisms. In the case of clindamycin, its 

combination with aminoglycosides is known to have an antimicrobial effect on more than 90% of 

the bacteria common to infected arthroplasties (Rice and Mendez-Vigo, 2009; Van de Belt et al., 

2001). 

However, the increasing emergence of multiresistant bacterial strains especially methicillin-

resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), multiressistant 

Acinetobacter baumannii and extended spectrum beta-lactamase producing Enterobacteriaceae 

(Cui et al., 2007; Trampuz and Widmer, 2006), makes most commercially-available BCs 

inadequate for local antibiotic treatment (Anagnostakos et al., 2008). 

 

Table 4.  Classification of common antibiotics used in systemic treatment of orthopaedic infections 
(adapted from Lewis, 2013). 

Antibiotic class;  
Example  

Mechanism of 
action  

Activity or target 
species  

Effect on Bacteria 

β-lactams;  
penicillin  

Inhibition of cell wall 
biosynthesis  

Broad-spectrum 
activity  

Bactericidal 

Aminoglycosides;  
gentamicin 
tobramycin  

Binding of 30S 
ribosomal subunit  

Broad-spectrum 
activity  

Bacteriostatic or  
Bactericidal (depending 
on concentration) 

Chloramphenicols;  
chloramphenicol  

Binding of 50S 
ribosomal subunit  

Broad-spectrum 
activity  

Bacteriostatic 

Macrolides;  
erythromycin  

Binding of 50S 
ribosomal subunit  

Broad-spectrum 
activity  

Bacteriostatic or  
Bactericidal (depending 
on concentration) 

Lincosamides 
clindamycin 

Binding of 50S 
ribosomal subunit  

Broad-spectrum 
activity  

Bacteriostatic 

Tetracyclines; 
 minocycline  

Binding of 30S 
ribosomal subunit  

Broad-spectrum 
activity  

Bacteriostatic 

Rifamycins;  
rifampicin  

Binding of RNA 
polymerase β-subunit  

Gram-positive 
bacteria  

Bactericidal 

Glycopeptides;  
vancomycin  

Inhibition of cell wall 
biosynthesis  

Gram-positive 
bacteria  

Bactericidal 

Quinolones;  
ciprofloxacin 
levofloxacin  

Inhibition of DNA 
synthesis  

Broad-spectrum 
activity  

Bactericidal 

Lipopetides;  
daptomycin  

Depolarization of cell 
membrane  

Gram-positive 
bacteria  

Bactericidal 
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Many researchers are engaged in finding newer broad-spectrum antibiotics able to be loaded into 

BC but there is no agreement concerning the choice or dose to be mixed with the cement 

(Samuel, 2012). It should be emphasised that these decisions have direct influence on other 

crucial properties of BC, thus conditioning the application to which it may be used for. For 

example, if a high-dose of antibiotic is loaded, the resultant ALABC may result useless for load-

bearing functions because of unsuitable mechanical properties. In this case ALABC is moulded in 

other forms, such as beads or spacers. 

Hence, most studies reporting alternative antibiotics loaded into BC are proposals for spacers or 

beads intended for the treatment of bone-related infections. Anagnostakos et al. (2008) suggested 

the use of linezolid, which rapidly penetrates bone and tissue and offers little resistance, to load 

hip-spacers with good results against MRSA. Anguita-Alonso et al. (2006), tested different high-

loading antimicrobials into PMMA beads, i.e. cefazolin, ciprofloxacin, gatifloxacin, levofloxacin, 

linezolid and rifampicin and reported successful release of all antimicrobials, without giving any 

information on the mechanical performance of such cements. Rifampicin, however, was already 

reported to hinder BC polymerisation (De Palma et al., 1982; Galvez-Lopez et al., 2014). 

Daptomycin, a last-generation lipopetide antibiotic effective against multidrug-resistant Gram-

positive pathogens commonly found in osteomyelitis and joint infections, is one of the most 

coveted drugs for loading into BC and use against Staphylococci and Streptococci. The first report 

dates from 1991 when daptomycin was combined with vancomycin and amykacin, with improved 

release due to the presence of a poragen (dextran) but only for applications when structural 

integrity was unimportant (Kuechle et al., 1991). As already pointed out, the results greatly 

depended on the amount of daptomycin loaded, which in turn, determines its application (Cortes 

et al., 2013; Gálvez-López et al., 2014; Hsu et al., 2014, Rouse et al., 2006). More recently, 

Peñalba Arias et al. (2015), have reported the use of a low-dose BC loaded with daptomycin 

combined with gentamycin to successfully and completely inhibit S. epidermidis biofilm. 

Nevertheless, none of these studies have tested the compliance with the international standards 

for BC mechanical properties (ISO 5833), specifically regarding the flexural strength 

determination. As the specific literature is scarce, further studies on the mechanical performance 

of daptomycin-loaded BC are still needed to exploit the potential therapeutic utility of this well 

tolerated antibiotic with a low risk of spontaneous appearance of resistance (Rice and Mendez-

Vigo, 2009). 

There is, however, a worldwide controversy concerning the use of novel antibiotics, like 

daptomycin (authorized by FDA in 2003) without well-established rules considering that bacterial 

resistance is spreading faster than the discovery of new antibiotics (Lewis, 2013). The danger of 

reaching the end of antibiotic pipeline is real and close in time, suggesting that those antibiotics 

should be preserved and only used when there is no therapeutic alternative (Chong and Sullivan, 

2007; Cooper and Shlaes, 2011; Editorials, 2013). 
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Minocycline and Levofloxacin 

As a valuable alternative to the lack of new antibiotics, some researchers are proposing the 

upraising of old antibiotic compounds, once they have remained active against a large number of 

currently resistant bacteria (Garrido-Mesa et al., 2013).  

Within this context two well known antibiotics have found recently a renewed interest in literature 

and have been referred as presenting a broad-spectrum of activity against the main organisms 

responsible for prosthetic joint infections, especially against MRSA. Minocycline, a second-

generation tetracycline (Fig. 8, left), and levofloxacin, a third-generation fluoroquinolone (Fig. 8, 

right) (Bishburg and Bishburg, 2009; Landersdorfer et al., 2009; Lima et al., 2014).  

 

  
Fig. 8 Chemical structures of minocycline (left) and levofloxacin (right). 

 

Minocycline is in clinical use for over 40 years and has been considered well tolerated. It has 

excellent oral bioavailability, tissue penetration and tolerability, presenting a prolonged half-life of 

15–19 h, probably due to extensive tissue penetration and protein binding (ca. 75%) (Bishburg 

and Bishburg, 2009). Recent in vitro studies have reported high rates of susceptibility to 

minocycline both among community and nosocomial MRSA isolates. Moreover, Gomes and 

Fernandes (2007) reported that low minocycline concentrations (1 µg/mL) are able to stimulate 

the proliferation of osteoblastic-induced bone marrow cells. Minocycline hydrochloride (Mw 493.94 

g/mol) is soluble in water preferably at pH < 5.6, with a greater partition coefficient at neutral pH 

indicating enhanced lipophilic properties for pH > 7 (Zbinosvky and Chrekian, 1977). Regarding 

stability, minocycline is photosensitive and retains 90% of its initial potency for 1 week at room 

temperature at acidic pH (pH < 5.2). At pH 6.6 minocycline potency is reduced to 73%. Buffers 

solution containing components of formate, acetate, phosphate and borate are strong catalysers 

of minocycline degradation (Pawelczyk and Matlak, 1982). 

 

Levofloxacin is a broad-spectrum antibiotic with excellent tissue penetration and availability in 

both oral and intravenous formulations, generally well tolerated (Zimmerli, 2015). 

Stereochemically stable in body fluids, it binds to plasma proteins at ca. 24 to 38%. The 

elimination half-life after single (500 mg) or multiple doses of levofloxacin ranged from 6.4 to 7.4 h 

and 6.9 to 7.6 h, respectively. Levofloxacin is active against a range of Gram-positive organisms. 
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Due to reported adequate penetration into uninfected osteoarticular tissues, achieving effective 

microbiological concentrations in synovial tissue, cancellous and cortical bone tissues for 

susceptible pathogens generally encountered in bone and joint infections. Levofloxacin is being 

used in the treatment of most osteoarticular infections caused by susceptible microorganisms 

such as S. aureus, S. epidermidis, Enterococcus spp. and Enterobacteriaceae (Gunasekaran et 

al., 2013; Hurst et al., 2002; Rimmelé et al., 2004). Levofloxacin (Mw 361.37 g/mol) presents high 

kinetic stability but, like other fluoroquinolones, may chelate alkaline earth and transition metal 

cations. Little data is found about experimental solubility of levofloxacin, however Zhang et al. 

(2012), reported a strong dependence on the pH value, with lower pH promoting higher 

levofloxacin solubility due to the stronger hydrogen bonds between the solute and water 

molecules. Levofloxacin solubility is reported 100 mg/mL for 0.6 < pH < 5.8. Maximum solubility, 

272 mg/mL, is attained at pH 6.7. For pH > 6.7, levofloxacin solubility decreases and reaches a 

minimum value of 50 mg/mL at a pH of approximately 6.9 (North et al., 1998).  

Both minocycline and levofloxacin are available in powder form, with melting points over 200ºC, 

and soluble either in organic solvents as in water, depending on pH values. In aqueous solutions 

they are both more soluble and stable at acidic pH. This is an important feature considering that 

the pH value of the human body is normally maintained at 7.4, but may change from 3 to 9 due to 

several causes such as accidents, imbalance in the biological system due to diseases, infections 

and other factors. Also, after surgery, a localized acidity occurs, with the pH value near the 

implant varying typically from 5.3 to 5.6 (Manivasagam et al., 2010).  

 

Hence, in the present research work levofloxacin and minocycline were selected as model-drugs, 

to load into a lactose-modified acrylic BC in an attempt to investigate the improvement of the 

antibiotics release from the inner BC matrix. 

 

 

3.4.  Importance of bulk and surface of ALABC 

Bulk and surface properties of the BC are determinant for the performance of this biomaterial. 

Porosity and surface hydrophobicity are key issues regarding the release of an antibiotic from the 

BC inner matrix. In addition, porosity plays an important role on the mechanical behaviour of the 

BC. 

During the BC preparation, air entrapment inside the polymer matrix may be created by mixing, 

monomer evaporation and resultant viscosity, which is responsible for the porosity after BC 

setting. The final porosity of the polymer matrix is of critical importance to the BC mechanical 

properties, when the material is to perform a load-bearing function, and to the release of the 
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antibiotic from the inner matrix. When needed, porosity may be decreased of about 2.5% through 

the use of vacuum mixing. Also, high viscosity cements possess a higher porosity than low 

viscosity ones because of the greater difficulty for entrapped air to escape from the polymer inner 

matrix. However, porosity in ALABCs is beneficial as it facilitates the release of the antibiotics by 

creating inner channels that allow the aqueous release medium to penetrate, to dissolve the 

antibiotic and diffuse out through the voids and cracks to the surrounding bone tissues (Lewis, 

2009).  

The easiness of the BC to adsorb water is determined by its hydrophobicity, which is a surface 

characteristic. The more hydrophilic a surface is the greater is its ability to adsorb water. Surface 

hydrophobic of BC is related to its wettability, a concept herein used to assess the extent to which 

a solid will come in contact with water. A surface is considered to be hydrophobic when water 

does not spread on the surface producing a high contact angle (> 90º), and oppositely, when 

water spreads decreasing the contact angle, the surface is considered to be hydrophilic. 

Actually, the BC surface properties dictate the interaction between the implant, the bone tissues 

and potentially infecting microorganisms. BCs are moderately hydrophobic materials considering 

the values of their water contact angles, around ~80º (Bettencourt et al., 2004). The release of 

water-soluble substances like antimicrobial agents from BC depends directly on the ability to 

water permeability (Lewis, 2009), which, in turn, is determined by the hydrophobicity of BC 

components. 

Typically, antibiotic loading have been reported as having little effect on BCs contact angles with 

water suggesting the loaded antibiotic is mainly located inside the matrix (Van de Belt et al., 

2001). Also, variations of the contact angle values between different ALABCs, ranging between 

70º and 80º, are dependent on the hydrophobicity of their components (Frommelt and Kuhn, 

2005). 

Surface roughness also plays a role on the interaction of aqueous mediums and the biomaterial 

once it refrain aqueous medium from spreading evenly along the surface. Surface roughness 

depends greatly on the finishing procedure and surgeon application. However, considering 

identical finishing procedures, roughness depends on the brand of the ALABC. Most probably, 

size and proportion of pre-polymer beads and radiopacifiers used in each brand determines the 

final surface roughness (Van de Belt, 2001). 

Moreover, considering that hydrophobic biomaterials are less disposed to biofilm formation than 

hydrophilic biomaterials new solutions for the design of infection-resistant biomaterials must be 

found, aiming at an optimal balance on surface properties to either favour release of the 

antimicrobial agents or prevent biofilm adhesion (Van de Belt, 2001). 

In short, porosity, roughness and hydrophobicity of BC determine the adsorption and absorption 

of water, the antibiotic release profile and propensity to bacteria adhesion. Antibiotic release, 

however, is also strongly dependent on the antibiotic physico-chemical characteristics, 
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hydrophobicity, molecular size and charge, which ultimately determine interaction with the 

polymer matrix. 

 

 

3.5. Antibiotic Release from ALABC 

Identifying and understanding the mechanisms involved in the antibiotic release process from a 

polymer matrix, such as the acrylic BC, it is not always obvious. Often, more than one mechanism 

is involved, at a given time, or different mechanisms may dominate, at different stages, throughout 

the drug delivery process (Siegel and Rathbone, 2012).  

The ALABC matrix is considered a monolithic system where the antibiotic is quite homogeneously 

dispersed in the continuous matrix that controls the release rate. In these systems antibiotic 

release occurs through the pores filled with the release medium, where antibiotic or other 

components of the BC first dissolve and then can diffuse out, albeit slowly, through the 

impermeable matrix eventually reaching the surface (Siepmann et al., 2012). Therefore, porosity 

plays a major role in this system and factors such as pores form, length, diameter as well as the 

existence of tortuous pathways connecting pores to surface, strongly influence the diffusion 

process. Also steric and hydrodynamic interactions between pores and antibiotic molecules 

interfere with their release.  

Due to the tortuosity between internal pores and surface, typically, the release of antibiotic from 

the BC matrix occurs in three main phases (Lewis, 2009):  

(i) an initial rapid burst release of the antibiotic located at surface, normally within the first 24 h;  

(ii) a second phase where the antibiotic located inside the matrix continues releasing but with a 

lowered rate;  

(iii) a final phase in which the release rate is very slow and steady, eventually attaining a constant 

value.  

Considering the hydrophobicity of the ALABC matrix, the first phase is ruled by surface area 

porosity and wettability, which determines the amount of the fluid that reaches the inner voids, 

cracks and paths in the BC. As the fluid progresses into tortuous pathways of the matrix, it may 

occur delay and eventually blocking of the antibiotic release due to tortuosity and the existence of 

“dead ends” in the pore space that difficult the diffusion-out of the drug (Fig. 9), resulting in a 

decrease of the antibiotic release rate. The existence of the steady release stage suggests a role 

for specific solution chemistry equilibrium phenomena (Lewis, 2009).  

The quantitative interpretation of the values obtained during dissolution/release tests of drugs and 

other substances from BC is facilitated when mathematical formulae express the dissolution 

results as a function of some parameters. 
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Fig. 9 Schematic representation of a pore structure evidencing a curved, tortuous single path from bottom 
surface to upper surface (left); a tangle of curved pores with intersections and dead ends (right) (adapted 
from Siegel, 2012).  
 

Drug diffusion and dissolution from reservoir and matrix type systems has been described by 

kinetic models in which the dissolved amount of drug (M) is a function of time (t), M=f(t). The 

physicochemical properties of the drug, including cristallinity and polymorphism, particle size, 

solubility and amount in the BC can influence the release kinetics (Costa and Sousa Lobo, 2001).  

Also, the system characteristics are important, such as porosity, swelling and degradability (bulk 

or surface).  

The drug transport inside BC system and its release involves multiple steps triggered by different 

physical or chemical phenomena, making it difficult, to get a mathematical model describing it in 

the correct way. As a general rule water-soluble drug incorporated in a matrix is mainly released 

by diffusion, while for a low water-insoluble drug the erosion of the matrix will be the principal 

release mechanism (Costa and Sousa Lobo, 2001). However, it should not be overestimated 

because crucial factors such as the drug’s diffusion coefficient and molecular weight, partition 

coefficient and solubility in the excipient must be taken into consideration. Likewise, the system’s 

properties are also relevant, e.g. polymer cross-linking, polymer crystallinity, presence of diluents 

or adjuvants and surface area (Chien and Lin, 2007). 

The Higuchi model (1961) has a large application in governing the rate of release of solid drugs 

randomly dispersed in polymeric matrix systems. Higuchi showed that the total amount of the drug 

released is a function of the square root of time as a result of the increasing diffusion pathway 

with the progression of the dissolution front through the porous matrix (Table 5). Korsmeyer et al. 

(1983) and Peppas (1985) proposed a generalised expression, known as the Korsmeyer-Peppas 

model, that considered the characteristics of the macromolecular network system and the drug as 

well as the Fickian and non-Fickian drug release mechanism from the polymer matrix (Table 5). 
Kuhn and Wilson (1985) proposed a model with an approximation for the complete release 

process, where the cumulative amount of drug released was a combined result of the Higuchi, the 

KP models and an initial constant (Table 5).  

Later Ritger and Peppas (1987) introduced a semi-empirical equation to express the general drug 

release behavior from polymers, by coupling of Fickian (diffusion-controlled) and non-Fickian 

mechanisms (Case II transport). Lindner and Lippold (1995) proposed the addition of the burst 

effect to the Korsmeyer equation (Table 5) (reviewed by Torrado et al., 2001).  
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Table 5. Summary of the mathematical models frequently used to evaluate the release kinetic of drugs 
and others substances from BC matrices (adapted from Bettencourt et al., 2000, 2001, 2004; Costa and 
Sousa Lobo, 2001; Torrado et al., 2001). 

Equation Models 

Higuchi (1961) Mt = kH√t 

Semi-solid and/or solid matrixes containing dispersed water soluble 
and low soluble drugs.  
Drug dissolution occurs after the concentration drops below the matrix 
drug solubility. 
Describes drug release as a diffusion process based in the Fick’s law, 
square root time dependent.  

Korsmeyer-Peppas 
(Korsmeyer et al., 1983) 
(Peppas, 1985) 

Mt
M∞

  =  kKPtn 

kKP constant incorporates the characteristics of the macromolecular 
network system and of the drug 
n exponent is determined using the portion of the release curve where 
Mt/M∞ < 0.6, and characterises the different release mechanisms: 
 

Release 
exponent n 

Drug transport 
mechanism 

Rate as a function 
of time 

0.5 Fickian diffusion t-0.5 
0.5 <n <1.0 Anomalous transport tn-1 
1.0 Case-II transport Zero order release 
Higher than 1.0 Super Case-II transport tn-1 

 

Kuhn and Wilson (1985) Mt= a+  ct1/2 − be-kt 
Mt represents the cumulative drug release up to time t; a is 
associated with the initial burst effect; b is associated with the kinetics 
of a dissolution process; c is associated with a Fickian diffusion of the 
drug particle.  

Ritger and Peppas (1987) 
 

Mt
M∞

  =  k1t1/2+k2t 
Mt/M∞ represents the fractional release of drug; k1 constant described 
the diffusion-controlled release process and k2 constant the rate 
release (Case II transport) 

Lindner and Lippold (1995) 
Mt
M∞

  =  ktn+b 
Mt/M∞ represents the fractional release of drug; n is the release 
exponent of the Korsmeyer-Peppas model; b represents the burst 
effect. 

Frutos et al. (2010) Mt  =  a  +  b 1-e-kt   +  c t 
Mt denotes the cumulative drug released up to time t; k is a 
constant of the mathematical model; a, represents the burst effect 
on drug release; b, is related with the drug dissolution process; and 
c is related with the Fickian drug diffusion process. 

 

 

Torrado et al. (2001), when studying the release of gentamicin from a commercial ALABC, 

rearranged the mathematical model parameters from Khun and Wilson (1985) to fit their 

experimental data. This kinetic model rearrangement resulted in the best fit for the antibiotic 

release from the BC matrix by admitting the occurrence of three mechanisms in the release 

behaviour of the drug (Table 5), a burst effect on drug release, a drug dissolution process and a 

Fickian drug diffusion process.  

Frutos et al. (2010) has named this model as the “coupled mechanism” and also applied it to the 

release mechanism of gentamicin from the lactose-modified ALABC with good fitting results. 

Slane et al. (2014) on studying the release of the same antibiotic but from a different ALABC 

commercial brand also used the coupled-mechanism with very good fitting results. 
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Antibiotic stability after release 

As a first step in a BC formulation development, in vitro release assays, mimetising physiological 

conditions (e.g. saline solution at 37ºC, pH of infected site) are performed aiming to select the 

formulation with the most promising properties. 

During in vitro assays, the amount of released antibiotic is monitored and quantified by common 

analytical techniques. Simultaneously, it is important to evaluate the stability of released antibiotic 

using microbiological assays where selected bacteria strains are subject to withdrawn antibiotic 

release aliquots and susceptibility is measured.  

Testing methods include the disk diffusion test and the MIC test, with this being the gold standard 

for determining the susceptibility of bacteria to antibiotics. MIC is the acronym to minimum 

inhibitory concentration and correspond to the lowest (i.e. minimal) concentration of the 

antimicrobial agent that inhibits a given bacterial isolate from multiplying and producing visible 

growth in the test system, usually after overnight incubation (Andrews, 2001; Cavalieri et al., 

2005). Also MIC50 and MIC90 are often determined and represent the lowest antibiotic 

concentration that inhibits 50% or 90% of bacterial isolates, respectively. MIC tests can be 

performed using broth or agar media, but broth microdilution is the most widely used method in 

clinical laboratories. When bacteria strains are biofilm producers, like S. aureus and S. 

epidermidis, the biofilm inhibitory concentration (BIC) is also determined using the correspondent 

guidelines (Høiby et al., 2015). BIC corresponds to the antibiotic concentration that no longer 

prevents bacteria growth and biofilm formation. 

Determination is guideline-dependent and is based on a known quantity of bacteria with specified 

dilutions of the antimicrobial agent. Using interpretive criteria from the chosen guideline, CLSI, 

EUCAST or BSAC, results are interpreted as susceptible, intermediate, or resistant (Davidson et 

al., 2000).  Control bacteria are always included in tests, but important sources of variation include 

the culture medium, bacterial inoculum, antibiotic preparation and incubation conditions. The 

available guidelines differ in their recommendations, e.g. the CLSI recommends larger inocula 

and higher MICs than does the BSAC. This however is more important regarding epidemiological 

studies where clear thresholds and validated methodologies must be standardized within 

countries (Andrews, 2001). 

To determine if the antibiotic from the release study is microbiologically active an assay is 

performed according to a chosen guideline and the result is compared with the established MIC 

for a given bacteria strain.  

 

 

Porosity promoters 

The porosity of commercially available ALABCs depends on its composition and on mixing 
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methods during preparation with porosity resultant from hand mixing being higher than that of BC 

produced via vacuum mixing. Therefore, for the same type and amount of antibiotic different 

commercial ALABCs deliver different amounts of antibiotic (Lewis, 2009).  

However, envisaging higher antibiotic release from ALABCs porosity may be modulated and 

increased by adding space fillers, also called as poragens or release modulators (Table 6). Most 

of these are water-soluble components available in powdered form that allows mixing during BC 

preparation. The physical characteristics of these fillers, such as solubility, particle size, or volume 

fraction would be expected to affect matrix porosity, and therefore, water permeability.  

In the early 1990s Kuechle et al. (1991) added dextran, a high molecular-weight polysaccharide, 

to vancomycin-loaded PMMA. The released concentrations were approximately four times higher 

than those determined from plain vancomycin-loaded BC. More recently, Jackson et al. (2011) 

also included dextran into acrylic BC with major improvement on release of vancomycin, linezolid 

and fusidic acid. McLaren et al. (2006, 2007a, 2007b) reported an increase of daptomycin release 

from ALABC beads when using xylitol, glycine, sucrose, and erythritol, with better results with 

xylitol smaller size particles (100 µm). These smaller particles led to smaller pores, greater pore 

interconnectivity, smaller areas between the pores with no fluid penetration and greater increase 

in the effective surface area causing a greater release rate. Salehi et al. (2013), Slane et al., 

(2014) and Weiss et al. (2009), also evaluated xylitol-modified ALABC for gentamicin and 

daptomycin release with increased results but for cement spacer or beads and not for implant 

fixation.  

Chitosan, a natural high molecular weight polymer (Table 6), biodegradable and with intrinsic 

antibacterial activity against a broad spectrum of bacteria, filamentous fungi, and yeasts (Tan et 

al., 2014), is found to be a useful additive for the treatment of bone infection when loaded on 

ALABCs, either in powder or in nanoparticulate form. It is expected to enhance antibiotic release 

while preventing bacterial colonisation and biofilm formation. However, these outcomes are 

dependent on chitosan concentration, on microorganisms strains used to test biofilm formation 

and on time of assay, as described by Shi et al. (2006) and Tunney et al. (2008), who reached 

opposite results. 

A research group has mentioned the addition of lactose (Table 6) to commercial ALABCs (Diez-

Peña et al., 2002; Frutos et al., 2010; Virto et al., 2003) to increase gentamicin release without 

hampering the mechanical properties due to lactose high elastic modulus (Perkins et al., 2007). 

However, the mechanical properties were not acquired in those studies in accordance with 

international standards. As lactose, a water-soluble filler, is an hydrophilic compound it emerges 

as a promising PMMA surface modifier for preventing biofilm growth. Lactose has a long track 

history of safe use in pharmaceutical formulations explained by the high stability, soluble in water 

at acidic pH, with melting point over 200ºC and relatively low cost. 
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Table 6. Examples of release modulators used to increase antibiotic release from ALABCs. 

Chemical Group Name Structural Formula Reference 

    

Polysaccharides 

Dextran 

 

Jackson et al. (2011) 
Kuechle et al. (1991) 

Chitosan 

 

Shi et al., (2006) 
Tan et al. (2012a; 2012b; 2014) 
Tunney et al. (2008) 

    

Disaccharide 

Sucrose 

 

McLaren et al. (2007a; 2007b) 

Lactose 

 

Diez-Peña et al. (2002) 
Frutos et al. (2010)  
Virto et al. (2003) 

    

Polyalcohols 

Xylitol 
 

McLaren et al. (2006; 2007a; 
2007b) 
Slane et al. (2014) 
Salehi et al. (2013) 

Erythritol 
 

 
McLaren et al. (2007b) 

    

Amino acid Glycine 
 

McLaren et al. (2006) 

    

 

 

3.6. Appraisal of biocompatibility of ALABC 

Biocompatibility is a complex concept associated with the extensive domain of medical devices 

and with the multiple interactions related to their safety and performance. Since the moment the 

biomaterial is placed inside the patient, a host response is triggered, which it will be acceptable if 

the biomaterial is safe. Also, performance of the biomaterial is related to a specific application, in 

a specific type of tissue, interacting with specific type of interfaces (Eloy, 2012). Thus, 

biocompatibility testing is the fundamental requirement when developing new materials and their 

surfaces for medical devices and tissue engineered medical products (Bruinink and Luginbuehl, 

2012).  

The International Standard ISO 10993 describes test methods to assess the in vitro cytotoxicity of 
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medical devices on extracts of the test sample,   and/or   on the test sample itself. A cell line of 

mouse fibroblasts (L929; NCTC) is recommended although the complementary use of other cell 

lines is not discouraged. A cell line of human osteoblasts (MG63; ATCC®CRL-1427) is often also 

used to follow the standard requirements (ISO 10993-5).  

This standard proposes three categories of tests for assessing the cytotoxicity of potentially 

released materials: (1) extract tests, (2) direct-contact tests and (3) indirect-contact tests (agar 

diffusion test, filter diffusion test). One or more tests may be used depending on the nature of the 

sample material. Cytotoxicity is assessed using different parameters based on cell and culture 

morphology (qualitatively), quantitative measurement of cell impairment, such as effects on cell 

growth (proliferation), and specific aspects of cell metabolism. Qualitative and quantitative 

measurements are reported to correlate very well (Bruinink and Luginbuehl, 2012). 

The most striking limitation of all suggested tests in ISO 10993-5 is the short test period, i.e. 2 h 

(filter diffusion), 24 h (extract acute cytotoxicity), or 24–72 h (agar diffusion). By defining a 

reduction of 30% as the threshold for an extract to be toxic, only a cell lysing compound, a 

compound inducing apoptosis in a very short term, or very strong inhibitor of cell proliferation will 

be able to give rise to such a reduction after a treatment period of 24 h.  

According to Williams (2014) the term “Biocompatible” should only be considered in the context of 

the characteristics of both the material and the biological host within which it is placed, as it is a 

property of a system and not of a material and states “It follows that there can be no such thing as 

a biocompatible material”. Interactions between biomaterials and tissues are time dependent and 

some materials may be effectively conditioned after contact with the tissues, and this has to be 

taken into account in the characterisation of the material and biological host system. These 

interactions may be controlled by surface properties as energy, topography, functionality and 

substrate stiffness. The control of biocompatibility involves, therefore, much more than non-

citotoxicity (Williams, 2014).  

Therefore, these tests do not fully determine the biocompatibility of a material, and represent no 

more than a primarily, but important, step towards the in vivo testing by determining the 

interaction cell-material as suitable for a given clinical application or not (ISO 10993-5). 

 

 

3.7. Bioactivity of ALABC 

Two biomechanical phenomena characterise the bone response to the cemented implants: 1) the 

smooth surface of all PMMA-bone cements; and 2) the penetration of the cement mass into the 

bony honeycombs thus stiffening the scaffolding of cancellous bone, converting it into a stiffer 

compound material that represents a living symbiosis between bone and its PMMA »inlay« 

(Draenert and Draenert, 2005). Some authors designate this behaviour as recognised 
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“osteointegration” in the sense of lack of a negative tissue response suggesting that the foreign-

body surface is positively recognisable from the osteogenic cells as a biomimetic scaffold which 

may favour early peri-implant osteogenesis (Mavrogenis et al., 2009). However, the fibrous tissue 

layer between BC and bone is known as the weak-link zone and can lead to loosening of the 

prosthesis (He et al., 2012).  

Therefore, in an attempt to address the poor bone tissue integration of commercial ALABC, 

osteoconductive materials, like ceramics, are being considered to load ALABCs. The smooth 

surface of BCs does not allow the same bone bonding as that from ceramics, where bone 

contacts are regularly formed indicating interface stability, as a consequence of their 

osteoconductive and osteophilic nature (Kima et al., 2004). 

The incorporation of bioceramics into ALABCs, such as glass and calcium phosphate (CaPs), are 

increasingly being reported as successful additives on promoting superficial interaction between 

the BC and the bone tissue. Furthermore, the properties of calcium phosphates are not modified 

when incorporated in the PMMA matrix (Lopez-Heredia et al., 2012).  

One of the most important applications of bioactive calcium phosphates, such as hydroxyapatite 

(HA), has been as coatings of orthopaedic metal implants, at locations where a strong interface 

with bone is required, i.e., femoral stems and acetabular metal-backs for the hip joints and tibial 

and femoral components for the knee joints, as well as injectable bone filling material (Ferraz et 

al., 2007). For both applications particle size is an important consideration when optimal 

degradation and release profiles are needed. NanoHA was tested in vitro for the periodontitis 

treatment with beneficial effects on sustained antibiotic release, osteoconduction and 

resorbability. Moreover, preparation methods of nanoHA do not impair properties such as 

biocompatibility, bioactivity, osteoconductivity and osteoinduction (Ferraz et al., 2007).  

Nevertheless, the potential of nanostructured materials are huge and improvements are to be 

expected when combined with other materials, such as BC, where antibiotic delivery and tissue 

regeneration are central aspects of bone infection treatment (Uskokovic, 2015).  

Furthermore, research on this domain has reported the inclusion of cations, such as magnesium 

and strontium, into the calcium phosphates crystal lattice as an added value for improving 

osteointegration, as these ions share the same pathway as the calcium in humans inducing the 

increase of bone forming sites (Dall’Oca et al., 2014; Guo et al., 2005; Laurencin et al., 2011; Ren 

et al., 2010). 

Nevertheless, bone ingrowth into ALABC is still a concern (Fini et al., 2002; He et al., 2012; Sa et 

al., 2015). The combination of ceramics with poragens or with another ceramic, with a different 

resorption rate, is being explored as an attempt to address this downside. The combination of 

PMMA with tricalciumphosphate (TCP) and HA, two bioactive calcium phosphates with different 

resorption rates, coated on PMMA-bone cement surface seemed to offer potential benefits over 

classic PMMA-bone cement (Draenert and Draenert, 2005). The HA, structurally similar to the 
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inorganic phase of human bone, warrants the superficial interaction with bone tissue cells, and 

the TCP increases porosity pores, while being reabsorbed, promoting bone ingrowth. 

The immediate drawback of this strategy is the risk of hampering the mechanical properties due 

to porosity increase. Nonetheless, He et al. (2012) described the combined use of low-content of 

chitosan (10%), as poragen, with bioactive glass, as bioactive filler, into PMMA–bone cement and 

achieved satisfactory results regarding the bonding strengths between bone and implant and 

without compromising compressive strength of the bioactive BC. Other authors studied the 

addition of HA and chitosan (10%) into the PMMA matrix and reported a more preferable 

environment for cell attachment and proliferation than for plain PMMA, concluding that a viable 

bone/cement interface could result in a better orthopedic implant fixation system by combining BC 

rigidity with biological ingrowth for long-term stability (Kimb et al., 2004).  

Moreover, calcium phosphates, which are also widely used as drug delivery materials in medicine 

and are inherently radiopaque, could bring an extra advantage if considered to load BC as drug-

loaded bioactive agents. It would be like a merging of the desired mechanical and biological 

properties of a BC by combining the vast clinical experience and structural function of PMMA and 

the biological potential of calcium phosphates materials (Arcos and Vallet-Regi, 2013; Ginebra et 

al. 2006; Lopez-Heredia et al., 2012). 

This innovative approach deserves, in our opinion, further research and thorough evaluation. 

 

 

3.8. Mechanical Properties of ALABC 

The main function of BC in a cemented arthroplasty is to transmit loads through the interface into 

the bone and muscle surrounding for long periods of time. The mechanism of loading is especially 

complex as the total load affecting BC is a mixture of compressive loading combined with 

bending, tension, shear, and torsion, turning difficult to define what strength property actually 

leads this phenomenon (Hosseinzadeh et al., 2013). Therefore, it has been extremely difficult to 

simulate this complex situation in the laboratory. 

Mechanical evaluation of acrylic BCs has varied considerably. Until 1987, when ISO-standard 

organisation added the bending modulus and bending strength determination, the only required 

testing was the compressive strength (Hansen and Jensen, 1992). The standard ASTM F451 

(2008) still includes the compression test only.  

Consequently, a significant number of papers started to be published providing data on the 

mechanical properties of the available commercial-brands of BCs as well as of research 

formulations not commercially available (Lee, 2005). Most studies are referred to quasi-static 

mechanical evaluation, i.e. compressive strength, bending modulus, bending strength, shear 

stress, tensile stress and surface hardness, which are important for short-term BC 
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characterisation specially giving information about the BC composition.  

Still, and considering that the most common cause of arthroplasty revision is aseptic loosening, it 

still lacks information about dynamic properties, useful for a long-term BC characterisation, such 

as creep, stress relaxation or fatigue, either in in vitro physiological simulated conditions as in in 

vivo conditions, which may affect the transmission load into the bone or the bone/BC interface 

tension, compromising the expected life of a total arthroplasty (Lewis, 2015). 

 

Quasi-static mechanical properties of bone cement as a preliminary evaluation 

Very rarely, if ever, is failure due to compression or bending of BC, meaning that the requirements 

of the international standard are most useful for quality control on the evaluation for novel ALABC 

formulations for prophylactic use in cemented total joint replacement surgery. 

In Europe, the main standard for controlling the properties of acrylic BC is the ISO 5833:2002 

which specifies preparation, packaging, set and cured cement requirements (ISO, 2002).  

Regarding the latter, three requirements are mandatory: compressive strength (≥70 MPa), 

bending modulus (≥ 1800 MPa) and bending strength (≥ 50 MPa). The compressive strength is 

tested on cylindrical samples of BC 24 ± 2 h after forming and storage in dry air at 23°C (Fig. 10).  

 

Three-point bending test  Four-point bending test  Compression test 

 

Fig. 10 Schematic representation of the applied forces on a three-point flexural test (left), on a four-point 
flexural test (center) and on a compression test on a ductile material as BC (right). The bottom row shows 
instant photos during tests.  
 

The strength is calculated from fracture load, 2% offset load or upper yield point load, whichever 
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occurs first. The bending modulus and bending strength is measured using a four-point bending 

test on beam specimens of BC 24 ± 2 h after forming and storage in dry air at 23°C. Formulae are 

given for the calculation of bending modulus and bending strength. All bone cements that are 

commercially available – plain and antibiotic-loaded – must comply with the requirements of ISO 

5833 (Lee, 2005).  

Considering the published data on compressive strength, bending strength and modulus, 

commercial-available BCs are strong in compression, weak in tension and have a medium 

bending modulus of elasticity. In consequence, BC should be loaded in compression wherever 

possible. It should be supported by cortical bone to allow the compression to be generated and to 

restrict tensile stresses (reviewed by Lee, 2005).  

When suggesting any variation on the composition of a BC formulation, there must be awareness 

for the influence of that change on the mechanical properties. As referred before, by adding a 

second antibiotic, or increasing the amount of antibiotic, or by adding a poragen or a bioactive 

ceramic, changes of the bulk structure occur and the compliance with the ISO 5833 requirements 

may be compromised. 

Moreover, on deciding what percentage of a new component to add to a commercial BC powder it 

must be taken into consideration the base-proportions of each constituent of that BC to avoid 

hindering their function on cured BC. For example, the amount of radiopacifier should not 

decrease to levels that might compromise radiopacity ranging between 8.0% and 15.0% in 

commercial brands (Hosseinzadeh et al., 2013).   

Not seldom, on evaluating the mechanical properties of a commercial or an experimental BC 

matrix, ISO 5833 or ASTM 451 are not strictly followed, in many studies, especially regarding the 

flexural strength evaluation, which is the most restrictive mechanical property when including 

novel components into a formulation. Authors often report the use of a three-point flexural test 

instead the 4-point recommended by ISO 5833 (ASTM does not include flexural evaluation) or 

instead they only report compressive strength results, which hardly is affected.  

This is an important subject because it has influence on final conclusions considering that BC 

tested by three-point flexural test result in a higher flexural strength than BC tested by four-point 

flexural test (Vallo, 2002). The three-point flexural test produces its peak stress at the specimen 

mid-point with reduced stress elsewhere along the specimen. The four-point flexural test produces 

peak stresses along an extended region of the specimen (Li on Fig. 10) thus exposing a larger 

length of the specimen with more potential for defects and flaws to be highlighted. This is the case 

of the BC, which inner matrix has a porous structure, as already presented, where propagation of 

cracks may occur starting on pores. 

Still, as a preliminary study, the non-compliance results from three-point bending test excludes the 

execution for a four-point bending test. 

Several parameters affect the interpretation of BCs mechanical analysis. There is a plethora of 
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studies either for different commercial-brands as for novel BC alternatives containing several 

additives (reviewed by Lewis, 2015). These include varied amounts of one or two antibiotics or 

other drugs, poragens, bioactive ceramics and fibbers for reinforcement. Unfortunately most data 

cannot be compared because each author may decide not to use a standard test proceeding; may 

use a standard but for any reason do not follow described settings; may use a standard, follow 

settings but only for one of the mechanical properties described - usually compressive strength is 

chosen as it involves lower risk of failure; may not use controls to which other results should be 

compare with to drove conclusions. The variability of options is such that even completely 

opposite results may be found when using exactly the same cement, address the same properties 

and characterisation, the same additives but just one difference on amounts or forms of the 

additives (Shi et al., 2006; Tunney et al., 2008). 

Improvements at standardisation level may help decreasing the randomness of results and 

balance interpretations. For example by clearly defining methods of mixture according to BC 

intended application, limiting the amount of additives to be considered for loading, increasing the 

number of time-points after setting on which data must be acquired.  

 

Overall, efforts must be joined to gather and systematise information to identify clearly the pros 

and cons of the choices of a certain additive or a particular antibiotic. Research should continue to 

focus on ALABCs tailored alternatives for a successful prophylaxis and treatment of bone 

infection, guaranteeing long-term stability of the implant and, more important, the patient’s quality 

of life. 
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Abstract 

 

The use of antibiotic-loaded acrylic bone cement (ALABC) is still considered the standard of care 

for patients with chronic bone and joint infection, providing local delivery of high levels of 

antibiotics for an extended period without exceeding systemic toxicity. However, these ALABCs 

present a major drawback related with the incomplete and inadequate kinetic release of the 

antibiotic. New strategies must be found to improve the mechanisms of release while maintaining 

antibiotic antibacterial activity as well as the mechanical stability of the resultant bone cement 

(BC). The inclusion of antibiotic-loaded PMMA particulate systems in the BC matrix appears as an 

interesting approach to be tested fulfilling the aforementioned premises, given both, particles and 

BC, are PMMA-based materials.  

The double-emulsion solvent evaporation method was used to prepare minocycline- and 

levofloxacin-loaded PMMAp. Antibiotic selection (levofloxacin and minocycline) was based on 

their broad-spectrum of activity against the main organisms responsible for bone and joint 

infections. Prepared PMMA particles, plain and antibiotic-loaded, presented suitable surface 

morphology, yield of preparation, stability and size. Antibiotic encapsulation and release strongly 

depended on drug’s hydrophobicity, and formulation conditions have not interfered with antibiotic 

microbiological activity. Because only minocycline released from particles, just Mino(PMMA)p 

were included into the BC matrix. However, as a 15% (wparticles/wBC) amount of Mino(PMMA)p 

hindered BC setting, further studies proceeded with calcium phosphate particles. 

 

 

Keywords: Particulate systems, drug delivery, double emulsion solvent evaporation method, 

polymethylmethacrylate particles, antibiotic release 
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1. Introduction 

The development of local drug delivery systems able to release drugs in a controlled way 

providing optimal drug concentrations at the site of illness has strongly evolved since the late 

1960’s. This is of particular importance in the case of orthopaedic biomaterial-related infections 

where different materials loaded with antibiotics for local delivery are under investigation (Van de 

Belt et al., 2001). Among these, polymethylmethacrylate (PMMA) has been widely explored as a 

carrier material for the development of local drug delivery systems due to its biocompatibility and 

its appealing mechanical and chemical characteristics (Kreuter, 2007). 

Since 1970, when Buchholz and Engelbrecht added gentamicin to PMMA for the prophylaxis and 

treatment of prosthetic joint infection, this biomaterial is being continuously used as a local 

delivery system in orthopaedic field. Mainly there are two forms of use: that of antibiotic-loaded 

acrylic bone cement (ALABC) applied in arthroplasties for prophylaxis, and of antibiotic 

impregnated bead chains or spacers for musculoskeletal infections treatment (Bettencourt and 

Almeida, 2012). 

The use of ALABC is still considered the standard of care for patients with chronic bone and joint 

infection, providing local delivery of high levels of antibiotics for an extended period without 

exceeding systemic toxicity, while being a more cost-effective procedure when compared to 

cementless implants (Jameson et al., 2015; Zilberman and Elsner, 2008). However, these 

ALABCs present a major drawback related with the incomplete and inadequate kinetic release of 

the antibiotic (Jiranek et al., 2006; Lewis, 2009). New strategies must be found to improve the 

mechanisms of release while maintaining the antibacterial activity as well as the mechanical 

stability of the bone cement (BC) (Jiranek et al., 2006). 

Ensuing the use of PMMA beads as antibiotic delivery systems in bone infections, the inclusion of 

antibiotic-loaded PMMA particulate systems in the BC matrix to improve drug delivery appears as 

an interesting approach to be tested. The use of PMMA as a biocompatible polymer for particle 

preparation was first described in the late 1970’s although its use as a drug carrier system has 

been neglected because it is not biodegradable, which however is an interesting property when 

considering loading into BC (Bettencourt et al., 2010).  

To date there are some examples of drugs encapsulated in PMMA particles namely, coenzyme 

Q10 (Kwon et al., 2002), α-tocopherol (Bettencourt et al., 2010) and more recently of daptomycin 

and vancomycin (Ferreira et al., 2015), describing the production of the PMMA particles to be 

used as drug carriers, however none are commercialised.  

Moreover, the idea of encapsulating drugs in PMMA particles and then loading them into BC was 

already reported for antioxidants with successful results, circumventing the impossibility of loading 

directly the antioxidant into the BC matrix, which hampered BC setting (Bettencourt et al., 2010).  

Within this context the intent was to encapsulate both minocycline and levofloxacin on PMMA 
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particles (PMMAp) prior to loading them into the BC matrix. This approach would protect the 

antibiotic molecules against eventual degradation during BC setting while controlling the burst 

effect of antibiotic release extending it for a longer period. Moreover, the non-biodegradability of 

PMMA represented the asset to the ideal carrier systems for controlled antibiotic release after 

inclusion in BC since both the particles and the cement are made of the same biomaterial. As so, 

the resultant biomechanical properties and biocompatibility of the PMMAp-loaded BC, 

expectantly, would not be compromised. The reason for the antibiotics selection was their broad-

spectrum of activity against the main organisms responsible for bone and joint infections 

(Bishburg and Bishburg, 2009; Zimmerli, 2015). 

On deciding to prepare particulate carriers, size distribution, type and preparation methodology 

are important subjects to consider. PMMA particles (micro- or nanoparticles) can be prepared 

either by direct polymerization of the methylmethacrylate monomer using polymerization reactions 

or from pre-formed PMMA polymer. Particle preparation is fairly described in literature with 

primacy to the emulsion polymerization method, which includes different procedures (i.e. 

conventional, surfactant-free and micro- and miniemulsion), and allows fast-yielding varied 

diameter particles with low polydispersity and easy-scalability. However, toxicological issues 

regarding the use of organic solvents, initiators, surfactants or the liberation of residual 

monomers, during or after polymerization, haunt these techniques, when the produced particles 

are intended for biomedical applications, such as vaccine delivery (Bettencourt and Almeida, 

2012).  

Pre-formed polymer-based techniques are an alternative method to produce particles on-demand 

from pre-formed PMMA, either of different molecular weights or blended with different polymers. 

Those include emulsion solvent evaporation/extraction (Ferreira et al., 2015; Zigoneanu et al., 

2008), nanoprecipitation (Aubry et al., 2009), supercritical fluid methods (Elvira et al., 2004; Matos 

et al., 2010), spray-drying and crystallization (Zhou et al., 2001). All methods allow producing 

nano- or microparticles, or a mixture of both, depending on the formulation conditions. Exception 

made to nanoprecipitation method that yields only nanoparticles (Bettencourt and Almeida, 2012).  

Nevertheless, the most widely used method for PMMAp preparation is the emulsion solvent 

evaporation due to its known advantages, as being a simple and inexpensive technique, use of 

accessible equipment, possible encapsulation of different types of drugs (hydrophobic or 

hydrophilic) at room temperature and versatility allowing customisation of the key-parameters in 

order to obtain the required particles. Selecting the starting pre-formed polymer (type and 

molecular weight), ratio to the organic solvent where it solubilises; the type, volume and 

concentration of the surfactant aqueous solutions; the nature and solubility of the drug to be 

encapsulated; the drug/polymer ratio; the time and speed of homogenisations and evaporation; 

the time, temperature and speed of centrifugation; are all customisable parameters that enable 

preparation of particles with different yields, size distribution, surface charge and drug loading 
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(Zydowicz et al., 2002). This method may be executed as a simple (o/w) or a double (w1/o/w2) 

emulsification depending on the drug hydrophobicity characteristics. Usually more hydrophobic 

drugs are encapsulated using simple-emulsion solvent evaporation (being directly dissolved in the 

organic solvent) and more hydrophilic drugs with the double-emulsion solvent evaporation.  

In the present study, the double-emulsion solvent evaporation (DESE) w1/o/w2 method was used 

to prepare minocycline- and levofloxacin-loaded PMMAp. 

Formulation and performance parameters were assessed, including encapsulation efficiency and 

drug loading, surface morphology, size and surface charge. Furthermore, antibiotic in vitro release 

and antimicrobial activity were evaluated.  

Afterwards, an in vitro proof of concept experiment was designed by preparing thin BC pilot-

specimens to load antibiotic-loaded PMMAp. The aim was to evaluate the effect on BC setting as 

well as facilitating the release medium to percolate the BC matrix during the in vitro release study. 

The first aim is related to the utmost need of maintaining the structural properties of the BC after 

loading the particles. The second was reasoned by the BC matrix characteristics, non-erodible, 

hydrophobic and low porosity, which hampers antibiotic release, which can only dissolve and 

diffuse through the existent voids and cracks reached by the release medium (Siepmann, 2012). 
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2. Materials and Methods 

2.1. Materials 

Polymethylmethacrylate powder (PMMA, Mw 350 000 g/mol), levofloxacin (Lev, on particles 

designation), polyvinylalcohol (PVA, Mw 13 000 – 23 000 g/mol, 87-89% hydrolysed), polysorbate 

20 (Tween® 20) and phosphate buffer saline (PBS) were purchased from Sigma-Aldrich (Spain). 

Minocycline hydrochloride (Mino, on particles designation) was kindly donated by Atral-Cipan 

(Castanheira do Ribatejo, Portugal). Dicloromethane (DCM) (analytical grade) was obtained from 

Merck (Portugal). Sucrose was obtained from Labonal (Portugal). Sodium chloride was obtained 

from AppliChem (AppliChemGmbH, Darmstadt, Germany). Distilled water was of Milli-Q quality 

(Millipore, Bedford, MD, USA). All other reagents were of analytical grade and were used without 

further purification. Commercial acrylic BC CMW1® Radiopaque (high viscosity BC intended for 

digital application) was purchased from Depuy Synthes (Portugal). 

 

2.2. Preparation of PMMA particles by DESE method 

Particles were prepared at room temperature using the DESE method (w1/o/w2) described 

elsewhere (Bettencourt et al., 2010; Florindo et al., 2010) (Fig.1).  

In brief, an inner aqueous solution (w1) was emulsified into an organic phase (o), composed by a 

50:1 ratio of PMMA:DCM (mg/mL), by homogenisation using an IKA® T10 Basic Ultra-Turrax (IKA, 

Germany) for 3 min at ca. 25000 rpm. To prepare the plain particles, w1 consisted on 1mL of a 

10% (w/V) PVA solution. When preparing drug-loaded particles, w1 corresponded to 1mL of a 

drug solution prepared with the 10% (w/V) PVA solution.  

The resultant (w1/o) emulsion was then added drop wise into a 6-fold larger volume of a 1.25% 

(w/V) PVA solution (w2) and homogenised for 7 min at 9999 rpm using a Silverson Laboratory 

Mixer Emulsifier L5M (Silverson Machines Inc., UK). The resulting (w1/o/w2) emulsion was 

magnetically stirred at 200 rpm for 4 h, to guarantee complete evaporation of the organic solvent. 

Particles were then harvested by centrifugation (15.000 rpm, 20 min, 18ºC; Beckman Coulter Inc., 

Allegra 64R High speed centrifuge, USA), washed twice and subsequently dispersed in 5 mL of a 

cryoprotectant solution, 10% (w/wPMMA) sucrose, before freeze-dried (Christ Alpha 1-4, B. Braun 

Biotech International, Germany) to obtain a fine, free-flowing dry powder of particles. The mean 

yield of preparation was calculated relating the obtained mass of particles to the initial mass of all 

components, and obtained values were always comprised between 70% and 80% (w/w). All 

batches were prepared in triplicate and plain particles were used as controls whenever 

necessary. All produced particles were at a 7.5% (w/wPMMA) of each antibiotic content. 

 



58 Incorporation of Antibiotic-Loaded PMMA particles in acrylic bone cement 
Chapter 2 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 
Fig. 1 Schematic representation of the DESE method (solution volumes are 
not drawn at proportion). 

 

 

2.3. Particles surface morphology 

The surface morphology of particles was analysed and photographed using a scanning electron 

microscope (SEM). The particles, as dry powder, were mounted on the SEM sample stab using a 

double-sided sticking tape and were coated with a gold film (20 nm) by sputtering under vacuum. 

Photomicrographs of suitable magnifications were obtained. For plain and Mino-loaded particles it 

was used a Hitachi S2400 equipment and for Lev-loaded particles a Hitachi S450 (Hitachi, 

Japan). 

 

2.4. Particle size analysis 

Particle size was determined by dynamic light scattering, using the Malvern Mastersizer 2000 

(Malvern Instruments, UK). The adequate diffraction index for PMMA material was selected and 

lyophilised particles were dispersed in filtered purified water directly in the sample dispersion unit 

(Hydro SM, Malvern Instruments, UK). The system was maintained at 25°C with constant 

agitation until an obscuration of 4 to 6% was reached. For each sample four independent 

measurements were performed and at least three replicates were obtained. 

 

2.5. Surface Charge 

Particle surface charge was obtained measuring the zeta potential (ZP) of the lyophilised particles 

by electrophoretic light scattering (Malvern Zetasizer Nano, Malvern Instruments, UK).  

water phase1 (w1)  
drug dissolved in surfactant solution1 

oil phase (o)  
polymer dissolved in organic solvent 

Ultra-homogeneizer

Homogeneizer Evaporation

Emulsion Suspension
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water1-in-oil 

water phase2 (w2)  
surfactant solution2 

w1/o/w2  
water1-in-oil-in-water2 

PMMAp
in water2 

3 min
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Measurements of ZP were performed for each particle batch after appropriate dilution and 

dispersion with filtered purified water. For each sample five independent measurements were 

performed and at least three replicates were obtained. 

 

2.6. Particle encapsulation efficiency and drug loading 

Encapsulation efficiency (EE) and drug loading (DL) percentages of the antibiotics in the PMMAp 

were determined indirectly by measuring the antibiotic amount present in the supernatant phase 

after the particle centrifugation step. Supernatants were adequately diluted before analysis.  

Minocycline content was obtained by UVvis-spectrophotometry (Hitachi U-2001, Hitachi 

Instruments Inc., USA) using a calibration curve obtained at 350 nm. This procedure was 

performed in triplicate.  

Levofloxacin content was determined by HPLC-UV (Shimadzu LC-6A and SPD-6A, Kyoto Japan), 

using an adjusted method described in literature (see Annex; Hart et al., 2010). Briefly, the 

chromatographic analysis was performed using a 125-4, 5 μm, LiChrosphere® 100 RP-18 (Merck, 

Darmstadt, Germany) column, a degassed mobile phase of water:acetonitrile and triethylamine 

(85:15(V/V), 0.6%(V/V)) adjusted to pH 3 using ortho-phosphoric acid (Sigma Aldrich and 

Panreac Quimica, Spain), a 1.2 mL/min flow rate and UV detection at 284 nm. All 

chromatographic separations were carried out at 25ºC. 

For both antibiotics EE was expressed as the percentage of encapsulated antibiotic in PMMA 

particles related to the initial amount of antibiotic used for particles preparation (wi), according to 

Eq. (1):    

%EE  =  wi  -  wswi
  ×  100   Eq. (1) 

 

where ws is the amount of antibiotic present in the supernatant after particles harvesting.  

Also, DL was expressed as the percentage of the encapsulated antibiotic in PMMA related to the 

initial amount of polymer and antibiotic (wp+a), according to Eq. (2):  

%DL   =    wi
wp+a

  ×  %EE    Eq. (2) 

 

 

2.7. Antibiotic stability throughout formulation procedure 

Qualitative analysis of antibiotic stability during formulation procedures was assessed by 

microbiological assay. In brief, it was performed by the Mueller-Hinton agar diffusion method 

against reference antibiotic-susceptible isolates of Escherichia coli (ATCC 25922) and of 
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Staplylococcus aureus (ATCC 25923). Bacterial strains were seeded with microbial inoculums 

from 2 to 3×105 cfu/mL. Commercial discs of the studied antibiotics and the solutions of non-

processed antibiotics (1mg/mL) were used as controls. Commercial discs were Oxoid MH 30µg 

CT0030B, for minocycline, Bio-rad 5µg LVX 66858, for levofloxacin and Oxoid Blank Discs 

CT0998B (Oxoid Ltd. Basingstoke, Hampshire, England) for controls. To obtain the same 

concentration as the commercial disc, the necessary volume of each antibiotic standard solution 

was placed in a blank disc: 30 µL for minocycline and 5 µL for levofloxacin.  

The evaluated test samples were aliquots of the first supernatant obtained after particles 

centrifugation and diluted to obtain adequate antibiotic concentration (1.0 mg/mL). Culture plates 

were incubated at 37°C for 24 h after what the zones of growth inhibition were observed around 

the dried discs and diameters were measured in mm, indicating antibiotics microbiological activity. 

 

2.8. Fourier Transform Infrared spectroscopy (FTIR) 

FTIR spectra were obtained at 400 – 4000 cm-1 scanning range using the KBr pellet technique. 

Powder samples of minocycline, levofloxacin, PMMA and lyophilized particles of (PMMA), 

Mino(PMMA) and Lev(PMMA) were incorporated with potassium bromide in an agate mortar. A 

pellet was obtained by compressing the powder mixture into discs in a hydraulic press, under a 

pressure of 740 GPa for 3 min. The pellet was placed in the light path and spectra obtained were 

the results of averaging thirty scans. Different spectrophotometers were used, a Jasco FT/IR – 

460 Plus spectrophotometer (JASCO Europe s.r.l., Italy) for Mino(PMMA) particles and a IRA 

ffinity-1 spectrophotometer (Shimadzu, Kyoto, Japan) for Lev(PMMA) particles. 

 

2.9. In vitro release studies 

Minocycline release from the Mino(PMMA) particles was determined by suspending an adequate 

amount of particles in PBS buffer (pH 7.4) in a proportion of 1:1 mg particles per mL of release 

medium. Containers were placed in a horizontal-shaking water bath under gentle agitation (130 

rpm) at 37°C (JULABO SW 21, Julabo Labortechnik GmbH, Germany).  

At pre-determined time-points throughout a one-week period (168 h), tubes were collected, 

centrifuged at 6000 rpm for 20 min at ambient temperature (Centrifuge Heraeus, Megafuge 1.0R, 

Heraeus, Germany) and 2.0 mL of the supernatants were measured for antibiotic content using 

methods previously described for minocycline (Section 2.7, Chapter 2). The withdrawn samples 

were then replaced with equal volumes of fresh PBS and stirring continued until next collection. 

Levofloxacin release from the Lev(PMMA) particles was determined by suspending an adequate 

amount of particles in NaCl (0.9% w/w) with Tween 20® (0.05% w/V) (pH 5.6) in a proportion of 

1.5:1, mg particles per mL of release medium. Containers were placed in a horizontal-shaking 
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water bath under gentle agitation (130 rpm) at 37°C (JULABO SW 21, Julabo Labortechnik 

GmbH, Germany). 

Three independent containers were prepared to each pre-determined time-point, throughout a 

one-week period (168 h). At each time-period tubes were collected, centrifuged at 12000 rpm for 

10 min at ambient temperature (Centrifuge Heraeus, Megafuge 1.0R, Heraeus, Germany) and 1.0 

mL of the supernatants were measured, in triplicate, for antibiotic content using methods 

previously described for levofloxacin (Section 2.7, Chapter 2). 

 

2.10. Preparation of acrylic bone cement specimens 

Thin specimens of acrylic BC were prepared, at room temperature (25±1ºC) and atmospheric 

pressure, by loading 15% (w/wBC) of Mino(PMMA) particles. The commercial supplier 

recommended proportion [CMW1® powder]:[Monomer liquid] (1 g of powder and 0.5 mL of liquid) 

was maintained. Mino(PMMA) particles were previously well-dispersed in the CMW1 powder in a 

glass mortar before adding the monomer. Both components were then thoroughly mixed. BC 

dough was then moulded in thin plates with an average thickness of 1.30 ± 0.02 mm, an average 

length of 23.40 ± 0.03 mm and an average width of 19.50 ± 0.01 mm. BC setting proceeded for 

one hour. 
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3. Results 

3.1. Particle characterisation 

SEM micrographs revealed the formation of microparticles with a smooth surface and spherical 

shape (Fig. 2) with no evident presence of pores or cracks on particle surface. Interestingly, 

Lev(PMMA) particles presented a clustered appearance due to the sucrose layer, that remained 

in the formulation after the freeze-drying step. 

 

    

 
Fig. 2 SEM micrographs for plain PMMA particles (A), Mino(PMMA) (B) and Levo(PMMA) (C) particles. 
 

Table 1 summarises the results regarding ZP, EE and DL and for both plain and antibiotic-loaded 

PMMA particles. All PMMAp presented negative values of ZP, below -30 mV, more accentuated 

for antibiotic-loaded particles. Values of EE and DL for Lev(PMMA) particles were higher than 

those obtained for Mino(PMMA) particles. 

 
Table 1. Summary of the resultant properties of produced PMMA particles, presented as mean±SD. 

Particle batch ZP (mV) EE (%, w/w) DL (%, w/w) 

PMMA - 31.0 ± 0.1 - - 

Mino(PMMA) - 35.8 ± 0.4 38.6 ± 1.3 2.8 ± 0.1 

Lev(PMMA) - 35.7 ± 1.8 65.0 ± 1.6 4.5 ± 0.2 
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Concerning the PMMAp size there were no noteworthy differences between plain and loaded 

particles (Table 2). From d(0.1), d(0.5) and d(0.9) parameters, which represent the diameter 

range of 10%, 50% or 90% of the particle population distribution, it can be concluded that the 

preparation method has mainly produced PMMA microparticles with a average volume weight 

mean of 3 µm. 

 

Table 2. Size distribution of PMMA particles, presented as mean±SD. 

Particle batch Span VWM (µm) d (0.1) d (0.5) d (0.9) 
PMMA 2.07 ± 0.03 2.57 ± 0.51 0.23 ± 0.01 2.28 ± 0.31 4.94 ± 0.58 
Mino(PMMA) 1.21 ± 0.00 2.96 ± 0.00 1.53 ± 0.00 2.70 ± 0.00 4.81 ± 0.00 
Lev(PMMA) 1.52 ± 0.32 2.53 ± 0.18 0.79 ± 0.63 2.40 ± 0.06 4.43 ± 0.05 

 

3.2. Antibiotic stability throughout formulation procedure 

Microbiological activity of the antibiotics in the formulation supernatants, against E. coli and S. 

aureus are presented in Table 3. For both Mino(PMMA) and Lev(PMMA) formulations, images 

show similar growth inhibition zones between the commercial disc and that containing the aliquot 

of the first supernatant, obtained after the first centrifugation step.  

 

Table 3. Bacteria inhibition zones obtained from first supernatant solutions of the antibiotic-loaded 
particle formulations. 

Bacteria Strain E. coli S. aureus 

Sample Commercial Mino/PMMAp Commercial Mino/PMMAp 

Minocycline 

  
Sample Commercial Levo/PMMAp Commercial Levo/PMMAp 

Levofloxacin 

  
 

3.3. Fourier Transform Infrared spectroscopy (FTIR) 

Fig. 3 shows the spectra obtained for plain PMMAp (A and D), Mino(PMMA)p (B) and 

Lev(PMMA)p (E). To ease comprehension spectra of plain and loaded particles were overlaid (C 

and F). Spectra analyses allow concluding that no significant structure differences were observed. 

! !
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It could be hypothesized that minocycline and levofloxacin were physically entrapped instead of 

chemically bonded to the PMMA particles. 

 

 

 

Fig. 3 FTIR spectra for particles: plain PMMA (A and D), Mino(PMMA) (B) and Lev(PMMA) (E). Overlay of 
the spectra to better identify the presence of peaks before and after, minocycline (C) and levofloxacin (F) 
loading.  
 

Considering the plain PMMA particles spectrum (Fig. 3A and 3D), the broader band observed 

from 3100 to 3600 cm-1 on both spectra is assigned to O-H stretching of the abundant hydroxyl 
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groups. In addition, the spectra display three-absorption bands between 2800 and 3000 cm-1, 

which are due to C-H stretching (Ayre el al., 2014; Sivakumar and Rao 2002). 

The C=O band stretching vibration of the ester group is located near 1700 cm-1. For both 

antibiotic-loaded particles, overlaid spectra were fairly superimposable (Fig. 3C and 3F) and it 

was not observed new peaks appearance or the disappearance of others. 

 

3.4. In vitro Release Studies 

Concerning Mino(PMMA)p, minocycline release showed an initial burst of 35.1% followed by an 

increased constant release until 72 h reaching 72.5% of cumulative release (Fig. 4). After a one-

week period there was evidence of minocycline degradation due to the pH of the release medium 

(Fig. 5). Regarding Lev(PMMA)p, and even using a release medium favourable to levofloxacin 

solubility, results showed no antibiotic release from particles (Fig. 4). An amount of 0.1% was 

detected at time zero but afterwards no further levofloxacin release was detected above its limit of 

detection (< 0.25 µg/mL). 

 
Fig. 4 In vitro release profiles from Mino(PMMA)p and Lev(PMMA)p (mean±SD; n=3). 

 

 

Fig. 5 Photo of minocycline solutions: a just-prepared (in yellow) and after one-week, in 
PBS, evidencing degradation (in brown). 
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4. Discussion 

The inadequate and often incomplete release rate of antibiotics from the available commercial 

ALABC is well known and described (Lewis, 2009). The ALABCs are PMMA-based BCs, which is 

a biocompatible polymer with remarkable performance in the orthopaedic field due to the excellent 

mechanical performance, and that has being reported with increasing interest on its applications 

as a drug particulate carrier (Bettencourt and Almeida, 2012; Coelho et al., 2010; Shi et al., 2010). 

This study aimed at improving the controlled release of antibiotics through the inclusion of 

antibiotic-loaded PMMAp into the BC matrix. The rationale was to guarantee antibiotic protection 

during BC setting and maintenance of the mechanical performance of the particle-loaded BC, 

assuring its important structural function on prosthesis fixation to bone. The selected antibiotics 

were minocycline and levofloxacin, both with a broad-spectrum of activity against susceptible 

pathogens generally present in bone and joint infections (Zimmerli, 2015). Physicochemically both 

present amphiphilic characteristics - greater for levofloxacin; soluble in acidic aqueous media; 

melting point over 200ºC. 

Focusing on particle preparation, these were obtained by the DESE method, using a pre-formed 

PMMA polymer. Complete evaporation of the organic solvent used (DCM) was guaranteed by the 

continuous stirring for a long period of time. Although DCM is classified as a Class 2 solvent, 

according to ICH classification, which may lead to toxicological effects (Bettencourt and Almeida, 

2012), a previous study performed in our laboratories using the same DESE method, 

demonstrated that DCM final amount was below the safety limit (600 ppm) determined by the ICH 

classification (EMA, 2006; Florindo et al., 2010). Moreover, PVA was the surfactant used to 

stabilise both emulsions, with the first solution 8-fold higher concentrated than the second due to 

the most demanding need of emulsion stability of the smaller nanodroplets formed during ultra-

homogenization (Budhian et al., 2007). It has been reported as an adequate surfactant to prepare 

polymer particles, not only from biodegradable polymers, but also for PMMA particles (Ferreira et 

al., 2015; Florindo et al., 2010; Kwon et al., 2002). 

Mino(PMMA)p and Lev(PMMA)p were prepared and fully characterised regarding key-parameters 

as morphology, size distribution, surface charge, encapsulation efficiency and drug loading, 

antibiotic microbiological stability and in vitro release.  

Electron microscopy (SEM) analyses revealed, for all formulations, particles with a spherical 

shape and a smooth surface with no discernible pores or cracks (Fig. 2). Higher EE and DL 

values were obtained for levofloxacin than for minocycline (Table 1), which was expected since 

the latter presents higher water solubility. As intermediate values were obtained using the same 

method to encapsulate a hydrophilic dye, these results may be considered as promising 

(Zydowicz et al., 2002). Surface charge was determined measuring the ZP, and plain PMMAp and 

antibiotic-loaded-PMMAp all presented negative values (Table 1), which is consistent with the 
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literature (Ahlin et al., 2002). ZP values below -30 mV are conventionally considered as suitable to 

assure that these PMMAp would remain stable in suspension (Everett, 1994). Moreover, the ZP 

of antibiotic-loaded PMMAp was slightly more negative when compared to the plain PMMAp, 

which means an increased stability of these formulations. Size analysis led to conclude that DESE 

method was consistent and mainly produced microparticles, with roughly 2.5 — 3 µm in volume 

mean diameter (Table 2). It could also be concluded that minocycline or levofloxacin loading into 

PMMAp did not affect the particle size. 

In the rationale for including these particles into BC, particle size was not a critical parameter, 

considering that particles were not intended to deliver directly the antibiotic in the infection site but 

rather to be included in a larger PMMA matrix, from where it should diffuse-out after release from 

the particles. Thus, the limiting factor of antibiotic release would be the hydrophobic BC matrix 

instead of particle size. 

However, knowledge of the antibiotic stability throughout particle formulation was an important 

issue, regarding their antimicrobial activity. Data in Table 3 shows that both minocycline and 

levofloxacin retained the antibacterial activity properties after microencapsulation, against both E. 

coli and S. aureus, two of most common pathogens isolated in bone-related infections. Moreover, 

a FTIR study was performed to disclose any eventual chemical bonding between the antibiotic 

molecules and the particle polymer-matrix (Fig. 3). From spectra comparison between plain 

PMMAp and loaded-PMMAp no significant structure differences were observed (Fig. 3C and 3F), 

suggesting that neither minocycline nor levofloxacin were chemically bonded to PMMA particles 

but rather entrapped inside the polymer network.  

In vitro drug release from the Mino(PMMA)p showed a marked burst effect with 35.1% of the 

antibiotic being released at first contact with release medium, followed by a constant release until 

72 h (Fig. 4), which is consistent with the literature. In fact, publications point out that drug release 

from hydrophobic PMMA-based materials during the first 72 h is due to the drug molecules closer 

to the surface of the material (Lewis, 2009). Nonetheless, in the present studies 72.5% 

minocycline was eluted from particles within a 3-day period. As mentioned, the study was 

interrupted after one week due to minocycline degradation in the PBS (pH 7.4) (Pawełczyk and 

Matlak, 1982; Zbinovsky and Chrekian, 1977). It was a promising result considering that PMMA 

beads have been reported to deliver only an average of 25% of the loaded antibiotic, gentamicin, 

an aminoglyscoside  (Kanellakopoulou and Giamarellos-Bourboulis, 2000) and that microparticles 

have higher surface area than beads, which, at least theoretically, increases drug percentage 

delivery. 

On the other hand, in vitro levofloxacin release from the Lev(PMMA)p proceeded in a more acidic 

release medium due to levofloxacin high solubility in aqueous solutions with pH< 6.7. Although a 

release medium at pH 5.6 was used, levofloxacin release from Lev(PMMA)p resulted 

unexpectedly low, with only 0.1% (w/w) of levofloxacin released. As no increase was observed 
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since time zero it was likely that the drug detected in the release medium corresponded to 

adsorbed levofloxacin molecules on the outer surface of the particle (Fig. 4). Other authors have 

reported a satisfactory levofloxacin release from other polymeric particles (PLGA) produced using 

the same method, in spite the low EE achieved (Cheow and Hadinoto, 2011). As levofloxacin is 

an amphiphilic molecule, it is prone to interact both with the hydrophobic PMMA surface and the 

release medium. In this case, the interaction with the PMMA surface was apparently more 

significant than the solubility in the aqueous release medium. 

Completed the particle characterisation, the second aim of this work was to load the prepared 

particles into the BC matrix. Given the obtained results, the study proceeded only with the 

Mino(PMMA)p. An in vitro experiment was designed to evaluate the ability of the release medium 

to percolate the BC matrix and promote minocycline release from the microparticles therein 

incorporated. Hence, very thin BC specimens were prepared containing 15% (w/w) of 

Mino(PMMA)p, which unfortunately hampered BC setting making impossible to obtain the cement 

(Fig. 6). The inclusion of foreign-particles into the polymeric matrix always interferes with the 

polymerisation by hampering the establishment of polymer structure. By adding particles of the 

same biomaterial, most probably, the monomer also reacted with the PMMA (from the particles), 

which have a higher average molecular weight (Mw 350 000 g/mol) than the PMMA from BC (Mw 

120 000 g/mol). This imbalanced the proportion to the liquid monomer added and polymerisation 

did not occur, as it should.  

 

 
Fig. 6 Photos of a well-set plain BC specimen and of a Mino(PMMA)pBC specimen, which has not set. 
 

As the percentage of added particles represented a minocycline loading of 0.4% (wMino/wBC), 

considering the obtained minocycline DL (Table 1), lower amounts of particles were not 

considered for loading into BC because the corresponding amount of minocycline would not have 

any antimicrobial significance. It is noteworthy to refer that commercial antibiotic-loaded BCs 

typically contain 2.5% (wantib/wBC) of free antibiotic (Jiranek et al., 2006). 

 

MinoPMMApBCplain BC
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5. Conclusion 

In short, PMMA particles, plain and antibiotic-loaded, were successfully prepared by the DESE 

method with suitable surface morphology, yield of preparation, stability and size. Antibiotic 

encapsulation and release strongly depended on drug’s hydrophobicity, and formulation 

conditions have not interfered with antibiotic microbiological activity.  

However, PMMAp inclusion in the BC matrix did not evolved as expected, suggesting that loading 

other type of biomaterial particles as drug delivery systems in BC should be explored (Chapter 4). 
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Section 1 
 

A NOVEL MODIFIED ACRYLIC BONE CEMENT MATRIX.  

A STEP FORWARD ON ANTIBIOTIC DELIVERY AGAINST 

MULTIRESISTANT BACTERIA RESPONSIBLE  

FOR PROSTHETIC JOINT INFECTIONS 
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Currently the safe and responsible use of antibiotics is a world-wide concern as it promotes prevention of the
increasing emergence of multiresistant bacterial strains. Considering that there is a noticeable decline of the
available antibiotic pipeline able to combat emerging resistance in serious infection a major concern grows
around the prosthetic joint infections once the available commercial antibiotic loaded polymethylmethacrylate
bone cements (BC) are inadequate for local antibiotic treatment, especially against MRSA, the most commonly
isolated and antibiotic-resistant pathogen in bone infections. In this paper a novel modified BC matrix load-
ed with minocycline is proposed. A renewed interest in this tetracycline arises due to its broad-spectrum of
activity against the main organisms responsible for prosthetic joint infections, especially against MRSA. The
modified BC matrices were evaluated concerning minocycline release profile, biomechanical properties,
solid-state characterization, antimicrobial stability and biocompatibility under in vitro conditions. BC matrix
loaded with 2.5% (w/wBC) of minocycline and 10.0% (w/wBC) of lactose presented the best properties since
it completely released the loaded minocycline, maintained the mechanical properties and the antimicrobial
activity against representative strains of orthopedic infections. In vitro biocompatibility was assessed for the
elected matrix and neither minocycline nor lactose loading enhanced BC cytotoxicity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to bacterial resistance, the continuing rise of infections resistant
to common treatments is a growing threat and has won place in the
worldwide agenda [1,2]. There is a growing tendency to reserve novel
antibiotics with activity against resistant bacteria for treating serious
infections. Some researchers are proposing as valuable alternatives the
upraise of old antibiotic compounds, once they have remained active
against a large number of currently resistant bacteria [1,3].

Within the presented context, this research work had the intention
to use minocycline, which is a tetracycline that has found recently a
renewed interest in literature and has been referred as presenting a
broad-spectrum of activity against the main organisms responsible for
prosthetic joint infections, especially againstMRSA, themost commonly
isolated and antibiotic-resistant pathogen in bone infections [4].

The use of antibiotic-loaded polymethylmethacrylate bone cement,
herein after BC, is considered to be the standard of care for total hip

replacement patients with chronic infection, providing local delivery
of antibiotics without invasive procedures. Single or combinations
of different antibiotics are being considered to load into BC for more
effective orthopedic infection eradication; for example, gentamicin
and tobramycin, vancomycin and clindamycine [5–8]. However, the
inadequate release kinetics of antibiotics from the hydrophobic acrylic
BC matrix often leads to the development of multiresistant bacterial
strains, especially methicillin-resistant Staphylococcus aureus (MRSA),
vancomycin-resistant enterococci (VRE), multiresistant Acinetobacter
baumannii and extended spectrum beta-lactamase producing Entero-
bacteriaceae, which hinders the use of local antibiotic therapy for pros-
thetic joint infections. For that reason, recent research engagement is on
finding novel BC formulations able to achieve a total release of the anti-
biotic, in order to prevent the emergence of the multiresistant strains.

Not only a suitable antimicrobial spectrum and an adequate release
profile but also other important aspects as the resultant biomechanical
properties and biocompatibility of the modified bone cement must be
considered when evaluating the possible applicability of antibiotic
agents to load into BC [7,9,10]. The biomechanical properties will be
of utmost importance, as bone cement serves as the primary fixation
material between bone and the prosthetic element in cemented
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Currently the safe and responsible use of antibiotics is a world-wide concern as it promotes prevention of the
increasing emergence of multiresistant bacterial strains. Considering that there is a noticeable decline of the
available antibiotic pipeline able to combat emerging resistance in serious infection a major concern grows
around the prosthetic joint infections once the available commercial antibiotic loaded polymethylmethacrylate
bone cements (BC) are inadequate for local antibiotic treatment, especially against MRSA, the most commonly
isolated and antibiotic-resistant pathogen in bone infections. In this paper a novel modified BC matrix load-
ed with minocycline is proposed. A renewed interest in this tetracycline arises due to its broad-spectrum of
activity against the main organisms responsible for prosthetic joint infections, especially against MRSA. The
modified BC matrices were evaluated concerning minocycline release profile, biomechanical properties,
solid-state characterization, antimicrobial stability and biocompatibility under in vitro conditions. BC matrix
loaded with 2.5% (w/wBC) of minocycline and 10.0% (w/wBC) of lactose presented the best properties since
it completely released the loaded minocycline, maintained the mechanical properties and the antimicrobial
activity against representative strains of orthopedic infections. In vitro biocompatibility was assessed for the
elected matrix and neither minocycline nor lactose loading enhanced BC cytotoxicity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to bacterial resistance, the continuing rise of infections resistant
to common treatments is a growing threat and has won place in the
worldwide agenda [1,2]. There is a growing tendency to reserve novel
antibiotics with activity against resistant bacteria for treating serious
infections. Some researchers are proposing as valuable alternatives the
upraise of old antibiotic compounds, once they have remained active
against a large number of currently resistant bacteria [1,3].

Within the presented context, this research work had the intention
to use minocycline, which is a tetracycline that has found recently a
renewed interest in literature and has been referred as presenting a
broad-spectrum of activity against the main organisms responsible for
prosthetic joint infections, especially againstMRSA, themost commonly
isolated and antibiotic-resistant pathogen in bone infections [4].

The use of antibiotic-loaded polymethylmethacrylate bone cement,
herein after BC, is considered to be the standard of care for total hip

replacement patients with chronic infection, providing local delivery
of antibiotics without invasive procedures. Single or combinations
of different antibiotics are being considered to load into BC for more
effective orthopedic infection eradication; for example, gentamicin
and tobramycin, vancomycin and clindamycine [5–8]. However, the
inadequate release kinetics of antibiotics from the hydrophobic acrylic
BC matrix often leads to the development of multiresistant bacterial
strains, especially methicillin-resistant Staphylococcus aureus (MRSA),
vancomycin-resistant enterococci (VRE), multiresistant Acinetobacter
baumannii and extended spectrum beta-lactamase producing Entero-
bacteriaceae, which hinders the use of local antibiotic therapy for pros-
thetic joint infections. For that reason, recent research engagement is on
finding novel BC formulations able to achieve a total release of the anti-
biotic, in order to prevent the emergence of the multiresistant strains.

Not only a suitable antimicrobial spectrum and an adequate release
profile but also other important aspects as the resultant biomechanical
properties and biocompatibility of the modified bone cement must be
considered when evaluating the possible applicability of antibiotic
agents to load into BC [7,9,10]. The biomechanical properties will be
of utmost importance, as bone cement serves as the primary fixation
material between bone and the prosthetic element in cemented
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ª A novel modified BC matrix loaded with minocycline 

ª Complete in vitro release of the loaded minocycline  

ª Increased antimicrobial activity of minocycline against representative strains of orthopaedic 

infections, including MRSA 

ª Full mechanical properties compliance and biocompatibility maintenance of the novel BC 

matrix  
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Abstract  

 

Currently the safe and responsible use of antibiotics is a world-wide concern as it promotes 

prevention of the increasing emergence of multiresistant bacterial strains. Considering that there 

is a noticeable decline of the available antibiotics pipeline able to combat emerging resistance in 

serious infection a major concern grows around the prosthetic joint infections once the available 

commercial antibiotic loaded polymethylmethacrylate bone cements (BC) are inadequate for local 

antibiotic treatment, especially against MRSA, the most commonly isolated and antibiotic-resistant 

pathogen in bone infections. In this paper a novel modified BC matrix loaded with minocycline is 

proposed. A renewed interest in this tetracycline arises due to its broad-spectrum of activity 

against the main organisms responsible for prosthetic joint infections, especially against MRSA. 

The modified BC matrices were evaluated concerning minocycline release profile, biomechanical 

properties, solid-state characterization, antimicrobial stability and biocompatibility under in vitro 

conditions. BC matrix loaded with 2.5% (w/wBC) of minocycline and 10.0% (w/wBC) of lactose 

presented the best properties since it completely released the loaded minocycline, maintained the 

mechanical properties and the antimicrobial activity against representative strains of orthopaedic 

infections. In vitro biocompatibility was assessed for the elected matrix and neither minocycline 

nor lactose loading enhanced BC cytotoxicity. 

 

Keywords: bone cement, arthroplasty, minocycline, mechanical properties, antibiotic release, 

biocompatibility. 
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1. Introduction 

Due to bacterial resistance, the continuing rise of infections resistant to common treatments is a 

growing threat and has won place in the worldwide agenda (Editorials, 2013; Cooper and Shlaes, 

2011]. There is a growing tendency to reserve novel antibiotics with activity against resistant 

bacteria for treating serious infections. Some researchers are proposing as valuable alternatives 

the upraise of old antibiotic compounds, once they have remained active against a large number 

of currently resistant bacteria (Editorials, 2013; Garrido-Mesa et al., 2013). 

Within the presented context, this research work had the intention to use minocycline, which is a 

tetracycline that has found recently a renewed interest in literature and has been referred as 

presenting a broad-spectrum of activity against the main organisms responsible for prosthetic joint 

infections, especially against MRSA, the most commonly isolated and antibiotic-resistant 

pathogen in bone infections (Bishburg and Bishburg, 2009). 

The use of antibiotic-loaded polymethylmethacrylate bone cement, herein after BC, is considered 

to be the standard of care for total hip replacement patients with chronic infection, providing local 

delivery of antibiotics without invasive procedures. Single or combinations of different antibiotics 

are being considered to load into BC for more effective orthopaedic infection eradication; for 

example, gentamicin and tobramycin, vancomycin and clindamycine (Gallo et al., 2005; Jiranek et 

al., 2006; Shi et al., 2010; Van de Belt et al., 2001). However, the inadequate release kinetics of 

antibiotics from the hydrophobic acrylic BC matrix often leads to the development of multiresistant 

bacterial strains, especially methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-

resistant enterococci (VRE), multiresistant Acinetobacter baumannii and extended spectrum beta-

lactamase producing Enterobacteriaceae, which hinders the use of local antibiotic therapy for 

prosthetic joint infections. For that reason, recent research engagement is on finding novel BC 

formulations able to achieve a total release of the antibiotic, in order to prevent the emergence of 

the multiresistant strains.  

When evaluating the possible applicability of antibiotic agents to load into BC it must be 

considered not only a suitable antimicrobial spectrum and an adequate release profile but also 

other important aspects as the resultant biomechanical properties and biocompatibility of the 

modified BC (Bruinink and Luginbuehl, 2012; Hendricks et al., 2004; Jiranek et al., 2006). The 

biomechanical properties will be of utmost importance, as BC serves as the primary fixation 

material between bone and the prosthetic element in cemented arthroplasty by forming a 

mechanical anchorage between the two components (Ries et al., 2006). Therefore, attention must 

be given to mechanical integrity once the inclusion of antibiotics often impairs the mechanical 

properties of acrylic BC (Shi et al., 2006). Also the biocompatibility is imperative once it evidences 

the success of the interaction between the implanted material and cells nearby.  

This research work was designed to develop and fully characterize, a novel minocycline-loaded 
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BC matrix modified with lactose. Considering that BC is not an erodible or biodegradable drug 

delivery system and that porosity of a monolithic matrix has a relevant role in drug release from 

the matrix core, we have elected lactose to increase BC matrix porosity (Siepmann et al., 2012). 

Lactose has a long track history of safe use in pharmaceutical formulations explained by the high 

stability, with no significant tendency to react with the drug or other components of a formulation, 

free solubility in water and relatively low cost. Recently, lactose has been described has a 

successful additive of matrixes with good results related to antibiotic release (Frutos et al., 2010; 

Virto et al., 2003). 

The main aim of this work was to assess the feasibility of minocycline loading into lactose-

modified BC considering the following key aspects: drug release, microbiological activity, 

mechanical and structural properties and biocompatibility. 
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2. Materials and Methods 

2.1. Materials 

Commercial acrylic BC, CMW1® Radiopaque, and minocycline hydrochloride were kindly donated 

by DePuy Iberia (Spain&Portugal) and Atral-Cipan (Castanheira do Ribatejo, Portugal), 

respectively. Sodium chloride was obtained from AppliChem (AppliChemGmbH, Darmstadt, 

Germany). Polysorbate 20 (Tween20®), ammonium hydroxide solution, and tetrahydrofurane were 

all obtained from Sigma-Aldrich (Spain). Lactose monohydrate, di-ammonium oxalate 

monohydrate, ethylenediaminetetraacetic acid disodium salt 85ulphate85 (EDTA), Titriplex® III 

and 1,2-propanediol, were obtained from Merck (Merck Millipore, Lisbon, Portugal). 

Dimethylformamide for HPLC was obtained from BDH Prolabo (VWR, Portugal). Deionized water 

was obtained from a Millipore analytical deionization system (F9KN225218). 

 

2.2. Preparation of acrylic bone cement specimens 

Different specimen matrices (parallelepiped and cylindrical) with varied compositions (Table 1) 

were prepared at room temperature (23±1ºC) and atmospheric pressure, according to commercial 

BC specifications and ISO 5833 recommendations (ISO 5833, 2002). CMW1® is high viscosity BC 

intended for digital application. Solid components (CMW1® powder, minocycline and lactose) 

were thoroughly but carefully mixed in a glass mortar and then the proportional quantity of liquid 

monomer was added. When the desired consistency was obtained, BC dough was manually 

casted, into an aluminium mould, for bending tests specimens, and into PTFE mould, for 

compression tests specimens, accordingly with the ISO 5833 moulds dimensions. Cure 

proceeded at room temperature for 1 h also accordingly with ISO 5833. All specimens were 

finished to careful polishing, measured with a digital micrometer (Mitutoyo Digimatic, Painesville, 

Ohio, USA) with an accuracy of 0.01 mm, and stored in a vacuum desiccator (23±1°C, 24±2 h) 

before use. Cylindrical specimens were used for compressive strength determination. 

Parallelepiped specimens were used for all the other tests and treated accordingly. 

 
Table 1. Composition of the loaded BC specimens, expressed 
as wt.% of CMW1® powder. 

BC Matrix Minocycline (%) Lactose (%) 

BC 0 0 
BC10L 0 10.0 
BC20L 0 20.0 
M[BC] 2.5 0 
M[BC10L] 2.5 10.0 
M[BC20L] 2.5 20.0 
M= minocycline; L=lactose 
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2.3. In vitro release studies   

In vitro minocycline release from parallelepiped BC specimens (75 × 10 × 3.3 mm) was featured 

with each BC sample (± 3.0 g) incubated in 10 mL of a solution of NaCl 0.9%(w/V) with 

0.05%(V/V) Tween20® (hereinafter release medium) in a shaking water-bath at 37°C. At 

predetermined intervals, throughout a one-week period (168 h), aliquots of the supernatant were 

collected and analysed in triplicate. The withdrawn aliquots were then replaced with equal 

volumes of fresh release solution and sink conditions were guaranteed during the whole study. 

Minocycline content was determined by HPLC, using an adaptation of a method described in 

USP29 (US Pharmacopeia). Briefly, the HPLC procedure employed an i.d. 5 mm column 

(Lichrospher® 100 RP-18, Merck KgaA, Darmstadt, Germany), a mobile phase of ammonium 

oxalate 0.2 M/EDTA 0.01 M/dimethylformamide/tetrahydrofurane (600:180:120:80, V/V), pH 7.2, 1 

mL/min flow rate and UV detection at 350 nm. 

 

2.4. Biomechanical Tests 

The mechanical properties, compressive strength, bending modulus and bending strength were 

measured according to ISO 5833 (ISO 5833, 2002). Tests were performed at room temperature in 

a servo-hydraulic universal machine (TIRAtest® 2705). Testing was carried out on at least five 

specimens of each BC matrix and results were expressed as mean±SD.  

Compressive strength 

Compressive strength tests were performed on cylindrical specimens (6 × 12 mm), placed 

between a flat non-compressible surface and the platen of the testing machine. Applied 

crosshead rate was 20 mm/min (Fig. 1, left) until reaching the upper yield point or the cylinder 

fracture.  

Bending strength and bending modulus 

Bending strength and bending modulus tests were performed on parallelepiped specimens (75 × 

10 × 3.3 mm) by means of a four-point loading apparatus (Fig. 1, right) operating with a 

crosshead speed of 5mm/min until breakage. 

 

2.5. Solid-state characterization 

Porosity 

The percent porosity, φ, of BC specimens was determined with recourse to Eq.1. Dskt and DB are, 

respectively, the skeletal and bulk densities of BC specimens and were both determined using 

gas pycnometry (Micromeritics AccuPyc 1330 Gas Pycnometer; Micromeritics Analytical Services,  
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Fig. 1 Biomechanical apparatus: on the left, for the BC cylinder specimen compressive strength testing; on 
the right for the BC parallelepiped specimen flexural testing. 

 

Norcross, USA). Helium was the gas used and all assays were performed at room temperature. 

DB values were obtained from a powder mixture sample, weighed before cure, with the 

composition of each of the chosen matrix. Dskt values were obtained after curing, using a weighed 

parallelepiped fractured sample of each of the chosen matrices. For each matrix a minimum of 

three determinations were made. 

ϕ = 1- DsktDB
×100   Eq.1 

 

Microstructure analysis 

The fracture surface morphology of parallelepiped BC specimens was analysed and 

photographed through a thermal field emission scanning electron microscopy, FEG-SEM, model 

JSM7001F (JEOL, Japan) operated at 5 kV. Briefly, 3 mm samples of a selected group of 

representative fractured parallelepiped specimens were cut (Fig. 2), using a cut-off machine 

(Struers Accutom-5®, Struers, Denmark) provided with a diamond wafering blade (Buehler 11-

4285 series 10LC Diamond®, Buehler LTD, US), and were mounted onto aluminium stubs and 

their surface was coated with a gold-palladium film (thickness of 30 nm) under vacuum in an 

argon atmosphere (Quorum Technologies, Polaron E5100). 

 

 
Fig. 2 Schematic representation of the BC samples cut for FEG-SEM observation. 
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Contact angle and surface energy determination 

For contact angle measurements, BC matrices were cut in parallelepipeds (1.2 × 25.0 × 17.8 mm) 

using the same cut-off machine referred earlier. Assays were performed with a Kruss K100 

tensiometer (Kruss GMBH, Hamburg, Germany) using the Wilhelmy Plate method, by immersing 

the plates 5 mm into the test liquids (water and 1,2-propanediol) at a speed of 3 mm/min, at 

25.0±0.1°C. Advancing contact angles were used for surface energy (γ) estimation of all BC 

matrices, as well as its dispersive (γd) and polar components (γp) based on the harmonic mean 

method proposed by Wu (1971) and expressed by the Eq.2, where γ12 is the interfacial tension 

between phases 1 and 2, which each have a surface tension consisting of a polar and dispersive 

component (Bettencourt et al, 2002; Wu, 1971). Three replicates were carried out for each plate. 

Equations for surface tension estimation were solved using the equation handling KRUSS-

software program: contact angle measuring system K100 (version 2.05). 

𝛾!" = 𝛾! + 𝛾! −
!!!!!!!

!!!!!!!
− !!!

!!!
!

!!
!!!!

!    Eq. 2 

Differential scanning calorimetry 

Differential scanning calorimetry (DSC) measurements were conducted in a DSC Q2000 (TA 

Instruments, New Castle, DE, USA) using sample powders accurately weighed and sealed in an 

aluminium pan. An empty sealed pan was used as reference. Heating proceeded from 0ºC to 

250°C, at a scan rate of 10ºC/min, under a nitrogen atmosphere. The heat flow as a function of 

temperature was measured. BC matrices were analysed and compared with raw materials 

(CMW1® powder, lactose and minocycline) and analysed in the % (w/w) proportion present in the 

BC blend. 

X-Ray Diffraction Studies 

X-ray diffraction studies on BC with and without minocycline to study the possible changes in 

crystallinity of the antibiotic were carried out using a high-resolution Rigaku Geigerflex D/Mac, C 

Series diffractometer with Cu Kα radiation (k=1.5406 Å) produced at 30 kV and 25 mA, which 

scanned the diffraction angles (2θ) between 0° and 80° with a step size of 0.02º 2θ s–1.   

Fourier Transform Infrared spectroscopy (FTIR) 

FTIR spectra were obtained with IRAffinity-1 spectrophotometer (Shimadzu, Kyoto, Japan) at 

400–4000 cm−1 scanning range. Powder samples of minocycline and lactose, and powdered 

samples of all the BC matrices, were incorporated with potassium bromide in an agate mortar. A 

pellet was obtained by compressing the powder mixture into discs in a hydraulic press, under a 

pressure of 740 GPa for 3 min. The pellet was placed in the light path and spectra obtained were 

the results of averaging thirty scans. 
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2.6. Microbiological assay 

Aliquots of the supernatants of a one-week minocycline release study (2.3) were used to 

determine the minocycline minimum inhibitory concentrations (MICs) by means of a two-fold serial 

broth microdilution assay (CLSI, 2011). Microdilution method was carried out using, as microbial 

strains, Gram-positive bacteria S. aureus ATCC 25923 (MSSA), S. aureus CIP106760 (MRSA), 

Enterococcus faecalis ATCC 51299 (E. faecalis low-level VR), S. epidermidis ATCC12228. All 

aliquots were diluted at concentrations ranging from 2 to 0.0313 mg/mL with Müeller-Hinton broth 

medium (Biokar Diagnostics, France). The antimicrobial activity of the release medium was also 

evaluated to serve as control. The MIC values were taken as the lowest concentration of 

minocycline, presented in μg/mL, that inhibited the growth of the microorganisms, after 24 h of 

incubation at 37°C. The bacterial growth was measured with an absorbance Microplate Reader 

set to 620 nm (Thermo Scientific Multiskan® FC, Thermo Fischer Scientific Inc.). Assays were 

carried out in triplicate for each tested microorganism. 

 

2.7. Biocompatibility studies under in vitro conditions 

Cell viability studies 

Extracts from the BC specimen matrix M[BC10L] were obtained by immersing the specimens in 

an adequate volume of release medium, agreeing to a ratio of 1g / 5mL. Aliquots of the extracts 

were taken at the time of 10 minutes and 24 h of contact with the release medium. BC and BC10L 

matrices were used for comparison. The cytotoxicity was assessed using the cell viability MTT [3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction test on osteoblasts-like cells 

MG-63-human (ATCC CRL-1427™) (Mosmann, 1983).  The day before the experiment, cells 

were seeded in 96 well tissue culture plates, in RPMI 1640 culture medium supplemented with 

10% fetal serum bovine, 100 units of penicillin G (sodium salt), 100 µg of streptomycin sulphate 

and 2 mM L-glutamine, at a concentration that allow cells to grow exponentially during the time of 

the assay. The BC extracts of minocycline standard and sodium dodecyl sulphate (SDS, used as 

positive control) to be tested were diluted in culture medium. Each extract was tested in six wells 

in a single experiment, which was repeated at least 3 times. After 24 h, cell media was removed 

and replaced with fresh medium. The MTT dye solution was then added to each well (stock 

solution 5 mg/mL in 10 mM phosphate buffer solution at pH 7.4). After 3 h of incubation the media 

was completely removed and the intracellular formazan crystals were solubilised and extracted 

with DMSO. After 15 min at room temperature the absorbance was measured at 570 nm in a 

microplate reader (FLUOstar Omega, BMG LABTECH, Germany). The percentage of cell viability 

was determined for each extract solution. 
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Direct contact assay 

In order to characterise, morphologically, the cell behaviour in the presence of the previously 

tested BC matrices, MG63 cells were cultured at a 2.5×104 cells/cm2 cell density in tissue culture 

Petri dish 60 cm (Nunc, Denmark) in direct contact with the BC matrix. Sterile filter papers with 

and without SDS (10 mg/mL) were used as negative and positive controls, respectively. After 24 

h, MTT solution was added to a final concentration of 0.5 mg/mL, for the evaluation of cell 

viability. 

 

2.8. Statistical Analysis 

All data sets presented as mean±SD, are the result of at least five determinations and were 

examined by one-way analysis of variance (ANOVA) with a post-hoc Tukey test for comparison of 

each studied matrix specimen with the control specimen using GraphPad PRISM 5® (GraphPad 

Software, Inc., La Jolla, CA). The level of statistical difference was defined at a p < 0.05 level. 
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3. Results  

3.1. In vitro release studies 

Minocycline release profiles are shown in Fig. 3. Lactose loading influenced the minocycline 

release. A complete minocycline release was achieved after a one-week period, from the lactose-

loaded BC matrices; minocycline release from M[BC] matrix, increased two-fold with lactose 

loading, that is, from 56.3±2.1% to 108.4±3.1% (M[BC10L]) and to 109.0±10.0% (M[BC20L]). 

Also, M[BC20L] matrix, showed a different release profile, when compared to M[BC] or M[BC10L], 

with more minocycline being released over the experiment time.  

 

 

 
Fig. 3 In vitro release profiles until 168 h, a one-week period time 
(above). Zoom of the in vitro release profile until 6h (below). Markers 
and error bars represent mean±SD (n=3). 
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The release kinetic mechanism was fitted with the experimental data to standard equations (Table 

2). The best fitting model was the designated “coupled mechanism” described elsewhere for the 

same type of BC (Frutos et al., 2010). It is noticeable that, for all matrices, there was a faster 

release in the first 4h (burst effect) with a minocycline release over 10%. The fitted b and c 

parameters of the “coupled mechanism” model varied inversely, with the diffusion process 

(parameter c) prevailing over the dissolution process (parameter b) for the M[BC20L] (Fig. 4).  

 

 

 

 
Fig. 4 Minocycline release fitted curves, with the “coupled 
mechanism” (Frutos et al., 2010) with each of the parameters of the 
equation model, a, b and c, being presented. 
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Table 2. Fitted parameter values and r2 for the different equation models used to determine 
the release mechanism of minocycline from BC matrices. 

Equation Models Model 
Parameters 

BC Matrix 

M[BC] M[BC10L] M[BC20L] 
Zero Order k0 (h-1) 0.119 0.228 0.269 

 

r2 0.862 0.964 0.555 

First Order k1(h-1) 0.002 0.005 0.019 
  r2 0.974 0.992 0.969 
Higuchi kH(h-1/2) 1.019 2.24 2.881 
  r2 0.922 0.974 0.978 
Korsmeyer-Peppas kKP(h-1/2) 2.1 3.77 15.96 

 

n 0.6 0.7 0.4 
r2 0.934 0.994 0.999 

Coupled Mechanism kcm(h-1) 7.04E-06 5.62E-06 5.65E-07 

	
  
 	
  

a 4.89 1.994 7.31 
b 3.48E+04 5.84E+04 0 
c (h-1/2) 0.73 3.923 8.42 
r2 0.977 0.997 0.978 

Mt denotes fraction of minocycline released up to time t; k0, k1, kH, kKP and kcm are constants 
of the mathematical models; n is the release exponent of the Korsmeyer-Peppas model; a 
represents the burst effect, b is related with the dissolution process and c with the diffusion 
process, of the “coupled mechanism” model. 

 

 

3.2. Biomechanical Tests 

Fig. 5 presents the biomechanical testing results set for the BC matrices under study. All values 

were in accordance with the ISO 5833 required values (compressive strength ≥70 MPa, flexural 

strength ≥50 MPa, and flexural modulus ≥1800 MPa) (ISO 5833, 2002), except for flexural 

strength of M[BC20L] matrix.  All the modified BC matrices showed a compressive strength 

similar (p > 0.05) to that of the plain BC matrix (93.3±1.3 MPa). 

Considering flexural strength related to plain BC (56.6±6.3 MPa), all matrices resulted in 

comparable values (BC10L, 50.0±5.5 MPa; BC20L, 47.1±6.7 MPa; M[BC], 55.0±4.7; M[BC10L], 

50.3±4.2 MPa; p > 0.05) with exception to M[BC20L] matrix, which besides being statistically 

different (45.0±4.4 MPa, p < 0.05) was also below the required value of 50 MPa.  

Also, the obtained values for flexural modulus of the modified BC matrices were not statistically 

different (p > 0.05) from that of the plain BC matrix (3005±51 MPa).  

Mt = k0t

Mt = kKPt
n

Mt = a+ b(1− e
−kcmt )+ c t

Mt = kH t

Mt =1− e
−k1t
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Fig. 5 Biomechanical properties of the BC matrices under study (mean±SD; n=5). Compressive strength 
(MPa); Flexural strength (MPa); and Flexural modulus (MPa). *significant difference to BC matrix, p < 0.05. 
Dashed lines represent the ISO 5833 required values for each biomechanical property. 
 

3.3. Solid-State Characterization 

Results of BC matrices porosity are presented in Table 3. Minocycline or lactose individually 

loaded into BC increased porosity. When both minocycline and lactose were loaded into BC the 

porosity increased, achieving a limit of 9.6% for both M[BC10L] and M[BC20L]. The SEM analysis 

of the BC core matrix, through fracture surface observation, revealed differences in pore size 

among the matrices studied.  

Plain BC specimen presented a smooth surface with a few small voids and cracks, whereas 

minocycline-loaded BC matrix revealed a growth of the number of pores. As the loaded lactose 

increased, those voids and cracks also increased, either in number as in size, resulting in a more 

rugged surface (Fig. 6). 

To get further insight into the effect of either minocycline as lactose in BC structure, surface 
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energy, DSC, XRD and FT-IR analysis were also performed. Minocycline or lactose loading did 

not affect the BC surface energy. Fig. 7 shows that there were no significant differences (p > 0.05) 

comparatively to BC matrix in what concerns total surface energy (γ) as well as its dispersive (γd) 

and polar components (γp). 

 

Table 3. Porosity results for BC matrices (mean±SD; n=3). 

BC Matrix Porosity (%) 
BC 6.1 ± 0.2 

M[BC] 7.3 ± 0.2 

BC10L 8.2 ± 0.4 

M[BC10L] 9.6 ± 0.1 
BC20L 9.1 ± 0.1 

M[BC20L] 9.6 ± 0.8 

 

 
Fig. 6 FEG-SEM micrographs of the BC matrices rupture surface. First row presents a ×30 
magnification of the BC matrices the second row presents a ×200 magnification of the same BC matrices. 

 

 
Fig. 7 BC experimental values for total (γ±SD; n=3), polar (γ±SD; n=3) 
and dispersive (γd±SD; n=3) surface energy (no significant differences 
found when compared to BC matrix, p > 0.05). 
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Concerning possible modifications of the BC matrices physical state throughout the temperature 

range achieved during BC cure (≈ 50ºC), DSC thermograms of the BC matrices and of the raw 

materials were obtained (Fig. 8). Throughout the range of 0-100ºC no thermal events were 

observable concerning minocycline and lactose loading, besides the glass transition temperature 

of the BC occurring between 60 – 70ºC (Kühn, 2005). Throughout the range of 0-250ºC, the 

relevant difference is with the minocycline melting peak, at ca. 190ºC, and the minocycline 

degradation peak, at ca. 220ºC. The melting peak was not observed for the BC matrix, meaning 

that no crystalline minocycline was detected. These same observations were noticed for all 

minocycline–loaded BC matrices (data not shown).  

 

 
Fig. 8 Thermograms (DSC) of the BC matrices and raw materials. 
Above: a thermal cycle 0-100ºC; below: a thermal cycle 0-250ºC. 

 

From the XRD graphs, Fig. 9, it is noticeable that M[BC] matrix graph do not present any peak 

between 5º and 15º (2θ) which is the range where the most intense peaks of the minocycline 

hydrochloride crystalline structure appears. 

From FTIR spectra observation (Fig. 10) no major differences were observed on spectra profiles 
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when, either minocycline or lactose, were loaded into BC. Lactose inclusion did not change the 

BC structure once the profiles of both spectra are fairly superimposable with respect to the main 

peak absorptions. The same conclusions may be taken with respect to minocycline inclusion on 

matrices M[BC] and M[BC10L]. 

 

 
Fig. 9 XRD patterns for comparison of the minocycline hydrochloride powder, of 
the radiopacifier used on CMW1 (BaSO4), of the plain BC and of the M[BC] 
matrices. 

 

 
Fig. 10 FTIR spectra of the different BC matrices, with or without minocycline. 
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3.4. Microbiological assay 

Microbiological results, presented on Table 4, shows that MICs values found for a standard 

minocycline solution, prepared with release medium, are in agreement with literature (Bishburg 

and Bishburg, 2009). Nor release medium or plain BC matrix showed any antimicrobial effect 

against the bacterial strain tested. Also noticeable is that, for all the bacterial strains studied and 

for all the other BC matrices, the MICs values for minocycline released from the BC specimens 

were lower than those obtained with the standard minocycline solution. 

For S. epidermidis and E. faecalis strains, MICs of minocycline released from BC matrices were 

eight-fold less (0.125 mg/mL) than MICs of the standard minocycline solution (1.0 mg/mL), with 

exception to M[BC20L] matrix that was four-fold less (0.25 mg/mL). In the case of MSSA, MICs of 

minocycline released were four-fold less (0.125 mg/mL) than MICs of standard minocycline 

solution (0.5 mg/mL), again with exception to M[BC20L] matrix that was two-fold less (0.25 

mg/mL). With respect to MRSA strain, MICs of minocycline released from M[BC] was four-fold 

less (0.5 mg/mL) than MICs of standard minocycline solution (2.0 mg/mL), with exception to 

M[BC10L] and M[BC20L] matrices that were two-fold less (0.25 mg/mL). 

 

3.5. Biocompatibility studies under in vitro conditions 

The biocompatibility evaluation proceeded with the selected matrix M[BC10L] in what concerns 

adequate release and biomechanical properties. Results showed that minocycline and lactose 

loading did not enhance cytotoxicity for the 10 min and the 24h extract solutions (Fig. 11), since 

no statistical difference to plain BC was found (p > 0.05).  

Regarding direct contact assay, phase-contrast micrographs were taken to the interface of the 

matrix cell layer with outer contact areas of the BC matrices (Fig. 12). Only the cells in contact 

with filter paper containing SDS (positive control) did not grow, all the others presented a 

monolayer of viable cells. 

 

Table 4. MIC of free minocycline and of minocycline release aliquots from BC matrices. 

Bacteria strain 

MIC of standard 
minocycline 

solution (µg/mL) 

MIC of minocycline released from BC 
(µg/mL) 

Experimental Release 
Medium BC M[BC] M[BC10L] M[BC20L] 

MRSA 2  >2 >2 0.5 1 1 
MSSA  0.5  >2 >2 0.125 0.125 0.25 
S.epidermidis 1  >2 >2 0.125 0.125 0.25 
E.faecalis (Low-level VR) 1  >2 >2 0.125 0.125 0.25 
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Fig. 11 Cell viability of BC matrices showed no significant differences towards BC 
matrix, p > 0.05. t1 and t2 represent the release time of 10 min and 24 h, respectively, 
of minocycline extract solutions. Results are expressed as mean±SD (n=15). 

 

 

 

 

Fig. 12 Phase-contrast micrographs of the interface of matrix cell layer with outer contact areas of the BC 
matrices.  
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4. Discussion 

The acrylic BC is a long-standing successful solution to deliver antibiotics to patients after a 

cemented arthroplasty surgery. However, the constant rise of multiresistant pathogens causing 

complicated infections in orthopaedic surgery turns urgent the need for newer modified acrylic 

BCs, with novel mechanisms of release and antibacterial activity against responsible pathogens 

(Jiranek et al., 2006). Thus, this research work aimed at developing and fully characterizing a 

novel acrylic BC able to deliver, in a controlled manner, an amount of antibiotic above its MIC 

value, in order to prevent bacterial resistance and, at the same time, without hampering either the 

functional properties or the way biological tissues react when in contact with the BC. We propose 

to load a therapeutic concentration of minocycline (2.5% (w/wBC)) into two different BC matrices: 

1) plain acrylic BC and 2) lactose modified acrylic BC. Minocycline renewed interest application in 

orthopaedic infections due to the broad-spectrum of activity against MRSA, and its lipophilic 

affinity to BC matrix were the main reasons for its choice as a suitable antibiotic. Lactose was 

chosen to increase the porosity of the non-biodegradable monolithic BC matrix due to its well-

known application in pharmaceutical formulations.  

Minocycline in vitro release studies revealed very promising results with a complete drug release 

from the lactose-loaded BC matrices after a one-week period. This result is clinical significant as a 

residual presence of the drug after a long-term implantation period will contribute to induce and/or 

select resistant strains (Neut et al., 2003). 

To the best of our knowledge, the release kinetics of minocycline from acrylic BC has not been 

previously reported. Most studies of antibiotic loaded into different commercial BC, refer to an 

incomplete release of the drug from the BC matrix, in some cases in very low concentrations and 

through long periods of time, increasing the risk of resistance development (Anagnostakos and 

Kelm, 2009; Chang et al, 2011; Lewis, 2008; Van de Belt et al., 2000). 

Minocycline release profiles were quite similar among all matrices under study, evidencing a two-

phase profile kinetic, with an initial burst followed by a sustained release. The best kinetic fit 

(Table 2) was the “coupled mechanism” model. Frutos et al. (2010) have already proposed the 

same pattern of release on their study on gentamicin release from similar BC modified matrices.  

For all matrices, the minocycline burst was over 10% in the first 4h, which is a very important 

advantage, as a high initial concentration of antibiotic can help prevent the risk of infections in the 

first hours after surgery. This result might be related with the low molecular weight of minocycline 

(493.94), which tends to enhance the burst release, as reported by Huang et al. (Huang and 

Brazel, 2001). Lactose-loaded matrix doubled the amount of antibiotic released when compared 

with the lactose-unloaded matrix, which is in agreement with previously reported data (Frutos et 

al., 2010). 

Over the sustained release period diffusion prevailed over the dissolution process only for 
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M[BC20L] matrix (Table 2). For this matrix, after the initial burst, the release was mainly controlled 

by diffusion. This might be related with the significant number of pores increase where 

minocycline promptly dissolves in the release medium and rapidly diffuses through the pathways 

within the matrix. 

The BC microstructure study was of utmost importance to understand the influence of both 

minocycline and lactose loading on in vitro release behaviour. SEM screened possible structural 

changes of the BC matrices, before release, through observation of the fracture surface. Results 

evidenced that porosity increased either with minocycline as with lactose (Table 3). These 

changes could justify the release results once it was visible that small voids and cracks of plain 

BC specimen slightly increased with minocycline loading. SEM images clearly showed the depth 

of those cracks, which might have induced the development of a network of interconnected 

pathways inside the matrix allowing release medium to penetrate more deeply and contributing to 

complete minocycline release (Fig. 6). Other authors have referred the advantage of lactose 

loading due to its water-soluble and hydrophilic nature, which allows it to dissolve when in contact 

with release medium, thus increasing voids and cracks during the release period (Frutos et al., 

2010; Tukaram et al., 2010).  

However, the increased porosity due to lactose loading (Table 3) became the key issue to 

mechanical properties as it directly interferes with the inner structure of the BC. From SEM 

images it was visible a more rugged surface with minocycline and lactose loading. With exception 

to M[BC20L] matrix, our findings comply with the required biomechanical characteristics 

established by ISO 5833 for evaluation of acrylic cements for surgery. Loading up to 2.5% of 

minocycline and up to 10% of lactose to the BC plain matrix revealed no negative effects on BC 

biomechanical properties allowing an adequate mechanical performance (Fig. 5).  

Thus, the M[BC10L] matrix was found as a very promising modified BC matrix, either in terms of 

in vitro drug release as in mechanical performance, but it had yet to be evaluated for minocycline 

microbiological activity after release from the BC matrices, otherwise those advantages would be 

meaningless. Microbiological studies were performed with bacteria strains that are major 

causative agents of the orthopaedic infection, the Gram-positive bacteria, S. aureus and S. 

epidermidis. Minocycline has been described to have significant in vitro activity against MRSA 

strain, very similar to that of vancomycin (Bishburg and Bishburg, 2009) with the advantage of no 

literature reference, to best of our knowledge, of bacteria resistance relating bone infections. In 

fact, minocycline released from the BC matrix has higher antibacterial activity against all the 

strains evaluated, including MRSA (Table 4) comparing to the standard minocycline solution.  

To better understand this microbiological result it was necessary to investigate the minocycline 

dispersion in BC matrices. The DSC studies revealed the presence of amorphous minocycline in 

the BC matrices (Fig. 8). Minocycline powder has a crystalline structure that doesn´t change 

during heating scanning until reaching 190ºC. At 190ºC minocycline melting happens immediately 
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followed by degradation at 220ºC (exothermic peak). Since that endothermic peak at 190ºC has 

disappeared on minocycline-loaded BC matrices thermograms it might be suggested that 

minocycline acquired an amorphous phase, at least to some extent. It was hypothesized that BC 

polymerization reaction could have decreased minocycline crystallinity and increased the 

amorphous phase, which had a higher antibacterial effect than the crystalline minocycline. The 

increase in minocycline antibacterial activity due to crystallinity changes has also been found by 

other researchers when studying minocycline release from poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles (Kashi et al, 2012). With XRD analysis, Fig. 9, it was verified that minocycline 

hydrochloride powder is a crystalline substance which presents intense peaks between 5° and 

15° (2θ). These peaks, however, are not present on the M[BC] matrix XRD graph, rather 

evidencing a characteristic appearance of an amorphous phase in that range. This suggests that 

after inclusion on BC, minocycline suffers a decrease in cristallinity and an increase of the 

amorphous phase. Moreover, DSC analysis confirmed that up to 100ºC there are no other thermal 

events noteworthy (Fig. 8), only the expected glass transition temperature of the BC, around 70ºC 

(Kühn, 2005). Furthermore, FTIR results showed that no new bonds were obtained during BC 

matrix cure. Lactose inclusion did not change the BC structure since both spectra were fairly 

superimposable. The same conclusions were taken with respect to minocycline matrices M[BC] 

and M[BC10L].  

Biocompatibility is another key aspect to consider regarding the development of any antibiotic-

loaded modified BC. Being the first component to be in contact with the cells, the surface 

characteristics of the biomaterial strongly influence its biocompatibility, for example, the surface 

energy is related to the hydrophilic degree of the surface, which is responsible for the cells liaison 

(Menzies and Jones, 2010). Our BC matrices surface energy revealed that biomaterial surface 

properties did not change (Bettencourt et al., 2004) with minocycline and lactose loading, 

meaning that biological interaction between BC and biological tissues will not be compromised 

due to changes in surface characteristics of BC matrix.  

Cytotoxicity assays with osteoblasts incubated either with extracts or in direct contact were also 

performed to get further insight on biomaterial biocompatibility. These assays were conducted 

with M[BC10L] matrix, which evidenced the best results concerning the release profiles and 

biomechanical properties. The MG-63 cell line was selected because it has been described as the 

best osteoblast-like cells for evaluation of acrylic BC in vitro biocompatibility (Ciapetti et al., 2002; 

Granchi et al., 1995). The cytotoxicity assay was performed either with the extracts of the 

materials or with direct contact in order to evaluate the short-term effect of polymerization by-

products. The increase in porosity could have induced a leaching increase of cytotoxic 

compounds from the polymer matrix, such as residual monomers and polymerization additives 

(Bettencourt et al., 2000, 2002, 2007; Granchi et al., 1995). However, our study reveals no 

significant increase of cytotoxicity when the modified matrices were compared with plain BC (Figs. 
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11 and 12).  

We have demonstrated that, globally, the modified BC matrix, M[BC10L] exhibits valuable and 

consistent properties to be a viable alternative to currently loaded BC, although we are conscious 

of the limitations of the experimental protocol, regarding the differences between in vitro ant the in 

vivo conditions.  

Our findings are also valuable regarding the actual preoccupation with the noticeable decline of 

the available antibiotics pipeline able to fight emerging resistance in serious infections, which, 

throughout the years has evidenced a decline. For that reason, the use of both new antibiotics 

tends to be reserved as the last option to ensure an appropriate usage and minimize the risk of 

resistance. Hence, a responsible selection and use of antibiotics, either old or new, becomes 

crucial when developing innovative strategies to improve BC, in order to combat the development 

of resistant bacterial strains in bone infections. This was one of our majors concerns when 

electing minocycline to load into BC. 

 

5. Conclusion 

A novel modified acrylic BC matrix prepared with 2.5% (w/wBC) of minocycline and 10% of lactose 

was developed and characterized. This matrix totally delivers the loaded antibiotic in a controlled 

manner, during a one-week period. It was demonstrated that the biomechanical and structural 

properties were not affected by the loading of the compounds. Furthermore the antimicrobial 

activity of the antibiotic and the in vitro biocompatibility of the novel acrylic BC were ensured. 

Considering the overall results, this matrix appears to be a valuable option to enrich the currently 

available acrylic BC used in orthopaedic surgery to prevent prosthetic joint infections due to 

multiresistant pathogens. 

 

 

Acknowledgments 

The authors gratefully acknowledge to Hugo Glória, of DepuyIbérica, for the kind supply of the 

bone cement kits; to Professor José Esteves and MSc Nuno Viriato Ramos from INEGI/FEUP, U. 

Porto, for the helpful availability throughout all the mechanical assays; to MSc Ana Catarina 

Marques from CICECO, U. Aveiro, for the valuable help with the XRD analysis. Finally to the 

Portuguese government through the “Fundação para a Ciência e Tecnologia”: research project 

EXCL/CTM-NAN/0166/2012 and strategic project Pest-OE/SAU/UI4013/2011 for financial 

support. 

 

 



A novel modified acrylic bone cement matrix. 
Chapter 3 – Section 1 

105 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

References 

Anagnostakos, K., Kelm, J., 2009. Enhancement of antibiotic elution from acrylic bone cement. J. 

Biomed. Mater. Res. B: Appl. Biomater. 90, 467-475. 

Bettencourt, A., Calado, A., Amaral, J., Vale, F.M., Rico, J.M.T., Monteiro, J., Montemor, M.F., 

Ferreira, M.G.S., Castro M., 2002. The effect of ethanol on acrylic bone cement. Int. J. Pharm. 

241, 97–102. 

Bettencourt, A., Calado, A., Amaral, J., Vale, F.M., Rico, J.M.T., Monteiro, J., Lopes, A., Pereira, 

L., Castro, M., 2000. In vitro release studies of methylmethacrylate liberation from acrylic cement 

powder. Int. J. Pharm. 197, 161–168. 

Bettencourt, A., Calado, A., Amaral, J., Alfaia, A., Vale, F.M., Monteiro, J., Montemor, M.F., 

Ferreira, M.G., Castro, M., 2004. Surface studies on acrylic bone cement. Int. J. Pharm. 278, 

181–186.  
Bettencourt, A., Fernandes, A.S., Oliveira, N.G., Monteiro, J., Calado, A., Castro, M., 2007. 

Evaluation of cytotoxicity and oxidative stress induced by acrylic bone cement in raw 264.7 

macrophages. Free Radic. Biol. Med. 43, S44.  

Bishburg, E., Bishburg, K., 2009. Minocycline-an old drug for a new century: emphasis on 

methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. Int. J. 

Antimicrob. Agents 34, 395–401. 

Bruinink, A., Luginbuehl, R., 2012. Evaluation of biocompatibility using in vitro methods: 

interpretation and limitations. Adv. Biochem. Eng. Biot. 126, 117-152. 

Chang, Y., Chen, W.C., Hsieh, P.H., Chen, D.W., Lee, M.S., Shih, H.N., Ueng, S.W., 2011. In 

vitro activities of daptomycin-, vancomycin-, and teicoplanin-loaded polymethylmethacrylate 

against methicillin-susceptible, methicillin-resistant, and vancomycin-intermediate strains of 

Staphylococcus aureus. Antimicrob. Agents Ch. 55, 5480-5484. 

Ciapetti, G., Granchi, D., Savarino, L., Cenni, E., Magrini, E., Baldini, N., Giunti, A., 2002. In vitro 

testing of the potential for 105ulphate105ic bone cements to cause apoptosis of osteoblast-like 

cells. Biomaterials 23, 617–627. 

Cooper, M.A., Shlaes, D., 2011. Fix the antibiotics pipeline. Nature 32, 472. 

Editorials. 2013. The Antibiotic Alarm. In: Nature. Macmillan Publishers Limited. 495, pp. 141. 

Frutos, G., Pastor, J.Y., Martínez, N., Virto, M.R., Torrado, S., 2010. Influence of lactose addition 

to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the 

cement properties. Acta Biomater. 6, 804–811.  

Gallo, J., Kolár, M., Florschutz, A.V., Novotny, R., Pantucek, R., Kesselová, M., 2005. In vitro 

CLSI  testing of gentamicin–vancomycin loaded bone cement to prevent prosthetic joint  infection. 

Biomed. Pap. 149, 153–158.   



106 A novel modified acrylic bone cement matrix. 
Chapter 3 – Section 1 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

Garrido-Mesa, N., Zarzuelo, A., Galvez J., 2013. Minocycline: far beyond an antibiotic. British. J. 

Pharm. 169, 337-352. 

Granchi, D., Stea, S., Ciapetti, G., Savarino, L., Cavedagna, D., A. Pizzoferrato, 1995. In vitro 

effects of bone cements on the cell cycle of osteoblast-like cells. Biomaterials 16, 1187–1192. 

Hendriks, J.G.E., van Horn, J.R., van der Mei, H.C., Busscher H.J., 2004. Backgrounds of 

antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25, 545–556. 

Huang, X., Brazel, C.S., 2001. On the importance and mechanisms of burst release in matrix-

controlled drug delivery systems. J. Control. Release, 73, 121–136.  

International Standard ISO Specification 5833: Implants of Surgery—Acrylic Resin Cements. 

International Organization for Standardization, 2nd edition, 2002. (ISO, Geneva, Switzerland).  

Jiranek, W.A., Hanssen, A.D., Greenwald, A.S., 2006. Antibiotic-loaded bone cement for infection 

prophylaxis in total joint replacement. J. Bone Joint Surg. Am. 88, 2487–2500. 

Kashi, T.S., Eskandarion, S., Esfandyari-Manesh, M., Marashi, S.M., Samadi, N., Fatemi, S.M., 

Atyabi, F., Eshraghi, S., Dinarvand, R., 2012. Improved drug loading and antibacterial activity of 

minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int. J. 

Nanomedicine. 7, 221-234. 

Kühn, K., 2005. Properties of Bone Cement-What is bone cement?, in: S.J. Breusch, H. Malchau 

(Eds.), The Well-Cemented Total Hip Arthroplasty. Springer Medizin Verlag Heidelberg, pp. 53–59 

Lewis, G., 2008. Properties of antibiotic-loaded acrylic bone cements for use in cemented 

arthroplasties: a state-of-the-art review. J. Biomed. Mater. Res. B Appl. Biomater. 89, 558-574. 

Menzies, K.L., Jones, L., 2010. The impact of contact angle on the biocompatibility of 

biomaterials. Optom. Vis. Sci. 87, 387–399.  

Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to 

proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. 

Neut, D., van de Belt, H., van Horn, J.R., van der Mei, H.C., Busscher H.J., 2003. Residual 

gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of 

implantation. Biomaterials 24, 1829-31. 

Ries, M.D., Young, E., Al-Marashi, L., Goldstein, P., Hetherington, A., Petrie, T., Pruitt, L., 2006. 

In vivo 106ulphate106 of acrylic bone cement in total hip arthroplasty. Biomaterials 27, 256–261. 

Shi, M., Kretlow, J.D., Nguyen, A., Young, S., Baggett, L.S., Wong, M.E., Kasper, F.K., Mikos, 

A.G., 2010. Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space 

maintenance and infection control. Biomaterials 31, 4146-4156. 

Shi, Z., Neoh, K.G., Kang, E.T., Wang, W., 2006. Antibacterial and mechanical properties of bone 

cement impregnated with chitosan nanoparticles. Biomaterials 27, 2440–2449. 

Siepmann, J., Siegel, R.A., Siepmann, F., 2012. Diffusion Controlled Drug Delivery Systems. In: 



A novel modified acrylic bone cement matrix. 
Chapter 3 – Section 1 

107 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

Siepmann J, Siegel RA, Rathbone MJ. Editors. Fundamentals and Applications of Controlled 

Release Drug Delivery. New York, Springer, pp. 127-152. 

Tukaram, B.N., Rajagopalan, I.V., Shartchandra, P.S.I., 2010, The effects of lactose, 

microcrystalline cellulose and dicalcium phosphate on swelling and erosion of compressed HPMC 

matrix tablets: texture analyser. Iran J. Pharm. Res. 9, 349–358.  

U.S.Pharmacopeia, Minocycline Hydrochloride USP29-NF24 Page 1439. 

Van de Belt, H., Neut, D., Schenk, W., Horn, J., 2001. Infection of orthopaedic implants and the 

use of antibiotic-loaded bone cements: a review. Acta Orthop. Scand. 72, 557-571. 

Van de Belt, H., Neut, D., Uges, D., 2000. Surface roughness, porosity and wettability of 

gentamicin-loaded bone cements and their antibiotic release. Biomaterials 21, 1981–1987.  

Virto, M.R., Frutos, P., Torrado, S., Frutos, G., 2003. Gentamicin release from modified acrylic 

bone cements with lactose and hydroxypropylmethylcellulose. Biomaterials 24, 79–87. 

Wu, S., 1971. Calculation of interfacial tension in polymer systems. J. Polym. Sci. Part C 34, 19-

30. 

 



108  
 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 



 
 

109 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

  



110  
 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 

 

 



 
 

111 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 

 

 

 

Section 2 
 

KEY-PROPERTIES OUTLOOK OF A  

LEVOFLOXACIN-LOADED ACRYLIC BONE CEMENT WITH 

IMPROVED ANTIBIOTIC DELIVERY 
 

 

 

 

 

 

 

This Section was adapted from the published paper in: 

 

Ana C. Matosa, Isabel A.C. Ribeiroa, Rita C. Guedesa, Rosana Pintoa, Mário A. Vazb, Lídia M. 

Gonçalvesa, António J. Almeidaa, Ana F. Bettencourt a  
a iMed.Ulisboa, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 

Lisbon, Portugal  
b INEGI, Faculty of Engineering, University of Porto, Porto, Portugal  

 

 



112  
 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 

 

 

 

 

 

 

 

 



Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic delivery 
Chapter 3 – Section 2 

113 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 

 

 

Graphical Abstract 

 

 

 

Highlights 

ª Novel lactose-modified acrylic BC with improved antibiotic (levofloxacin) release. 

ª 7-week release of levofloxacin with antibacterial activity against Staphylococcus aureus, 

Staphylococcus epidermidis and Escherichia coli.  

ª Improved inhibition of S. aureus biofilm development by the lactose-modified BC matrix, 

when compared to the commercial acrylic BC matrix. 

ª Maintenance of both mechanical integrity and biocompatibility of the modified acrylic BC. 

ª Favourable covalent and non-covalent interactions between levofloxacin and the BC are 

evidenced by density functional calculations.  
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Abstract  

 

Antibiotic-loaded acrylic bone cements (ALABCs) are widely used to decrease the occurrence of 

bone infections in cemented arthroplasties and actually being considered as a more cost-effective 

procedure when compared to cementless implants. However, ALABCs have a major drawback, 

which is the incomplete release of the antibiotics and, as a result, pathogens that commonly are 

responsible for those infections are becoming resistant. Consequently, it is of most relevance to 

find new antibacterial agents to load into BC with an effective mechanism against those 

microorganisms. This research work intended to load levofloxacin, a fluoroquinolone with anti-

staphylococcal activity and adequate penetration into osteoarticular tissues, on lactose-modified 

commercial bone cement (BC). This modified BC matrix exhibited increased levofloxacin release 

and delayed Staphylococcus aureus biofilm formation. Further insights on material-drug 

interaction during BC setting were investigated by density functional theory calculations. The 

obtained results suggested that favourable covalent and non-covalent interactions could be 

established between levofloxacin and the BC. Moreover, BC mechanical and biocompatibility 

properties were maintained. These features justify the potential of levofloxacin-loaded modified-

BC as a valuable approach for local antibiotic delivery in bone infections management. 

 

Keywords: poly(methylmethacrylate), fluoroquinolone, Staphylococcus-infection, controlled 

release, density functional theory. 
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1. Introduction 

Bone infections remain a burden as a clinical complication of orthopaedic surgeries. 

Chemotherapeutic treatment includes the intravenously and oral administration of antibiotics for 

long periods of time along with local delivery, through the use of antibiotic-loaded acrylic bone 

cements (ALABCs) (Hendriks et al., 2004; Van de Belt et al., 2001).  The advantage of the latter 

is to maintain a high local drug concentration for an extended period of release without exceeding 

systemic toxicity. To attain this purpose ALABC has been used in cemented arthroplasties, as a 

well-established procedure, which, however, presents a major drawback regarding the incomplete 

and inadequate kinetic release of the drug (Jiranek et al., 2006; Lewis, 2009; Shi et al., 2010). 

This fact is related to the structural properties of the non-erodible matrix of the bone cement (BC), 

as the hydrophobicity and low porosity hamper antibiotic diffusion from the BC core and only the 

adsorbed antibiotic molecules located in the path of the advancing fluid can dissolve, through 

voids and cracks, and elute from the matrix (Siepmann et al., 2012). 

Recent studies favour the use of cemented over cementless implants, as these offer no net 

advantage while being more costly (Jameson et al., 2015). Therefore, it is important to pursue for 

improvements in ALABC specially on finding new antibiotics and additives to load and produce 

matrices able to perform a better antibiotic release, preventing the development of bacterial 

resistance.  

This fact has achieved a worldwide concern regarding the danger of reaching the end of antibiotic 

pipeline, which triggered a growing tendency to preserve novel antibiotics and use alternative 

compounds with an effective action mechanism against the causative microorganisms (Cooper 

and Shlaes, 2011; Nature Editorials, 2013). Thereupon, several studies evidence a continued 

interest in improving the antibacterial activity of fluorinated quinolones on bone infections. 

Levofloxacin is being referred as the fluoroquinolone with the greater in vitro, and in vivo, anti-

staphylococcal activity and lower toxicity (Giacometti et al., 2003; Holtom et al., 2000; 

Landersdorfer et al., 2009; Lima et al., 2014; Van Bambeke et al., 2005) besides an adequate 

penetration into osteoarticular tissues above the minimum inhibitory concentration (MIC) for 

susceptible pathogens generally encountered in bone and joint infections (Rimmelé et al., 2004). 

However, and to the best of our knowledge, only Anguita-Alonso et al. studied the use of 

levofloxacin in local drug delivery, as loaded acrylic BC in the form of beads, to be used in bone 

infections (Anguita-Alonso et al., 2006).  

Moreover, when loading antibiotics to ALABC, it is very important to establish the drug-polymer 

interaction after cement setting, i.e., if it is dispersed, chemically bonded or even both. 

Particularly, considering that acrylic BCs are a result of an exothermic free radical chain 

polymerization reaction between preformed polymethylmethacrylate (PMMA) powder and a liquid 

(containing a PMMA monomer). Reactivity conditions during BC setting may pose the hypothesis 
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that some free radicals might react with vicinal levofloxacin molecules during BC curing (Gallez 

and Beghein, 2002).  This is an overshowed feature in the published literature with high relevance 

in the release of the antibiotic and, consequently, on ALABC microbiological activity. With this in 

mind several computational calculations were performed, using the density functional theory 

(DFT), to discuss the possibility of a non-covalent interaction or the establishment of a covalent 

bond between levofloxacin and BC.  

Besides the structural evaluation of the drug dispersion on the inner polymeric matrix, and 

regarding the importance of the ALABC in cemented arthroplasties, which acts as a primary 

fixation material between bone and the prosthetic element, other important aspects must be 

considered and evaluated when developing a novel BC matrix, such as the resultant 

biomechanical properties and biocompatibility (Gallo et al., 2005; Van de Belt et al., 2001).  

The present study focuses on developing a novel antibiotic-loaded modified BC matrix with 

possible application for prosthetic bone infections treatment. Levofloxacin was the chosen 

antibiotic, and lactose, a biocompatible poragen, was the agent selected to enhance drug release 

(Frutos et al., 2010; Matos et al., 2014). The selected amounts of levofloxacin and lactose were 

based on the currently used commercial ALABCs formulations (1 g of antibiotic to 40 g of BC 

powder) (Jiranek et al., 2006) and on previous studies that assessed different percentages of 

lactose to load into BC, without hampering the mechanical integrity (Frutos et al., 2010; Matos et 

al., 2014). The levofloxacin-BC interactions, crucial for ALABC performance were characterized 

using a DFT study, which is a step forward on the comprehension of the drug release mechanism. 

Furthermore, studies included the characterization of the key properties for ALABCs development, 

e.g. mechanical performance, drug release kinetics, microbiological activity and biocompatibility. 
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2. Materials and Methods 

2.1. Materials 

Commercial acrylic BC CMW1® Radiopaque (high viscosity BC intended for digital application) 

was purchased from Depuy Synthes (Portugal). Levofloxacin (Lev, on specimens designation), 

polysorbate 20 (Tween20®), sodium chloride, lactose monohydrate (L, on specimens designation) 

and the analytical grade solvents, acetonitrile, triethylamine and ortho-phosphoric acid 85% were 

commercially purchased. Deionized water was obtained from a Millipore analytical deionization 

system (F9KN225218). 

 

2.2. Preparation of acrylic bone cement specimens 

Parallelepiped and cylindrical BC specimens were prepared at room temperature (23±1ºC) and 

atmospheric pressure, with four different content compositions, referenced hereinafter as BC, 

BC10L, Lev[BC] and Lev[BC10L] matrices (Table 1). All the matrices maintained the proportion 

[CMW1® powder]:[Monomer liquid] recommended by the commercial supplier. Levofloxacin and 

lactose were added over the CMW1® powder. After careful mixing of those components, the 

monomer was added up to obtain dough with the desired consistency. The obtained BC dough 

was then manually casted into aluminium moulds according to the ISO 5833 recommendation 

(International Standard ISO Specification 5833, 2002). Cure proceeded for 1 h at room 

temperature. All specimens were finished to careful polishing, measured with a digital micrometer 

(Mitutoyo Digimatic, Painesville, Ohio, USA) with an accuracy of 0.01 mm, and stored in a 

vacuum desiccator (at 23±1°C for 24±2 h) before use. Cylindrical specimens were used for 

compressive strength determination and parallelepiped specimens were used for all the other 

tests and treated accordingly. 

 

Table 1. Composition of the loaded BC specimens, expressed as wt.% of 
CMW1® powder. 

BC Matrix Levofloxacin (%, w/w) Lactose (%, w/w) 

BC 0 0 
BC10L 0 10.0 
Lev[BC] 2.5 0 
Lev[BC10L] 2.5 10.0 

 

2.3. Mechanical Assessment  

Tests were performed at room temperature in a servo-hydraulic universal machine (TIRAtest® 

2705). The compressive strength, bending modulus and bending strength were assessed 
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according to ISO 5833 (International Standard ISO Specification 5833, 2002) and are already 

described elsewhere (Matos et al., 2014). At least five specimens of each BC matrix were tested 

and results were expressed as mean±SD. 

 

2.4. Microstructure analysis 

Scanning Electron Microscopy 

The fracture surface morphology of parallelepiped BC specimens was adequately prepared 

(Matos et al., 2014), analysed and photographed through a thermal field emission scanning 

electron microscopy, FEG-SEM, model JSM7001F (JEOL, Japan) operated at 5 kV.  

Contact angle and surface energy determination 

Assays were performed according with our teamwork-established procedure using BC matrices 

samples cut in adequate dimensions (Bettencourt et al., 2002; Matos et al., 2014). Assays were 

assessed with a Kruss K100 tensiometer (Kruss GMBH, Hamburg, Germany) using the Wilhelmy 

Plate method by immersing plates into the test liquids, water and 1,2-propanediol, at a speed of 3 

mm/min, at 25±0.1°C. Advancing contact angles were used for surface energy (γ) estimation of 

the BC matrices, as well as its dispersive (γd) and polar components (γp) based on the harmonic 

mean method proposed by Wu (Wu, 1971). At least three plates were independently tested. 

Equations for surface tension estimation (Matos et al., 2014) were solved using the equation 

handling KRUSS-software program: contact angle measuring system K100 (version 2.05). 

 

2.5. In vitro drug release studies 

In vitro levofloxacin release was featured from parallelepiped BC specimens (25 × 10 × 3.3 mm) 

with ~1.0 g weight, incubated in 10 mL of a solution of NaCl 0.9%(w/V) with 0.05%(V/V) 

Tween20® (hereinafter release medium) in a shaking water-bath at 37°C. At predetermined 

timepoints, throughout a 7-week period, 1 mL aliquots of the supernatant were collected and 

analysed in triplicate. The withdrawn aliquots were then replaced with equal volume of fresh 

release medium solution and sink conditions were guaranteed during the whole study. 

Levofloxacin content was determined by HPLC-UV (Shimadzu LC-6A and SPD-6A, Kyoto Japan), 

using an adjusted method described in literature (see Annex; Hart et al., 2010). Briefly, the 

chromatographic analysis was performed using a 125-4, 5 μm, LiChrosphere® 100 RP-18 

(Merck, Darmstadt, Germany) column, a degassed mobile phase of water:acetonitrile and 

triethylamine (85:15(V/V), 0.6%(V/V)) adjusted to pH 3 using ortho-phosphoric acid, a 1.2 mL/min 

flow rate and UV detection at 284 nm. All chromatographic separations were carried out at 25ºC. 

The dissolution efficiency (DE) parameter was used to evaluate drug release profiles. DE is 
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defined as the area under the dissolution curve up to a certain time t, expressed as a percentage 

of the area of the rectangle arising from 100% dissolution in the same time and was calculated as 

follows on Equation (1),  

DE =
  y  ×  dtt

0
y100×  t

×100% Eq. (1) 

where y is the percentage of dissolved drug at time t (Khan and Rhodes, 1975).  

Furthermore, the drug release mechanism was determined by fitting the experimental data to the 

“coupled mechanism” represented by the Equation (2) (Frutos et al., 2010; Matos et al., 2014), 

Mt=  a  +  b 1-e-kt   +  c t Eq. (2) 

where Mt denotes the fraction of drug released up to time t, k is a constant of the mathematical 

model, a, represents the burst effect on drug release, b, is related with the drug dissolution 

process and c with the drug diffusion process. 

 

2.6. Computational Study 

Calculations were based on the density functional theory (DFT). This theory is dependent on the 

specific representation of the exchange-correlation functional and several possibilities are 

presently available. To represent exchange calculations with Becke’s three-parameter the hybrid 

method (B3) was used (Becke, 1992). Correlation has been included using the Lee, Yang and 

Parr functionals (LYP) (Lee et al., 1988). All DFT calculations were performed using the Gaussian 

03 Program Package (Frisch et al., 2004).  

Full geometry optimizations were carried out for each molecule and for radicals at the B3LYP/6-

31G(d,p) level of theory. The minima identified at this level of theory were confirmed (no 

imaginary frequencies). Vibrational spectra and (zero-point and thermal corrected) relative 

energies were computed also at the B3LYP/6-31G(d,p) level of theory (Ditchfield et al., 1971). For 

each molecule/radical/complex, several initial structures were considered and optimized and will 

be presented. All the molecules were built and initially minimized using MOE 2013.10 program 

(Molecular Operating Environment (MOE), 2013). 

 

2.7. ATR-FTIR evaluation of the levofloxacin–BC interactions 

A Thermo Scientific FTIR Spectrometer (San Jose, USA), Class 1 Laser Product Nicolet 6700, 

was used to proceed with a Fourier transform infrared spectroscopy (FTIR) attenuated total 

reflectance (ATR) analysis. To obtain the spectra, an 8 × 8 × 0.2 mm sample of each BC matrix 

was placed on the ATR diamond crystal, which provided an angle of incidence of 42°. At least 

four independent samples were analysed and, on each sample, data was collected from four 
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different locations. After each analysis, the crystal was rinsed with acetone and then dried with a 

soft tissue. As reference, the background spectrum of air was collected before the acquisition of 

each sample spectrum. Spectra were recorded with a resolution of 8 cm­1, and 32 scans were 

averaged for each spectrum (scan range 4000–650 cm­1). The software used for FTIR data 

collection was Omnic version 8.1 (Thermo Fisher Scientific Inc.). 

 

2.8. Assessment of levofloxacin antimicrobial activity 

Antimicrobial susceptibility testing  

The antimicrobial susceptibilities of selected strains to levofloxacin standard solution and to 7-

week release medium supernatants, were obtained by the Broth Microdilution Method described 

by the Clinical and Laboratory Standards Institute (CLSI) (Clinical and Laboratory Standards 

Institute, 2012). All assayed samples were two-fold diluted in Müeller-Hinton broth (Biokar 

Diagnostics, France) and final levofloxacin concentration ranged from 2 mg/L to 0.015 mg/L.  

7-week release medium supernatants from plain BC matrices, BC and BC10L, were also tested 

for antibacterial activity. S. aureus (ATCC®25923), S. epidermidis (ATCC®12228) and Escherichia 

coli (ATCC®25922) obtained from American Type Culture Collection (ATCC) were first cultured in 

Tryptic Soy Agar (TSA) (Liofilchem, Italy) and the inoculum was prepared according to CLSI 

(CLSI, 2012) in Müeller-Hinton broth. Minimum inhibitory concentration (MIC) results were 

obtained by measurement of absorbance at 595 nm in a Microplate Multimode Detector (Anthos, 

Zenyth 3100) after 24 h of incubation at 37ºC. All assays were performed with negative controls 

(not inoculated media) and positive controls (inoculated media). Assays were carried out in three 

independent experiments. 

Biofilm inhibition 

Both planktonic bacterial growth and biofilm inhibition were evaluated on BC, BC10L, Lev[BC] and 

Lev[BC10L] matrices plates (8 × 8 × 0.2 mm) using the method described by Minelli and 

colleagues (Minelli et al., 2011) and Kwasny and Opperman (Kwasny and Opperman, 2010) with 

appropriate adjustments. For biofilm experiments, S. aureus (ATCC® 25923) was cultured 

overnight in Brain Heart Infusion (BHI) medium (Liofilchem, Italy), adjusted to a density of 1.0 

McFarland units and then diluted 1:100 (V/V) (to 3×106 CFU/mL) in BHI with 1% (w/V) of glucose 

medium. This diluted suspension (1 mL) was used to inoculate each well of the 24 well-microtiter 

plate containing a previously fixed cement plate. Not inoculated medium (blank) was also used in 

all assays. After incubation at 37ºC for 24 h, bacterial growth was determined and biofilm 

quantification was performed. In the absence of growth, media was removed and reserved for 

eventual levofloxacin quantification, new inoculated media was added to those wells and plates 

were incubated again in the same conditions. 
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Bacterial growth was achieved by spectrophotometry at 595 nm (Anthos, Zenyth 3100) and 

biofilm quantification was performed by the crystal violet (CV) staining method (Kwasny et al., 

2010, Minelli et al., 2011, Ribeiro et al, 2014). When using CV method attached cells were 

washed with PBS, fixed with 96% (V/V) ethanol, stained with 0.1% (w/V) crystal violet solution 

and washed with deionized water (Ribeiro et al, 2014). After drying, each cement plate was 

removed to an eppendorf tube, the attached dye was solubilized in 1% (V/V) acetic acid solution 

and absorbance was measured at 595 nm in a Microplate Multimode Detector (Anthos, Zenyth 

3100). Levofloxacin concentration, on the day before growth observation, was determined using 

the already described HPLC-UV method to determine biofilm inhibitory concentration (BIC). 

Assays were performed in three independent experiments. 

 

2.9. Biocompatibility assays 

Cytotoxicity evaluation of the BC extracts  

Release medium supernatants regarding timepoints of 10 min and 24 h, of the Lev[BC10L] matrix, 

were tested for cytotoxicity. As controls, release medium supernatants from the plain matrices, BC 

and BC10L, for the same timepoints, were used. The cytotoxicity was assessed using the general 

cell viability endpoint MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) 

assay on L929 (mouse fibroblast cell line, ATCC® CCL-1™) and MG63 (human osteoblast cell line, 

ATCC® CRL-1427™) (Mosmann, 1983).  The day before the experiment, cells were seeded in 

sterile flat bottom 96 well tissue culture plates (Greiner, Germany), in RPMI 1640 culture medium 

(Invitrogen, UK) supplemented with 10% (V/V) fetal serum bovine, 100 units of penicillin G 

(sodium salt) (Invitrogen, UK), 100 µg of streptomycin sulphate (Invitrogen, UK) and 2 mM L-

glutamine (Invitrogen, UK), at a concentration that allow cells to grow exponentially during the 

time of the assay. All samples to be tested and sodium dodecyl sulphate (SDS, used as positive 

control) were diluted in culture medium. After 24 h and 48 h, the cell media was removed and 

replaced with fresh medium and the cell viability was assessed. In brief, the MTT dye solution was 

then added to each well (stock solution 5 mg/mL in 10 mM phosphate buffer solution at pH 7.4). 

After 3 h of incubation the media was completely removed and the intracellular formazan crystals 

were solubilised and extracted with 100 µl dimethylsulfoxide. After 15 min at room temperature 

the absorbance was measured at 570 nm in Microplate Reader (FLUOstar Omega, BMGLabtech, 

Germany). The relative cell viability (%) compared to control cells was calculated by 

[Absorbance570nm]sample/[Absorbance570nm]control ×100. 

Direct contact with BC  

The response of cells (MG63 and L929) in direct contact with BC, BC10L and Lev[BC10L] 

matrices was evaluated by the observation of the cell culture proliferation by phase contrast after 

MTT reduction and by fluorescence microscopy. 
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Phase-contrast microscopy 

Cells were cultured at a density of 2.5×104 cells/cm2 and 5.0×104 cells/cm2, respectively, in 24 

wells tissue culture plates (Greiner, Germany) in direct contact with the BC matrices. Glass slides 

were used as negative controls and sterile filter paper with SDS (10 mg/mL) were used as positive 

controls. After 24 h, MTT solution was added to a final concentration of 0.5 mg/mL and incubated 

for 3 h at 37ºC. Following incubation, culture plates were observed under an inverted microscope 

coupled with a digital camera and pictures were taken of the interface of the BC matrices and 

plate. 

Fluorescence microscopy 

Cells were grown in sterile glass slides or tested Lev[BC10L] matrix (1 cm2) into 24 wells tissue 

culture plates (Greiner, Germany) for immunocytochemistry assays. After incubation, cells were 

rinsed three times with 10 mM PBS containing 20 mM glycine at pH 7.4, before and after being 

fixed for 15 min (at room temperature in dark) with paraformaldehyde 4% (w/V) in PBS 

(Applichem, Germany). After cell fixation, and for actin staining with rhodamine phalloidin, cells 

were permeabilized with 0.1% (V/V) Triton x-100 for 4 min and then rinsed the same way as 

described above. The 6.6 mM phalloidin-TRITC (Life Technologies, UK) solution in 10 mM PBS 

was added to the cells for 30 min at room temperature. Then, and after cells rinsing, cell slides 

were mounted in fluorescent mounting medium ProLong® Gold antifade reagent with DAPI (Life 

Technologies, UK) and their fluorescence was observed and recorded on an Axioskop 40 

fluorescence microscope (Carl Zeiss, Germany) equipped with an AxioCam HRc (Carl Zeiss, 

Germany) camera. Images were processed with the software Axiovision Rel. 4.8.1. (Carl Zeiss, 

Germany). 

 

2.10. Statistical Analysis 

All data sets are presented as mean±SD (result of at least three determinations, depending on the 

assay) and were examined by one-way analysis of variance (ANOVA) with a post-hoc Tukey´s 

Multiple Comparison Test using GraphPad PRISM 5® (GraphPad Software, Inc., La Jolla, CA). 

The level of statistical difference was defined at a p < 0.05 level. 
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3. Results  

3.1. Mechanical Assessment  

For all the evaluated mechanical parameters, the levofloxacin modified BC matrices showed no 

statistical difference to the plain BC matrix (Fig. 1). Experimental data was in accordance with the 

ISO 5833 recommended values, particularly compressive strength ≥70 MPa, flexural strength ≥50 

MPa and flexural modulus ≥1800 MPa (International Standard ISO Specification 5833, 2002).  

 

 

 
Fig. 1 Mechanical properties of the BC matrices (mean±SD; n=5). Compressive strength (MPa); Flexural 
strength (MPa); Flexural modulus (MPa). Dashed lines represent the ISO 5833 recommended values for 
each mechanical property. 
 

3.2. SEM evaluation of the BC inner matrix 

Eventual structural changes due to either the loading or the release of levofloxacin and lactose 

were monitored using SEM analysis.  

The BC inner fracture surface matrices revealed a slight increase in the size of cracks and voids 

with lactose loading, resulting in a rougher surface with visible creation of inner channels in the 

matrix core (Fig. 2). 
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Fig. 2 FEG-SEM micrographs of the Lev[BC] and Lev[BC10L] matrices rupture 
surface. Top row shows a (× 30) magnification and bottom row a (× 500) magnification. 

 

3.3. Contact angle and surface energy determination 

Either levofloxacin or lactose has increased the polar surface energy component (γp) of BC. 

However, total surface energy (γ) results did not show any statistical difference (p > 0.05) (Table 

2) meaning that BC outer surface properties have remained unchanged despite the presence of 

the loaded components.  

 

Table 2.  BC experimental values for total (γ), polar (γp) and 
dispersive (γd) surface energy. 

Matrix  γd (mN/m) γp (mN/m) γ  (mN/m) 

BC 19.8±1.9 9.6±2.7 29.4±0.8 
BC10L 18.3±2.4 13.2±3.6 31.6±1.2 
Lev[BC] 15.1±1.4 11.7±2.2 26.8±1.6 
Lev[BC10L] 16.0±1.4 13.7±1.7 29.0±0.7 

 

3.4. In vitro drug release studies 

The presence of lactose was crucial for levofloxacin release.  

Over 7-weeks drug release was 3.5-fold higher from Lev[BC10L] matrix (35.1±1.7%) when 

compare to that obtained with Lev[BC] matrix (10.4±0.9%). Both profiles and kinetic fittings are 
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shown in Fig. 3. In addition, levofloxacin dissolution efficiency (DE) was 4-fold higher for 

Lev[BC10L] (26.2%) than for Lev[BC] (6.7%). 

The release mechanism of levofloxacin from BC matrices was evaluated by fitting the 

experimental data to the kinetic model known as “coupled mechanism” (Frutos et al., 2010; Matos 

et al., 2014). Fitted parameters of the Eq. (2) are presented on Table 3. 

 

 
Fig. 3 In vitro release profiles for both Lev[BC] (�) and Lev[BC10L] (w) matrices over a 
7-week period (mean±SD; n=9). Dashed lines show the fitting curves obtained from the 
coupled mechanism kinetic model. DE (%) represents dissolution efficiency values. 

 

Table 3.  Fitted parameter values and r2 for the “coupled mechanism” equation model used to the 
release kinetic mechanism of levofloxacin from BC matrices. 

Equation Model 
Parameters 

Lev[BC] Lev[BC10L] 

0,5 h ≤ t ≤ 168h 168 h ≤ t ≤ 1152 h 0,5 h ≤ t ≤ 168h 168 h ≤ t ≤ 1152 h 

r2 0.979 0.89 0.995 0.978 

a 0.01 1.51 0.73 10.41 

b 2.00E+04 0.00 4.2E+04 0.00 

c (h-1/2) 0.10 0.24 0.00 0.74 

k(h-1) 1.03E-06 3.00 2.63E-06 3.00 

 

 

3.5. Computational Study 

To explore the possible formation of covalent or non-covalent complexes between levofloxacin 

and the BC, which could explain the retention of the antibiotic inside the BC, a computational 

study was performed to investigate the energetics of levofloxacin-BC complexation. With this in 
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mind, several initial structures representing the PMMA monomer (Fig. 4A), levofloxacin (Fig. 4E), 

PMMA dimer (Fig. 4C), and respective radicals (Fig. 4B, 4D and 4F) were constructed using MOE 

software version 2013.10.  Also, four potential complexes formed by PMMA monomer and dimer 

radicals (herein this section referred as PMMAI, to simplify text writing and comprehension) with 

levofloxacin (covalent and non-covalently bonded) were constructed using the same software 

(Fig. 4G, 4H, 4I and 4J). All the initial molecular geometries were fully optimized with B3LYP 

functional using 6-31G(d,p). Fig. 4 presents the minima for each structure and Table 4 the 

calculated energies of each molecule. 

The energies involved on the complexation reactions (ΔcomplexE) between PMMA and levofloxacin 

were determined using Equation (3) and are presented at Table 5. 

ΔcomplexE = Ecomplex – (Elevofloxacin + EPMMAI) Eq. (3) 

where, ΔcomplexE represents the complexation energy, Ecomplex represents the corrected energy of 

the complex (from Eth on Table 4), Elevofloxacin represents the corrected energy of levofloxacin 

(from Eth on Table 4) and EPMMAI represents the corrected energy of PMMA (from Eth on Table 4). 

Results show that the covalent complexation between PMMA and levofloxacin is energetically 

favourable, ΔcomplexE = 150 kJ⋅mol−1. Also, the non-covalent complexes optimized showed some 

interactions between the drug and the BC (PMMA). An hydrogen bond interaction between PMMA 

carbonyl oxygen and levofloxacin, with d(O⋅ ⋅ ⋅H) ~ 2Å, could suggest a favourable interaction. In 

fact, favourable complexation energy, ΔcomplexE ~20 kJ⋅mol−1 was obtained.  

The calculated harmonic-vibrational frequencies for the two possible covalent complexes, G and 

H (from Fig. 4) are presented later on Table 6 along with the frequencies determined by the ATR-

FTIR technique. 

 

Table 4. Optimized electronic energies, Eele, and also Eo corrected with zero point (Eo+ZPVE) and 
thermal (Eth+Ther) for molecules of Fig. 4. NI represents the number of imaginary frequencies. 

Molecule  Eele (Hartree) E0 (Hartree) Eth (Hartree) NI 

A -345.7979235 -345.674351 -345.666290 0 

B -346.3822638 -346.249465 -346.240334 0 

C -692.8472849 -692.572340 -692.555161 0 

D -692.2018062 -691.940259 -691.923109 0 

E -1262.9893669 -1262.617780 -1262.595620 0 

F -1263.5275904 -1263.147351 -1263.124541 0 

Complex     

G (covalent) -1609.9776380 -1609.456265 -1609.424731 0 

H (covalent) -1955.7876487 -1955.137898 -1955.097838 0 

I (non-covalent) -1608.7975058 -1608.276133 -1608.244599 0 

J (non-covalent) -1955.8509084 -1955.202511 -1955.161445 0 
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Fig. 4 Optimised structures of PMMA monomer (A), PMMA dimer (C), levofloxacin (E), and respective 
radicals (B, D and F), covalently bonded complex of levofloxacin with PMMA monomer (G), and PMMA 
dimer (H) and non-covalently complexes of levofloxacin with PMMA monomer (I) and PMMA dimer (J). 
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3.6. ATR-FTIR evaluation of the levofloxacin–BC interactions 

The ATR-FTIR spectra for both matrices [BC] and Lev[BC] were obtained to evaluate eventual 

changes on the inner polymer matrix structure due to levofloxacin presence. For both matrices, 

the main peak absorptions were observed and were fairly superimposable. Namely, peaks at 

2850 cm−1 and 2950 cm−1 for methylene (-CH2-) and methyl (-CH3) stretches, 1730 cm−1 for the 

C=O stretch, at 1240 cm−1 for the C–C–O stretch, at 1140 cm−1 for the O–C–C stretch (Ayre et al., 

2014). In order to point out slight differences that could exist but not perceived, the spectra of both 

Lev[BC] and [BC] matrices were subtracted. The obtained subtraction spectrum is presented on 

Fig. 5 (blue line), where the remained peaks are notorious.  

 

 
Fig. 5 ATR-FTIR spectra of both matrices, Lev[BC] (red line) and [BC] (purple line). The blue line 
represents the resulting subtraction spectra. The zoom window displays the frequencies range 1500-700 
cm−1. Blue arrows point-out frequencies related to the covalent bond formed during complexation. 
 

Table 5. Electronic energies, Eth, of the studied complexes (covalent and 
non-covalent) calculated and corrected at the B3LYP/6-31G8(d,p) level of 
theory. ΔcomplE represents the complexation energies. 

Complex Eth (Hartree) ΔcomplE (kJ⋅mol−1) 

G (covalent) -1609.424731 -157.36 

H (covalent) -1955.097838 -134.34 

I (non-covalent) -1608,264995 -7.95 

J (non-covalent) -1955.097838 -28.04 
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Most of these peaks are frequencies of the more characteristic vibrations of levofloxacin: 2950 

cm−1 and 2830 cm−1 for methyl (CH3) stretches, at 1730 cm−1 for the C=O stretch, between 1480 

cm−1 and 1386 cm−1 for aromatic ring C−C stretching, scissoring of CH2 and in-plane bending of 

C−H and O−H, twisting CH3 and in-plane rocking CH2, or at 1270 cm−1 for rocking C−H, in-plane 

bending C−N and ring symmetrical deformation, additionally, between 1300 cm−1 and 700 cm−1, 

besides other characteristic peaks of levofloxacin that appear on this interdigital region 

(Gunasekaran et al., 2003), it is also possible to distinguish peaks coincident with the calculated 

harmonic frequencies for the covalent bonds formed between levofloxacin and PMMA, as 

reported on Table 6. 

 

Table 6. Infrared vibrational frequencies for levofloxacin (FTIR-ATR) 
and complexes bond formed between levofloxacin and PMMA (DFT). 

ATR-FTIR (cm−1) 
DFT frequencies (cm−1) 

Complex G Complex H 
1270 1279  
1239 1217  
1188  1185 
1144  1133 
1115 1077  
1064 1063 1071 
983 945 

 
920 939 921 
840  839 
748 768 752 
730  733 

 

 

3.7. Assessment of levofloxacin antimicrobial activity  

Antimicrobial susceptibility testing  

The MIC values obtained represent the lowest concentration of levofloxacin that prevents 

detectable growth of methicillin-sensitive S. aureus, S. epidermidis and E. coli (as a control 

assay). Results for the antimicrobial susceptibility to the levofloxacin released from BC matrices 

after a 7-week period are shown on Table 7. Levofloxacin free solutions released from BC and 

BC10L matrices were also tested and no antimicrobial activity was observed (data not shown).  

Biofilm inhibition 

Concerning S. aureus adhesion and attachment to the biomaterial surface, the modified acrylic 

BC showed a two-fold increase in time needed for biofilm formation as biofilm appeared after 7 

days for the Lev[BC] matrix and 13 days for the Lev[BC10L] matrix. At this stage, levofloxacin 
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concentrations that no longer prevented bacteria growth and biofilm formation were similar in both 

matrices (Table 7). Moreover, when levofloxacin-free matrices were assayed biofilm formation 

was observed within the first 24 h.  

 

Table 7. Microbiological results, MIC (minimum inhibitory concentration) and BIC (biofilm inhibitory 
concentration) for the 7-week levofloxacin released from both BC matrices. 

Microorganism Strain 
MIC (mg/L) BIC (mg/L) 

Levofloxacin Lev[BC] Lev[BC10L] Lev[BC] Lev[BC10L] 
S. aureus  ≥ 0.25 ≥ 0.25 ≥ 0.25 ≥ 1.84±0.15 ≥ 1.99±0.07 
S. epidermidis  ≥ 2 ≥ 2 ≥ 2 n.d n.d 
E. coli ≥ 0.03 ≥ 0.03 ≥ 0.03 n.d n.d 

n.d. – non-determined 
 
 

3.8. Biocompatibility assays  

Cytotoxicity evaluation of the BC extracts 

The biocompatibility evaluation proceeded with the Lev[BC10L] matrix due to the higher values of 

levofloxacin released. Results of the 10 min and the 24 h extract solutions showed that 

levofloxacin released did not cause cytotoxicity, since no statistical difference to plain BC10L was 

found (p > 0.05) (Fig. 6).  

 

 
Fig. 6 Cell viability of the Lev[BC10L] matrix regarding the MG63 and the L929 cells. No significant 
differences towards BC10L matrix were found, (p > 0.05). 10 min and 24 h aliquots represent the release 
time of levofloxacin extract solutions. Results are expressed as mean ± SD (n = 15). 
 

Direct contact with BC 

Regarding direct contact studies, phase-contrast micrographs were taken at the interface of the 

cell layer with outer contact areas of the BC, BC10L and Lev[BC10L] matrices (Fig. 7). Only the 

cells in contact with filter paper containing SDS (positive control) did not grow, all the others 

presented a monolayer of viable cells. Furthermore, the two cell lines, MG63 and L929, grown on 
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Lev[BC10L] surface and on glass slides were visualized with a fluorescence microscope. The 

staining of the actin protein was made with fluorescent marks visualised on red channel. The 

images show the spatial localization of actin on the surfaces (Fig. 8). The fibroblast (L929) and 

osteoblasts (MG63) fluorescence images show that cells are well spread out on the surface of 

biomaterial, indicating a good cell adhesion and proliferation. The actin filaments are well 

highlighted in all cells and evidence the cytoskeleton organization. Therefore, the interaction with 

the surface of the biomaterial did not alter the osteoblasts and fibroblasts morphology in 

comparison with the glass surface, thus supporting the material biocompatibility. 

 

 
Fig. 7 Phase-contrast micrographs of the interface of the cell layer, L929 and MG63, with outer contact 
areas of the Lev[BC10L] matrix. 
 
 

 
Fig. 8 Fluorescence images of MG63 and L929 cell lines on glass slides and surface of biomaterial (red 
staining of actin in cells cultured on the surface after 3 days of culture; ×10 zoomed to ×40 magnification). 
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4. Discussion 

The current research on developing innovative materials as drug delivery systems for the 

prevention and management of orthopaedic infections is unquestionable. Presently, efforts are 

focusing on developing modified materials by loading suitable additives that either have 

antibacterial activity, like chitosan and silver nanoparticles (Arora et al., 2013; Tan et al., 2012), as 

might enhance drug release from the inner BC matrix, as lactose (Frutos et al. 2010; Matos et al., 

2014) or xylitol (Salehi et al., 2014; Weiss et al., 2009).  

Often these modified materials do not achieve the desirable mechanical performance that BC 

must exhibit to adequately perform its primary structural function between bone and the prosthetic 

element (Zhang et al., 2014). For this reason the ALABCs still gathers a general consensus and a 

recent study has considered cemented implants the procedure with a more suitable 

cost/effectiveness ratio on orthopaedic surgery such as arthroplasty (Jameson et al., 2015). 

Therefore, it is of most relevance to find new antibacterial agents to load into BC with an effective 

mechanism against the microorganisms causing serious bone infection as the Staphylococci spp. 

(S. aureus and S. epidermidis), which account for more that 50% of the occurrences of 

periprosthetic hip and joint infection (Ryu and Patel, 2015).  

Fluoroquinolones are frequently used in bone infections and show one of the highest median 

extents of bone penetration of all antibiotic groups partly due to quinolone binding to the calcium 

in bone (Landersdorfer et al., 2015). Levofloxacin is being referred as the quinolone with the 

higher values for its group (Metallidis et al., 2007; Rimmelé et al., 2004). Moreover a continued 

interest for its use in orthopaedic infections was found to be advantageous, since S. aureus was 

shown to penetrate into and survive in osteoblasts in vitro (Giacometti et al., 2003; Hart et al., 

2010; Holtom et al., 2000; Hudson et al., 1995; Landersdorfer et al., 2009; Lima et al., 2014; Van 

Bambeke et al., 2005; Wright and Nair, 2010). As such, it was found relevant to load levofloxacin, 

on a lactose-modified commercial acrylic cement (Matos et al., 2014), to use as prosthesis 

fixation, and evaluate the overall properties of the resultant BC matrix namely, mechanical, 

structural, as well as microbiological activity and biocompatibility. To the best of our knowledge, 

the loading of levofloxacin into commercial acrylic BC, to be used with a load bearing function, 

has not been assessed or reported, therefore a therapeutic concentration of levofloxacin (2.5% 

(w/wBC)) was loaded into both plain as into 10.0% (w/wBC) lactose-loaded BC matrices. The BC 

mechanical integrity is a key issue due to the important function of the BC to guarantee the 

implant fixation to bone and load transfer from prosthesis to the bone. Therefore, assessing the 

mechanical properties of the Lev[BC] and Lev[BC10L] matrices became of highest importance. As 

a result, and considering the required biomechanical characteristics established by ISO 5833 for 

evaluation of acrylic cements for surgery (International Standard ISO Specification 5833, 2002), it 

was concluded that levofloxacin and lactose loading to the commercial plain BC does not interfere 

with the expected mechanical properties, namely, with the compressive and flexural strength and 
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modulus (Fig.1). This compliance is highly valuable particularly regarding the flexural strength, 

which is the more restrictive mechanical property.  

The in vitro release of levofloxacin held throughout a 7-week time-period, followed a sustained 

and controlled release either from the Lev[BC10L] as from Lev[BC] (Fig.3). As expected (Frutos et 

al., 2010; Matos et al., 2014), lactose-loading strongly influenced the amount of levofloxacin 

released from the BC, which was 3.5-fold higher, ~35%, than levofloxacin released from plain BC 

matrix, ~10%. This is a very promising value once a different study with BC beads loaded with 

levofloxacin has reported only 24–28% of the loaded levofloxacin being recovered after 48 h 

(Anguita-Alonso et al., 2006). Considering kinetic release, from Fig. 3, which evidence the fitting 

curve of the experimental data, and from Table 3 where fitted parameters of the mathematical 

model used are presented, it is possible to conclude that levofloxacin release followed the same 

kinetic mechanism for Lev[BC] and Lev[BC10L] matrices. The burst effect, parameter a, was 

negligible, and the fitted b and c parameters varied inversely, depending on the time-period of the 

release study. During the first week (168 h) there was a prevalence of the dissolution process but 

subsequently, and until the end of the release study, the diffusion process prevailed. The SEM 

analysis permitted to understand the porosity influence on the in vitro levofloxacin release 

differences between Lev[BC] and Lev[BC10L] matrices. Fig. 2 shows a lower inner porosity for 

Lev[BC] matrix, therefore, the levofloxacin release started by dissolution of molecules exposed on 

the BC surface followed by a slowest diffusion from the inner matrix specifically from the voids, 

pores or imperfections. Lev[BC10L] matrix, with higher pores, due to lactose presence, has 

revealed a higher capacity to dissolve and diffuse more amount of drug from the inner matrix. 

During BC setting, lactose acted like a poragen, increasing porosity and creating inner channels 

paths within the matrix core where later the release medium reached more easily and, initially, 

promoted levofloxacin dissolution and then permitting its diffusion during the release period 

(Matos et al., 2014; Tukaram et al., 2010). These suppositions were supported by the DE (%) 

parameter (Khan and Rhodes, 1975). As expected, DE increased from 6.7% to 26.2% (Fig. 3) 

when lactose was loaded in the BC matrix, possibly due to increase in the total surface area 

exposed to the release medium. 

With 35% of the levofloxacin loaded being recovered from the BC inner matrix it became 

necessary to comprehend what happened to the remainder levofloxacin. During BC setting, the 

antibiotic molecules become encased in the insoluble polymer matrix and some of the drug 

molecules might remain isolated or even bonded to the biomaterial, and therefore unable to be 

released (Landersdorfer etal., 2009). To the best of our knowledge, there are not studies reporting 

comprehension of these particular interactions, between a commercial PMMA-based BC and the 

loaded antibiotic that might occur during BC setting. Interestingly, Dizman et al. (Dizman et al., 

2005) reported the chemical synthesis of methacrylate polymers with another fluoroquinolone 

(norfloxacin). Although the type of reaction was different from the one observed during BC setting, 
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it suggests the possibility of reaction between fluoroquinolones and PMMA materials. Therefore, 

the assessment of the resulting chemical interactions between levofloxacin and BC was of crucial 

interest to understand the antibiotic interaction with the polymer matrix. For this purpose, a 

computational study was performed followed by ATR-FTIR analysis. Results suggest that 

levofloxacin established covalent and non-covalent interactions with PMMA, during polymer 

setting. The interaction possibilities and the energetics involved on the complexes formation, 

between levofloxacin and the material (PMMA), have been evaluated by means of density 

functional theory (DFT) considering two hypotheses. The most stable complexes (Table 4) that 

resulted from the computational study are presented on Fig. 4. First, during BC setting, it is 

conceivable that levofloxacin and a free radical (PMMA monomer or other) could interact and form 

a covalent bond, hindering the antibiotic inside of the cement matrix and inhibiting it from being 

released, and second, strong interactions could be established between the antibiotic and the 

cement leading to the formation of a non covalent complex. Covalent (G, H in Fig. 4) and non-

covalent complexes (I, J in Fig. 4) might be formed, if a monomer or polymer radical (B, D in Fig. 

4) is formed during polymerization, and if a levofloxacin radical (F in Fig. 4) is also present. Both 

complexation reactions are energetically favourable, with ΔcomplE < 0 (Table 5), with the higher 

interaction energy calculated for the levofloxacin-PMMA covalent complex (150 kJ⋅mol−1) 

compared to the non-covalent complex (20 kJ⋅mol−1). The formation of important interactions 

between levofloxacin and PMMA were confirmed by calculations that pose both molecules very 

close to each other, predicting the establishment of an H-bond between carbonyl oxygen and 

levofloxacin within a distance of ~2Å. These complexes are most probably responsible for the 

antibiotic retention inside the BC matrix and consequently release inhibition.  

Moreover, the formation of the referred complexes was further confirmed with ATR-FTIR. Fig. 5 

shows the obtained spectra for both Lev[BC] and [BC], as well as the resultant subtraction 

spectrum (blue line), necessary to evidence peaks that were not from the BC matrix. At Fig. 5 a 

zoom window displays the frequencies range 1500-700 cm−1 from which it is possible to locate 

peaks correspondent to the covalent bond of complexes G and H (Fig. 4) according with Table 6 

data, confirming the existence of those complexes. However, one of the limitations of this study 

relies on the impossibility to assess the stoichiometry of the reaction to better evaluate the amount 

of levofloxacin involved and better judge whether the remaining 65% of levofloxacin was 

completely complexed as it was assumed. Nonetheless, the computational study has revealed to 

be a fundamental tool that should be often applied, to better understand the possible reasons for 

antibiotic retention inside the BC matrix.  

Antimicrobial susceptibility results (Table 7) disclosed that levofloxacin released from the 

matrices, after a 7-week period, retained the antibacterial properties against S. aureus, S. 

epidermidis, in agreement to the MIC values of a levofloxacin standard solution. E coli ATCC® 

25922 was used as quality control strain to guarantee that the test system performed as expected 
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and lead to results that fall within specified limits listed in CLSI M100-S17 (Clinical and Laboratory 

Standards Institute, 2007). The obtained MIC values for S. aureus, S. epidermidis and E. coli 

were also in agreement with literature, namely 0.25 – 0.5 mg/L, 0.5 – 7.8 mg/L and 0.008 – 0.06 

mg/L respectively (Boyd et al., 2009; Hurst et al., 2002; Lin et al., 2014). These results suggest 

that the freely dispersed levofloxacin in the inner matrix was not affected during the BC setting or 

by the acidic release medium (pH 5.4). This is an important result considering that localized 

acidity occurs after surgery, with the pH value near the implant varying typically from 5.3 to 5.6 

(Manivasagam et al., 2010), and these conditions have been described to reduce drastically the 

potency of antibiotics in its pure form (Uskokovic and Desai, 2014). 

As already mentioned, orthopaedic infections are frequently caused by S. aureus, and 

occasionally became very difficult to eradicate due to biofilm formation (Murillo et al., 2006). With 

this in mind, further microbiological testing was considered specifically for evaluating the 

Lev[BC10L] effect on the growth of S. aureus biofilm. S. aureus ATCC® 25923 was chosen for 

biofilm studies for being referenced by several authors as a strong biofilm producer. Also this 

strain has been stated to produce biofilm in hostile conditions such as in the presence of H2O2 

(3%) (Zmantar et al., 2010). Additionally, in order to maximize biofilm production, culture medium 

for biofilm inhibition study was supplemented with glucose (1%). A highly relevant result was 

obtained: the inclusion of lactose on the BC matrix induced a delay on the biofilm formation, most 

probably due to the higher levofloxacin concentration achieved on BC surface during release. 

Lastly, the biocompatibility evaluation was of utmost importance as the BC is directly connecting 

with the bone cells. The biomaterial outer surface characteristics strongly influence the 

biocompatibility behaviour, as the surface energy is related to the hydrophilic degree of the 

surface, which is responsible for the cells liaison (Menzies and Jones, 2010). Our results of BC 

matrices surface energy assessment have shown that none of the loaded components has 

significantly changed the total surface energy and, therefore, the outer surface properties of the 

BC (Table 2), thus contributing to the biocompatibility of Lev[BC] and Lev[BC10L] matrices. 

Considering the high levels of levofloxacin released from Lev[BC10L], and in spite of levofloxacin 

being referred as the fluoroquinolone with lower toxicity (Holtom et al., 2000), cytotoxicity assays 

with fibroblasts and osteoblasts incubated with extracts or in direct contact were conducted with 

this matrix. Our study revealed no significant increase of cytotoxicity, regarding the MG63 

(osteoblasts) and L929 (fibroblasts), when the modified matrices were compared with plain 

BC10L (Fig. 6), which means that the complexation bonds formed during polymerization do not 

contribute to cytoxicity, as do not residual monomers, additives or other polymerization by-

products (Bettencourt et al., 2007; 2002; 2000; Matos et al., 2014). Moreover, the observed 

maintenance of the cytoskeleton organization, of either osteoblasts and fibroblast cell lines, on the 

surface of the Lev[BC10L] is a strong evidence of this matrix biocompatibility (Figs. 7 and 8). 
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5. Conclusion 

Acrylic BC is considered a valuable material for local antibiotic delivery in the context of 

orthopaedic implant-associated-infections. The comprehensive evaluation performed on the novel 

BC matrix, Lev[BC10L], showed improved antibiotic release (during a 7-week period) with 

antibacterial activity against S. aureus and S. epidermidis. Furthermore, improved inhibition of S. 

aureus biofilm by the lactose-modified BC matrix was observed, when compared to the unloaded 

commercial acrylic BC matrix. For the first time an original in silico approach provided an insight 

of the drug-biomaterial interaction and demonstrated the existence of both covalent and non-

covalent interactions between levofloxacin and BC. 

The obtained results clearly show that novel levofloxacin BC matrix is a valuable approach for 

local antibiotic delivery in bone infections. Hereafter, assessing other doses of levofloxacin and 

lactose will enrich the withdrawn conclusions. 
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Abstract  

 

Antibiotic-loaded acrylic bone cements (ALABCs) are well-established and cost-effective 

materials to control the occurrence of bone and joint infections. However, the inexistence of 

alternative antibiotics other than those already commercially available and the poor ability to bind 

to bone tissue hampering its biological function are still major drawbacks of ALABCs clinical 

application. The concept of this research work is to develop a novel bone cement (BC) drug 

delivery system composed by Mg- and Sr-doped calcium phosphate (CaP) particles as drug 

carriers loaded into a lactose-modified acrylic BC, which, to the best of our knowledge, has never 

been reported. CaP particles are known to promote bone ingrowth and current research is 

focused on using these carriers as antibiotic delivery systems for the treatment of bone infections, 

like osteomyelitis. Levofloxacin is a fluoroquinolone with anti-staphylococcal activity and adequate 

penetration into osteoarticular tissues and increasingly being recommended to manage bone-

related infections. Also, the lactose-modified BC matrix, with a more porous structure, has already 

proved to enhance antibiotic release from the BC inner matrix. This novel BC composite 

biomaterial has shown improved mechanical integrity, biocompatibility maintenance, and 

sustained release of levofloxacin, with concentrations over the minimum inhibitory concentration 

values after a 48 h while maintaining antibacterial activity over an 8-week period against 

Staphyloccocus aureus and Staphyloccocus epidermidis, common pathogens associated with 

bone infections. 

 

Keywords: Poly(methylmethacrylate), Biphasic calcium phosphate, Fluoroquinolone, Controlled 

release, Osteomyelitis, Biocompatibility, Drug delivery system. 
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1. Introduction 

The use of antibiotic-loaded acrylic bone cement (ALABC) is still considered to be the standard of 

care for patients with chronic bone and joint infection, providing local delivery of high levels of 

antibiotics for an extended period of time without exceeding systemic toxicity, while being a more 

cost-effective procedure when compared to cementless implants (Jameson et al., 2015; 

Zilberman and Elsner, 2008). However these ALABCs present major drawbacks, such as the 

incomplete and inadequate kinetic release of the drug, the limited number of antibiotics available 

in commercially premixed formulations (Jiranek et al., 2006; Lewis, 2009; Shi et al., 2010) and the 

poor bone tissue integration. Regarding the latter, one of the most described strategies to improve 

the biological performance of ALABCs, which are polymethylmethacrylate (PMMA) based 

cements, is the inclusion of osteoconductive materials aiming to enhance fixation at bony sites. 

PMMA-based BCs incorporating calcium phosphate (CaP) ceramics to improve biological fixation 

between bone and cement have been one of the most recently reported materials in the field (Sa 

et al., 2015). Additionally, the properties of CaPs are not modified when incorporated in the 

PMMA matrix, maintaining its ability to promote bone ingrowth while the cement stays 

mechanically stable (Canul-Chuil et al., 2003; Lopez-Heredia et al., 2012). Therefore, loading 

CaPs into PMMA-based BC allows establishing a compromise between the desired mechanical 

and biological properties, combining the vast clinical experience of using PMMA, and the 

biological potential of CaP materials (Lopez-Heredia et al., 2012). Particularly, hydroxyapatite 

(HA) is an example of those CaPs due to the chemical and structural similarities with the inorganic 

phase of human bone, along with its biocompatibility, osteoconductive and osteophilic nature (Kim 

et al., 2004). More recently, doping of CaPs through the inclusion of foreign ions into the CaPs 

crystal lattice is described as an effective approach for improving CaPs osteointegration and 

mechanical properties (Boanini et al., 2010; Lima et al., 2011). Among others, magnesium (Mg2+) 

is a particularly desired substitution ion for HA because it is associated with the mineralization of 

calcified tissues and indirectly influences mineral metabolism (LeGeros, 1991; Ren et al., 2010). 

Another interesting substitution ion is strontium (Sr2+), which increases osteoclast apoptosis and 

enhances preosteoblastic cell proliferation and collagen synthesis, with consequent depression in 

bone resorption and increase bone formation (Guo et al., 2005; Pina et al., 2010). 

The current study is intended at exploring important key-properties for the future development of a 

suitable system for the controlled release of antibiotics, circumventing the above-referred ALABCs 

handicaps. Hence, a lactose-modified acrylic BC matrix was chosen to favour drug release due to 

its more porous structure, when compared to plain BC, and proved mechanical and 

biocompatibility compliance (Frutos et al., 2010; Matos et al., 2014, 2015). The selected antibiotic 

was levofloxacin, a fluoroquinolone with high anti-staphylococcal activity and low toxicity, besides 

an adequate penetration into osteoarticular tissues above the minimum inhibitory concentration 

(MIC) for susceptible pathogens generally present in bone and joint infections (Zimmerli, 2015). 
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Lastly, CaP particles, plain and doped with two different cations, Mg2+ and Sr2+, were used as the 

carriers of levofloxacin to be loaded into the lactose-modified acrylic BC matrix.  

In short, a novel BC composite was developed and tested, aiming at an in vitro release of the 

antibiotic, with concentrations above the MIC for the Staphylococcal spp., along with mechanical 

and biocompatibility compliance, for the potential application in bone and joint associated 

infections. 
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2. Materials and Methods 

2.1. Materials 

Commercial acrylic BC CMW1® Radiopaque (high viscosity BC intended for digital application) 

was purchased from DePuy Synthes Portugal. Levofloxacin (Lev, on specimens designation), 

polysorbate 20 (Tween20®), sodium chloride, lactose monohydrate (L, on specimens designation) 

and the analytical grade solvents, acetonitrile, triethylamine and ortho-phosphoric acid 85% were 

commercially purchased. Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, Quality Chemicals, 

Spain), diammonium hydrogen phosphate ((NH4)2HPO4, Quality Chemicals, Spain), magnesium 

nitrate hexahydrate  (Mg(NO3)2·6H2O, Sigma-Aldrich), strontium nitrate (Sr(NO3)2, Sigma-Aldrich) 

and ammonium hydroxide (NH4OH, Sigma-Aldrich). 

 

2.2. CaP particles preparation 

Strontium and magnesium doped CaP particles were obtained by aqueous precipitation and then 

loaded with levofloxacin (Lev, on specimens designation) (Sigma-Aldrich). Briefly, the synthesis 

was accomplished by the slow addition of (NH4)2HPO4 (Quality Chemicals, Spain) solution to a 

continuously stirred mixed solution of Ca(NO3)2·4H2O (Quality Chemicals, Spain) and 

Mg(NO3)2·6H2O or Sr(NO3)2 (Sigma-Aldrich). For all compositions the precursor’s concentrations 

were designed to achieve a [Ca + (Sr or Mg)]/P molar ratio of 1.67. The concentration of each 

doping element was fixed at 5 mol% (i.e., 0.95 × 1.67 mol of Ca + 0.05 × 1.67 mol of Sr, or 

similarly, 0.95 × 1.67 mol of Ca + 0.05 × 1.67 mol of Mg). Pure HA was also prepared and use as 

a standard control material. The synthesized particles were calcined at 800ºC (Pt30%Rh/Pt6%Rh 

thermocouple, Thermolab) and dry milled for 30 min in a high energetic ball mill, using a porcelain 

mill (weight ratio of alumina balls to powder of 3:1). The obtained mean particle size was ~300 

nm.  

A levofloxacin aqueous solution was prepared with a suitable concentration of ~3 wt.% 

(wLev/wParticles) to impregnate an estimated amount of 2.5 wt.% of drug in CaP particles. The 

impregnation process was similar for the three CaP particles and consisted in immersing particles 

in the Lev solution for 24 h, in the absence of light, followed by freezing particles at –80ºC 

(Hettich, Germany) for 4 h, and freeze-drying at –51ºC under a pressure of 1.5 Pa 

(Labconco, USA) for 48 h. According to their compositions, the levofloxacin impregnated powders 

will be hereinafter referred to as Lev[HA], Lev[Sr-HA] and Lev[Mg-HA]. The non-loaded and 

levofloxacin loaded particles will be also generically referred to along the text as CaPs and 

Lev(CaPs), respectively. 
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2.3. Preparation of the BC composite specimens 

Commercial acrylic BC CMW1® Radiopaque (DePuy Synthes Portugal), a high viscosity BC 

intended for digital application, was used to prepare the BC composite specimens. Lactose 

monohydrate (Merck Millipore, Portugal), L on specimens’ designation, was added as the poragen 

additive. Parallelepiped and cylindrical specimens were obtained according to the ISO 

specifications (ISO 5833, 2002), at room temperature (23±1ºC) and atmospheric pressure, 

maintaining the commercial supplier recommended proportion [CMW1® powder]:[Monomer liquid]. 

Lactose, CaPs and Lev(CaPs) were added over the CMW1® powder. After careful mixing of all 

components, the monomer was added up to obtain a dough with the desired consistency. The 

dough was then manually cast into aluminium moulds. Cure proceeded for 1 h at room 

temperature. All specimens were finished to careful polishing, measured with a digital micrometer 

(Mitutoyo Digimatic, Painesville, Ohio, USA) with an accuracy of 0.01 mm, and stored in a 

vacuum desiccator (at 23±1ºC for 24±2 h) before use.  

Cylindrical specimens were used for compressive strength determination and in vitro release 

studies and parallelepiped specimens were used for flexural strength and modulus determination. 

Table 1 presents the acronyms of the different samples. 

 

Table 1. Sample codes and composition of the BC composite specimens, expressed 
as wt.% of CMW1® powder. 
BC Composite Lactose CaP particles Lev(CaP) particles 
BCL 10.0   
[HA]BCL 10.0 2.5  
[Sr-HA]BCL 10.0 2.5  
[Mg-HA]BCL 10.0 2.5  
[Lev(HA)]BCL 10.0  2.5 
[Lev(Sr-HA)]BCL 10.0  2.5 
[Lev(Mg-HA)]BCL 10.0  2.5 

 

 

2.4. Mechanical Assessment of the BC composites  

Tests were performed at room temperature in a servo-hydraulic universal machine (TIRAtest® 

2705). Assay parameters used for the compressive strength, flexural modulus and flexural 

strength determination were in strictly accordance with ISO 5833 specifications (ISO 5833, 2002). 

At least five specimens of each BC composite were tested and results were expressed as 

mean±SD.  
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2.5. BC composites inner structure and outer surface analysis 

Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) 

analysis 

The inner structure of the cylindrical BC specimens was analysed and photographed through a 

thermal field emission scanning electron microscopy, FEG-SEM, model JSM7001F (JEOL, Japan) 

operated at 5 kV. Samples were mounted onto aluminium stubs and their surface was coated with 

a gold-palladium film (thickness of 30 nm) under vacuum in an argon atmosphere (Quorum 

Technologies, Polaron E5100). Images were made using a backscattered electron detector. Back-

scattered emission (BSE) was applied to improve the surface contrast photographs and ease 

element analysis through the atomic weight.  

The elemental chemical composition of the samples was determined by energy dispersion 

spectroscopy (EDS) with an Oxford Inca Energy 250 spectrometer. Analysed specimens were  ~1 

mm slices of a selected group of representative specimens, obtained using a cut-off machine 

(Struers Accutom-5®, Struers, Denmark), mounted onto aluminium stubs and their surface was 

coated with a gold–palladium film (thickness of 30 nm) under vacuum in an argon atmosphere 

(Quorum Technologies, Polaron E5100).  

X-ray diffraction studies 

X-ray diffraction studies of BC composites were performed to evaluate any eventual change in 

crystallinity due to CaPs particles loading. These studies were carried out using a PANalytical 

X’Pert Pro, with Cu-Kα radiation (λ = 1.541874 Å) produced at 45 kV and 40 mA. Data sets were 

recorded in the 2θ range of 20–80º with a step size of 0.0260º 2θ/s and the sample spinning at 

0.4 s. 

Contact angle and surface energy 

Outer surface evaluation was performed according with our teamwork-established procedure 

using BC composite samples cut in adequate dimensions (Bettencourt et al., 2002; Matos et al., 

2014, 2015). Assays were assessed with a Kruss K100 tensiometer (Kruss GMBH, Hamburg, 

Germany) using the Wilhelmy Plate method by immersing plates into the test liquids, water and 

1,2-propanediol, at a speed of 3 mm.min−
1, at 25±0.1ºC.  

Advancing contact angles were used for surface energy (γ) estimation of the BC matrices, as well 

as its dispersive (γd) and polar components (γp) based on the harmonic mean method proposed 

by Wu (1971). At least three plates were independently tested. Equations for surface tension 

estimation (Bettencourt et al., 2002; Matos et al., 2014) were solved using the equation handling 

KRUSS-software program: contact angle measuring system K100 (version 2.05). 
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2.6. In vitro release studies 

In vitro levofloxacin release was featured from cylindrical specimens (∅ 6 × 12 mm) with ~400 mg 

weight, incubated in eppendorfs tubes containing a 1:5 (w/V) proportional volume of a release 

medium with pH 5.4, composed by NaCl 0.9%(w/V) (AppliChem GmbH, Germany) with 

0.05%(V/V) Tween20® (Sigma-Aldrich, Spain), in a shaking water-bath at 37°C. At predetermined 

timepoints, throughout 8 weeks, 250 µL aliquots of the supernatant were collected and analysed 

in triplicate. The withdrawn aliquots were always replaced with equal volume of fresh release 

medium and sink conditions were guaranteed during the whole study. At least three independent 

assays were performed.  

Levofloxacin content was determined by HPLC-UV (Shimadzu LC-6A and SPD-6A, Kyoto Japan), 

using an adjusted method described in literature (see Annex, Hart et al., 2010). Briefly, the 

chromatographic analysis was performed using a 125-4, 5 μm, LiChrosphere® 100 RP-18 

(Merck, Darmstadt, Germany) column, a degassed mobile phase of water:acetonitrile and 

triethylamine (85:15(V/V), 0.6%(V/V)) adjusted to pH 3 using ortho-phosphoric acid (Sigma 

Aldrich and Panreac Quimica, Spain), a 1.2 mL/min flow rate and UV detection at 284 nm. All 

chromatographic separations were carried out at 25ºC. 

The drug release mechanism was evaluated through experimental data fitting to the “coupled 

mechanism” represented by the Eq. (1) (Frutos et al., 2010; Matos et al., 2014, 2015), 

Mt=  a  +  b 1-e-kt   +  c t Eq. (1) 

where Mt denotes the fraction of drug released up to time t, k is a constant of the mathematical 

model, a, represents the burst effect on drug release, b, is related with the drug dissolution 

process and c with the drug diffusion process. 

 

2.7. Antimicrobial susceptibility testing 

The antimicrobial susceptibilities of selected strains to levofloxacin standard solution and to 8-

week release medium supernatants, were obtained by the Broth Microdilution Method described 

by the Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2012). All assayed samples were 

two-fold diluted in Müeller-Hinton broth (Biokar Diagnostics, France) and final levofloxacin 

concentration ranged from 2 mg/L to 0.015 mg/L.  

8-week release medium supernatants from BCL, [HA]BCL, [Sr-HA]BCL and [Mg-HA]BCL, were also 

tested for antibacterial activity. Staphylococcus aureus (ATCC®25923), Staphylococcus 

epidermidis (ATCC®12228) and Escherichia coli (ATCC®25922) were first cultured in Tryptic Soy 

Agar (TSA) (Liofilchem, Italy) and the inoculum was prepared according to CLSI (CLSI, 2012) in 

Müeller-Hinton broth.  

MIC results were obtained by measurement of absorbance at 595 nm in a Microplate Multimode 
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Detector (Anthos, Zenyth 3100) after 24 h of incubation at 37ºC. All assays were performed with 

negative controls (not inoculated media) and positive controls (inoculated media).  

E coli ATCC®25922 was used as a quality control strain to guarantee that the test system 

performed as expected (CLSI, 2007).  

Assays were carried out in three independent experiments. 

 

2.8. Biocompatibility assays 

Cytotoxicity evaluation of the BC composites release extracts 

Release medium supernatants collected at 30 min and 24 h, from the [Lev(HA)]BCL, [Lev(Sr-

HA)]BCL and [Lev(Mg-HA)]BCL in vitro release assays, were tested for cytotoxicity. Release medium 

supernatants from the correspondent levofloxacin-free composites, were used as controls, for the 

same time-points. The cytotoxicity was assessed using the general cell viability endpoint MTT (3-

(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay on MG63 (human osteoblast 

cell line, ATCC®CRL-1427™) and L929 (mouse fibroblast cell line, ATCC®CCL-1™) (Mosmann, 

1983).  

The day before the experiment, cells were seeded in sterile flat bottom 96 well tissue culture 

plates (Greiner, Germany), in RPMI 1640 culture medium (Invitrogen, UK) supplemented with 

10% (V/V) fetal serum bovine, 100 units of penicillin G (sodium salt) (Invitrogen, UK), 100	
   µg	
  of 

streptomycin sulphate (Invitrogen, UK) and 2 mM L-glutamine (Invitrogen, UK), at a concentration 

that allow cells to grow exponentially during the time of the assay. All samples to be tested and 

sodium dodecyl sulphate (SDS, used as positive control) were diluted in culture medium. After 24 

h and 48 h, the cell media was removed and replaced with fresh medium and the cell viability was 

assessed. 

In brief, the MTT dye solution was then added to each well (stock solution 5 mg/mL in 10 mM 

phosphate buffer solution at pH 7.4). After 3 h of incubation, the media was completely removed 

and the intracellular formazan crystals were solubilised and extracted with 100 µL 

dimethylsulfoxide. After 15 min at room temperature, the absorbance was measured at 570 nm in 

Microplate Reader (FLUOstar Omega, BMGLabtech, Germany). The relative cell viability (%) 

compared to control cells was calculated by [Absorbance570nm]sample/[Absorbance570nm]control×100. 

Two independent experiments were performed, each one comprising six replicate cultures. 

Direct contact with BC composites 

The response of cells (MG63 and L929) in direct contact with the BC composites was evaluated 

by the observation of the cell culture proliferation by phase contrast after MTT reduction and by 

fluorescence microscopy. 
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Phase-contrast microscopy 

Cells were cultured at a density of 2.5×104 cells/cm2 and 5.0×104 cells/cm2, respectively, in 24 

wells tissue culture plates (Greiner, Germany) in direct contact with the BC composite matrices. 

Glass slides were used as negative controls and sterile filter paper with SDS (10 mg/mL) were 

used as positive controls. After 24 h, MTT solution was added to a final concentration of 0.5 

mg/mL and incubated for 3 h at 37ºC. Following incubation, culture plates were observed under 

an inverted microscope coupled with a digital camera and pictures were taken of the interface 

between matrices and plate. 

Fluorescence microscopy 

Cells were grown in sterile glass slides or tested matrices (1 cm2) into 24 wells tissue culture 

plates (Greiner, Germany) for immunocytochemistry assays. After incubation, cells were rinsed 

three times with 10 mM PBS containing 20 mM glycine at pH 7.4, before and after being fixed for 

15 min (at room temperature in dark) with paraformaldehyde 4% (w/V) in PBS (Applichem, 

Germany). After cell fixation, and for actin staining with rhodamine phalloidin, cells were 

permeabilized with 0.1% (V/V) Triton X-100 for 4 min and then rinsed the same way as described 

above. The 6.6 mM phalloidin-TRITC (Life Technologies, UK) solution in 10 mM PBS was added 

to the cells for 30 min at room temperature. Then, and after rinsing, cell slides were mounted in 

fluorescent mounting medium ProLong® Gold antifade reagent with DAPI (Life Technologies, UK) 

and their fluorescence was observed and recorded on an Axioskop 40 fluorescence microscope 

(Carl Zeiss, Germany) equipped with an AxioCam HRc (Carl Zeiss, Germany) camera. Images 

were processed with the software Axiovision Rel. 4.8.1. (Carl Zeiss, Germany). 

 

2.9. Statistical Analysis 

All data sets are presented as mean±SD (result of at least three determinations, depending on the 

assay) and were examined by one-way analysis of variance (ANOVA) with post-hoc Dunn’s, for 

the contact angle assay, and Tukey’s Multiple Comparison Test, to other methods, using 

GraphPad PRISM 5® (GraphPad Software, Inc., La Jolla, CA). The level of statistical difference 

was defined at a p < 0.05 level. 
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3. Results  

3.1. Mechanical Assessment of the BC composites  

For all the evaluated mechanical parameters, loading the Lev(CaPs) particles did not impair the 

BC composites mechanical performance. Experimental data was in total agreement with the ISO 

5833 recommended values, particularly compressive strength ≥70 MPa, flexural strength ≥50 

MPa and flexural modulus ≥1800 MPa (Fig. 1). Furthermore, compressive strength and flexural 

modulus have significantly increased with CaPs loading, when comparing to plain BCL, with 

exception to compressive strength of the [Lev(Sr-HA)]BCL (p > 0.05). Regarding flexural strength 

statistical analysis showed no significant difference (p > 0.05). 

 

 

 
Fig. 1 Mechanical properties of the BC composites (mean±SD; n=5), compressive strength, flexural 
strength and flexural modulus. Dashed lines represent the ISO 5833 recommended values for each 
mechanical property. 
 

3.2. BC composite inner structure and outer surface analysis 

FEG-SEM and EDS analysis of the inner matrix 

Eventual differences in the inner structure between the Lev(CaPs)-loaded BCL were monitored 



162 Novel doped calcium phosphate—PMMA bone cement composites as levofloxacin delivery systems 
Chapter 4 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

using FEG-SEM analysis. Cut-off slices of the compression specimens were used to locate and 

evaluate the dispersion of the Lev(CaPs) particles on the BC composites matrices, using both 

FEG-SEM and BSE images (Fig. 2). FEG-SEM images revealed a porous surface with cracks and 

pores distributed along the matrix core, predicting the existence of inner-channels (upper row of 

Fig. 2). The stripes evident along the three surfaces are resultant from the specimens cut-off 

process. Also visible were light-grey spots randomly dispersed in the BC composites matrix. 

Complementary BSE and EDS analysis attested those spots to be the CaP particles through the 

acquisition of the elemental chemical composition (middle and bottom rows on Fig. 2, 

respectively), which confirmed the presence of the characteristics elements of each of the CaPs, 

used in this study, namely Ca, P, Sr and Mg. 

 

 
Fig. 2 FEG-SEM micrographs, with ×30 magnification, of the BC compression specimens 
cut-off surface (upper-row); BSE images, with ×200 magnification, of the same area but with 
higher magnification (middle-row); and EDS spectra presenting the elemental composition of 
each CaPs particles outlined on the previous micrographs (bottom-row). 

 

X-ray diffraction studies 

The X-ray diffraction (XRD) patterns of the different compositions displayed in Fig. 3 reveal the 

presence of all expected major component phases including BC, barium sulphate (04-002-9537) 

and lactose hydrate (00-030-1716). Although being crystalline, calcium phosphates could not be 

detected, probably due to the small-added amount (2.5 wt.%) and to the embedding effect of the 

BCL matrix. The crystallinity of the BCL matrix was not affected by the incorporation of CaPs or 

Lev[CaPs] particles. 
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Fig. 3 XRD patterns for comparison of the BC composites loaded with Lev[CaPs] particles. 

 

Contact angle and surface energy 

Regarding the polar (γp) disperse (γd) and total surface energy (γ) results showed that outer 

surface properties of [Lev(CaPs)]BCL composites have remained unchanged when compared to 

the unloaded BCL matrix (Figure 2).  

 

Table 2. BC composites results for total (γ), polar (γp) and dispersive (γd) surface energy. 
BC composite γ  (mN/m) γp (mN/m)  γd (mN/m) 

BCL 31.6±1.2 13.2±3.6 18.3±2.4 

[Lev(HA)]BCL 28.1±1.5 12.0±2.7 16.1±1.9 

[Lev(Sr-HA)]BCL  32.1±0.7 14.7±0.8 17.5±0.6 

[Lev(Mg-HA)]BCL  29.3±0.9 13.9±0.5 15.5±0.9 

 

 

3.3. In vitro release studies 

Release profiles of levofloxacin release over 8-weeks are shown in Fig. 4. All [Lev(CaP)]BCL 

composites achieved a maximum levofloxacin release after a 4-week period. In percentage terms 

all matrices released comparable values of levofloxacin comprised between 4 and 6% (solid 

markers on Fig. 4). It is noteworthy that after a 6 h period time of release, all composites delivered 

a levofloxacin concentration above the MIC value for the S. aureus (0.25 µg/mL) (Fig. 5). 

Moreover, after 48 h the concentration of levofloxacin delivered from all composites was also 

above the MIC value for S. epidermidis (1.0 µg/mL) bacteria (Fig. 5). The kinetics of levofloxacin 
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release from BC composite matrices was evaluated by fitting the experimental data to the 

coupled-mechanism kinetic model (Frutos et al., 2010). Kinetic fittings of levofloxacin release are 

shown in Fig. 4 and fitted parameters of the model equation (Eq. (1)) are presented on Table 3. 

For all composites the dissolution process (parameter b in Table 3) prevailed over the diffusion 

process (parameter c in Table 3) and the burst effect was not significant (parameter a in Table 3). 

 

 
Fig. 4 In vitro release profiles for [Lev(HA)]BCL, [Lev(Sr-HA)]BCL and [Lev(Mg-HA)]BCL matrices over a 8-
week period (mean±SD; n=9). Dashed curved lines show the fitting curves obtained from the coupled 
mechanism kinetic model. Dashed straight lines represent the MIC values for S. aureus and S. epidermidis. 
 

 
Fig. 5 Zoom of the time-period [0 h ; 48 h] from Fig. 4, evidencing the time-points to which each matrix 
delivered an amount of levofloxacin above the MIC values for S. aureus and S. epidermidis. 
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Table 3. Fitted parameter values and r2 for the coupled mechanism equation model for the release kinetic 
mechanism characterisation. 

Equation model parameters [Lev(HA)]BCL [Lev(Sr-HA)]BCL [Lev(Mg-HA)]BCL 
kcm(h-1) 0.00E+00 9.16E-03 4.04E-03 
a 0.00 0,69 0.28 
b 2.49 3,13 5.94 
c (h-1/2) 2.30E-01 6,52E-02 1.71E-02 
r2 0.986 0,993 0.993 
Mt denotes fraction of drug released up to time t. k is the constant of the mathematical model. a, 
represents the burst effect, b, is related with the dissolution process, and c with the diffusion process of 
the “coupled mechanism” model. 

 

3.4. Antimicrobial susceptibility testing 

The MIC values obtained represent the lowest concentration of levofloxacin that prevents 

detectable growth of methicillin-sensitive S. aureus, S. epidermidis and E. coli (as a control 

assay). Results for the antimicrobial activity of the levofloxacin released from BC composite 

matrices after an 8-week period, was retained against S. aureus and S. epidermidis (Table 4). 

Solutions released from plain BCL, (HA)BCL, (Sr-HA)BCL and (Mg-HA)BCL matrices were also 

tested and no antimicrobial activity was observed. 

 

Table 4. Microbiological results, MIC, for the 8-week levofloxacin released from BC composite matrices. 

Microorganism 
strain 

MIC (mg/L) 

Levofloxacin [Lev(HA)]BCL [Lev(Sr-HA)]BCL Lev(Mg-HA)]BCL 
S. aureus  ≥ 0.25 ≥ 0.25 ≥ 0.25 ≥ 0.25 
S. epidermidis  ≥ 2 ≥ 1 ≥ 1 ≥ 1 
E. coli  ≥ 0.03 ≥ 0.03 ≥ 0.03 ≥ 0.03 

 

3.5. Biocompatibility assays 

Cytotoxicity evaluation of the BC release extracts  

The biocompatibility evaluation of all three [Lev(CaPs)]BCL composites proceeded with the 30 min 

(t1) and the 24 h (t2) extract solutions and showed that levofloxacin released, from any of the three 

BC composites matrices, did not reduced cell viability by more than 30% and therefore did not 

cause cytotoxicity (ISO 10993-5, 2009)(Fig. 6) after 24 h or 48 h of cells exposure. 

Direct contact with BC composites 

Regarding direct contact studies, phase-contrast micrographs were taken to the interface of the 

cell layer with outer contact areas of all [CaPs]BCL and [Lev(CaPs)]BCL composites (Fig. 7).  
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Fig. 6 Cell viability of the BC composites regarding the MG63 (up) and the L929 (down) cells. (t1) and (t2) 
represent the release time of levofloxacin extract solutions, 30 min and 24h, respectively (mean±SD;n = 12). 
 

Only the cells in contact with filter paper containing SDS (positive control) did not grow, all the 

others presented a monolayer of viable cells. Furthermore, the two cell lines, MG63 and L929, 

grown on all surfaces and on glass slides were visualized with a fluorescence microscope.  

The staining of the actin protein was made with fluorescent marks visualised on red channel. Fig. 

8 images show the spatial localization of actin on the surfaces for the [Lev(CaPs)]BCL 

composites.  

The fluorescence images show that cells are well spread out on the surface of biomaterial, 

indicating a good cell adhesion and proliferation. The actin filaments are well highlighted in all 

cells and evidence the cytoskeleton organization. Therefore, the interaction with the surface of the 

biomaterial did not alter the osteoblasts and fibroblasts morphology in comparison with the glass 

surface, thus supporting the levofloxacin-loaded BC composite biocompatibility. 



Novel doped calcium phosphate—PMMA bone cement composites as levofloxacin delivery systems 
Chapter 4 

167 

 

 

Investigation of new formulations of acrylic bone cement containing antibiotics 
 

 

 
Fig. 7 Phase-contrast micrographs of the interface of the cell layer, L929 and MG63, with outer contact 
areas of the different BC composites and controls. 
 

 

 

 

Fig. 8 Fluorescence images of MG63 and L929 cell lines on glass slides and surface of BC composites 
(red staining of actin in cells cultured on the surface of the materials; ×40 magnification). 
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4. Discussion 

The use of either CaPs or PMMA-based BC as drug delivery systems is well established and 

comparisons of both systems performance on delivering the same drugs has been often reported 

(Ginebra et al., 2006; Nandi et al., 2009; Uskokovic', 2015; Uskokovic' and Desai, 2014). Also, the 

inclusion of polymers into the CaPs structures to delay drug release is being reported (Bohner et 

al., 2000; Takechi et al., 2002). However, and to the best of our knowledge, the inclusion of 

antibiotic-loaded CaP particles into acrylic BC has never been reported, being that the explored 

concept within this research work. The rational was to develop a novel antibiotic delivery system 

merging the upsides of both the acrylic BC (mechanical resistance and porous structure) and 

CaPs (osteogenicity and biodegradability) and, simultaneously, obviate their downsides (the 

inadequate biological performance of the BC and the low mechanical resistance and high 

resorption rate of CaPs) (Dall’Oca et al., 2014).  

Therefore, a new BC composite, containing levofloxacin-adsorbed CaP particles loaded into a 

lactose-modified acrylic BC, was assessed regarding structure, mechanical performance, 

biocompatibility, kinetics of levofloxacin release and antimicrobial activity against Staphylococcal 

spp. Mg2+ or Sr2+ doped CaP particles were used due to the well-known therapeutic effects on the 

mineralization of calcified tissues (LeGeros, 1991; Ren et al., 2010) and on depressing bone 

resorption, while maintaining bone formation (Guo et al., 2005; Pina et al., 2010). 

On deciding the percentages of each component to add to the commercial BC powder it was 

taken into consideration the level of the radiopacifier (barium sulphate) that should not be lowered 

to a value that could compromise the radiopacity of the final BC composite. The CMW1® 

Radiopaque, contains 9.1% (w/w) barium sulphate, and the reported values on commercial BCs 

are comprised between 8.0% and 15.0% (Hosseinzadeh et al., 2013). Therefore, the barium 

sulphate concentration in the composite could not decrease more than 1.0%. Hence, the 

maximum amount of additives allowed to be added to the CMW1® Radiopaque powder would be 

12.5% (w/wBCpowder). Previous studies, including our own publications, have already described that 

10.0% (w/wBCpowder) of lactose loaded into BC significantly improve the amount of antibiotic 

delivered without hampering the BC mechanical integrity (Frutos et al., 2010; Matos et al., 2014, 

2015). So, the amounts chosen to produce the composite were 10.0% (w/wBCpowder) of lactose and 

2.5% (w/wBCpowder) of CaP particles. 

The BC composite mechanical properties assessment was of utmost importance due to the 

crucial function of guaranteeing the implant fixation and load transfer from prosthesis to the bone. 

Considering that the composite under study is mainly acrylic BC, the mechanical properties 

evaluation followed the standard ISO 5833 for acrylic cements for surgery (ISO 5833, 2002), to 

which the obtained results were in fully agreement, namely, the compressive and flexural strength 

and flexural modulus (Fig.1). This compliance is particularly valuable regarding the flexural 

strength, the most restrictive mechanical property. Also, these results were in agreement with 
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other reported studies about CaPs loaded into porous acrylic BC (Dall’Oca et al., 2014; Sa et al., 

2015; Zerbajad et al., 2011).  

The FEG-SEM images and EDS data of the inner structure of the BC composites revealed CaP 

particles dispersed and encased in the composite matrix (Fig. 2). According to Sa et al. (2015), 

small CaP particles tend to fill the pores of the BC composite as an agglomerated phase. In fact, 

surface energy results have shown that loading Lev(CaP) particles have not significantly changed 

the total surface energy and, therefore, the outer surface properties of the materials (Table 2) as 

the particles were mainly confined to the inner matrix (Fig.2). Moreover, according to XRD results 

(Fig. 3) this confinement of the CaP particles to the inner BC matrix has not changed the BC 

composites structure crystallinity. 

Release of an antibiotic from the inner BC monolithic and hydrophobic matrix depends on the 

availability of cracks and pores through which the medium can diffuse in and simultaneously allow 

antibiotic dissolution and release. Moreover, factors like pores form, length and diameter, and the 

tortuosity of available pathways, often leading to “dead ends”, are also referred as being 

responsible for delay and eventually obstruct antibiotic release (Siepmann et al., 2012). 

Therefore, and considering SEM images, a moderate in vitro levofloxacin release was expected. 

In fact, the release of levofloxacin from the BC composites throughout an 8-week time period 

resulted in comparable values comprised between 4 and 6% (solid markers on Fig. 4) with all 

composites achieving a maximum and stable concentration of levofloxacin after a 4-week period. 

However these percentage values are correspondent to a meaningful levofloxacin concentration 

once all composites after a 6 h period time of release have delivered a levofloxacin concentration 

above the MIC value for the S. aureus (0.25 µg/mL) and after 48 h a concentration above the MIC 

value for S. epidermidis (1.0 µg/mL) bacteria (Fig. 5). 

The obtained kinetic parameters evidenced low rate constants and a prevalence of the dissolution 

process over diffusion, which along with SEM images (Fig.2) suggest that levofloxacin release 

occurred mostly by dissolution from the CaPs particles closer to the surface and then continued 

more slowly by diffusion through the fine inner pores generated by lactose. 

Antimicrobial susceptibility results (Table 4) disclosed that after an 8-week period, levofloxacin 

retained the antibacterial properties against S. aureus and S. epidermidis in agreement to the MIC 

values of a levofloxacin standard solution. E. coli ATCC® 25922, used as quality control strain to 

guarantee that the test system performed as expected, lead to results that fell within specified 

limits listed in CLSI M100-S17 (CLSI, 2007). The obtained MIC values for S. aureus, S. 

epidermidis and E. coli were also in agreement with literature (Boyd et al., 2009; Hurst et al., 

2002; Lin et al., 2014). These results suggest that the levofloxacin adsorbed in the CaPs particles 

surface was not affected during the BC composite setting or by the acidic release medium (pH 

5.4). This is an important result considering that: (i) often after surgery localised acidity occurs, 

with the pH value near the implant varying typically from 5.3 to 5.6 (Manivasagam et al., 2010); (ii)  
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acidic conditions have been described to reduce drastically the potency of antibiotics in its pure 

form (Uskokovic’ and Desai, 2014).  

Considering the moderate levels of antibiotic released from the composites, and in spite of 

levofloxacin being referred as the fluoroquinolone with lower toxicity (Zimmerli, 2015), cytotoxicity 

assays with fibroblasts and osteoblasts incubated with extracts or in direct contact with BC 

composites were conducted with this matrices. These are common tests aimed to have a first look 

at materials biocompatibility as recommend by international guidelines (ISO 10993-5) and 

assessed by researchers in the field (Lin et al., 2014; Zhou et al., 2014). Results revealed no 

cytotoxicity regarding the MG63 (osteoblasts) and L929 (fibroblasts) even after 48 h of exposure 

(Fig. 6). This means that polymerisation, residual monomers, additives or other polymerisation by-

products did not contribute to cytoxicity (Bettencourt et al., 2000, 2002, 2007; Matos et al., 2014, 

2015). Moreover, the observed maintenance of the cytoskeleton organisation of both osteoblasts 

and fibroblast cell lines, on the surface of the composites, is a strong evidence of biocompatibility 

of these materials (Figs. 7 and 8). 

 

5. Conclusion 

A strong effort on evolving currently available ALABCs is leading the clinical technology research 

and development. The objective is to address ALABCs major disadvantages, which are the 

inadequate kinetic and often incomplete release of the drug, the limited options of antibiotics 

available in commercially premixed formulations and the poor bone tissue integration.  

An original approach of using antibiotic-containing CaP particles included in acrylic BC for the 

control of bone and joint infections was presented. Results revealed composites with mechanical 

integrity and biocompatibility compliance, sustained release of the antibiotic (levofloxacin) and 

maintenance of antimicrobial activity against S. aureus and S. epidermidis over an 8-week 

release period. 

Overall, reported results represent a valuable step forward to develop novel BC composites with 

doped CaP particles as antibiotic carriers for the control of bone and joint infections. Hereafter, 

assessing other CaP particle size and doses of adsorbed levofloxacin could be the next step 

towards this BC composite technological development. 
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Currently the use of antibiotic-loaded acrylic bone cement (ALABC) is inevitable either for 

prophylaxis as for treatment of prosthetic and bone infections. For long literature reported ALABC 

implications on the: 

ª increasing of bacteria resistance due to both the incomplete release of the drug and the 

poor diversity of antibiotics loaded into the approved commercial ALABC (namely by the 

FDA), which is limited to gentamicin or tobramycin alone or combined with vancomycin or 

clindamycin; 

ª high rates of early implant failure due to the poor interaction of bone cement (BC) with 

bone tissue, which is mainly an anchorage interaction rather than biological. 

Given the undeniable clinic use of ALABC a plethora of studies emerges proposing solutions to 

address these drawbacks. However, those often imply the addition of other substances over the 

base-components of the BC, which directly affect its mechanical performance, hampering its use 

for prophylaxis.  

This thesis aims at contributing to the development of a novel modified ALABCs matrix with 

improved antibiotic delivery by adding a poragen ingredient, lactose, into a commercial BC without 

jeopardising the mechanical behaviour or the biocompatibility. To test this matrix, two unforeseen 

antibiotics, minocycline and levofloxacin, were loaded as antibiotic model-drugs, resulting in 

important contributions to the field. 

 
 

1. Conclusions and Near-Future Research 

ª Lactose was successfully used as a poragen  

Loading 10% lactose (w/wBC) into BC did not compromise either its mechanical properties 

or biocompatibility. This water-soluble excipient allowed a significant increase of minocycline and 

levofloxacin release from BC. Considering that release of an antibiotic from the inner BC 

monolithic and hydrophobic matrix depends mainly on the availability of cracks and pores through 

which the medium can diffuse in and simultaneously allow antibiotic to dissolve and be released, 

the observed increase of porosity due to lactose loading was of utmost importance. Pore 

distribution along the matrix was revealed as uniform, with increasing number of both small and 

large pores when compared to plain BC matrix. This suggests the pathways and inner channel 

network have also increased, allowing a better diffusion in and out of the aqueous release 

medium through the ALABC matrix. Another important feature was that lactose did not change the 

mechanism of release based on dissolution and subsequent diffusion of the antibiotic from matrix. 

 

 In further research work the effect of loading lower amounts of lactose into BC should be 

studied to determine the lower amount of lactose that can be loaded into BC without changing the 
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required release profile or threating the compliance with the international standards for 

mechanical properties. It would be also interesting to investigate whether the effect of lactose on 

release is independent of the antibiotic molecular size (or molecular weight), thus allowing to load 

larger antibiotic molecules, such as daptomycin, or even antibiotic combinations. 

 

 

ª Both antibiotics demonstrated to be suitable for incorporation into BC  

Minocycline and levofloxacin are both broad-spectrum antimicrobials, active against the 

main microorganisms causative of bone infections as S. aureus and S. epidermidis, maintaining 

their antibacterial activity throughout harsh experimental conditions. Both antibiotics demonstrated 

to be resistant to thermal conditions involved in the PMMA polymerisation reaction. In addition, 

they were not affected by the acidic release medium (pH 5.4) used during in vitro release studies, 

which has been described to drastically reduce the potency of free antibiotics. Regarding 

minocycline no chemical bonding to BC matrix was detected, being completely released within a 

one-week period and suggesting it will not contribute to the development of bacterial resistance. 

As for levofloxacin the in silico study revealed covalent and non-covalent bonding to BC matrix, 

which limited the percentage of release. This fact was seen as an advantage whereas bonded 

levofloxacin would not contribute with a sub-therapeutic or sub-inhibitory concentration that could 

induce resistance. Still as the stoichiometry was not determined, it was not possible to conclude if 

some of the levofloxacin entrapped in the matrix core was still active. Should this happen, it might 

contribute to the development of bacterial resistance.  

 

Therefore, it will be crucial to address the referred stoichiometry. 

 On the other hand, as antibiotic concentrations achieved during release were relatively 

high, it can be hypothesised that lower amounts of antibiotics might be sufficient to achieve the 

same microbiological results. 

 Also, as minocycline and levofloxacin present protein bonding levels of at least 70% and 

40% respectively, release studies under different biomimetic conditions should be performed, e.g. 

using human serum. 

 Finally, it would be interesting to load BC with larger antibiotic molecules (e.g. 

daptomycin), which is currently used for local treatment of bone infection due to its activity against 

multi-resistant staphylococci. Some studies have been performed but only for biofilm inhibition 

study. Additional studies on the mechanical properties and the antibiotic release profile could be 

performed and enrich available data. 
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ª Antibiotics antimicrobial activity maintenance 

 Both minocycline and levofloxacin maintained their antimicrobial effectiveness against S. 

aureus and S. epidermidis, after being released from the lactose-modified matrix. Moreover, the 

inclusion of lactose on the BC matrix induced a delay on the S. aureus biofilm formation when 

levofloxacin was loaded. 

  

 Thus, near future work shall evaluate the BC antimicrobial activity, particularly the 

interaction between Staphylococcus biofilms and the BC surface, using for example flow chamber 

systems and confocal laser scanning microscopy for the study of biofilms. 

 

 

ª Promising particulate systems as drug carriers 

 Plain and antibiotic-loaded PMMA particles were successfully prepared, with suitable 

surface morphology, yield of preparation, stability and size, but the inclusion into BC hindered 

setting, most probably due to the high amount loaded. This drawback precluded any further 

developments into this line of research.  

 As an alternative, bioactive doped-calcium phosphate (CaP) particles containing 

levofloxacin adsorbed onto the surface were used.  These particles were dispersed and 

incorporated in the composite matrix, which is predictive of bone ingrowth promotion into 

bioactive-BC. A sustained release of levofloxacin was observed over 8 weeks, reaching 

concentrations over the Staphylococcus spp. MIC after 48h. Moreover, the inclusion of CaPs has 

not changed the release mechanism meaning that the structure of ALABC matrix was maintained. 

Regarding the mechanical properties there was an increase of all quasi-static properties.  

  

 Further investigation may include:  

 Encapsulation of other antibiotics in PMMA particles, with higher drug loading and more 

effective antibiotic release, envisaging preservation of the mechanical properties of PMMA; 

 Biomineralisation studies to evaluate the bone ingrowth extension. For example, 

quantification of calcium liberation could be an important indicator; 

 Loading nanoCaPs ceramics into BC to find out the better compromise between the 

biological response and mechanical impairment. NanoHA (70 – 100 µm) are being tested as 

injectable material antibiotic carrier to impair growth of Staphylococcus spp. biofilm; this would be 

also promising alternative regarding infection prophylaxis; 
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ª In silico studies provided important insight of the drug-biomaterial interaction.  

 The computational study herein presented has revealed as a fundamental tool that should 

be often applied, to understand better the possible reasons for antibiotic retention inside the BC 

matrix due to bonding or chelate liaisons.  

 

 The extension of bonding or chelate formation needs to be further assessed by varying 

the amount of the loaded antibiotic and, ultimately, combined with ATR-FTIR analysis. 

 

 

ª Biocompatibility maintenance 

 All matrices studied were non-cytotoxic according with the standard specifications, i.e. 

standard ISO 10993-5. Tests carried out using a murine (mouse fibroblasts) and a human (human 

osteoblasts) cell lines successfully proved biocompatibility. Surface energy results revealed an 

unchanged surface with minocycline, levofloxacin and lactose loading, indicating the interaction 

between BC and biological tissues was not modified. 

    

Additional cell function tests should be performed, including cell cycle analysis and 

apoptosis detection, quantification of bone-specific alkaline phosphatase involved in the 

calcification of bone matrix, lactate dehydrogenase (LDH) measurement, which measures the 

plasma membrane integrity, to evaluate the biological effects of the novel ALABC matrices.  

 

 

ª Quasi-Static mechanical properties compliance with ISO 5833 

Under static conditions, the compressive strength, the flexural modulus and flexural 

strength fulfilled the requirements of the standard ISO 5833.  

 

In the future, dynamic mechanical properties should be assessed, such as, fatigue life 

testing and estimation of fatigue limit, before and after in vitro aging conditions. In this context, the 

ISO 5833 and/or ISO 16402:2008 “Implants for surgery – Acrylic resin cement – Flexural fatigue 

testing of acrylic resin cements used in orthopaedics” should be followed. This is an important test 

regarding the ability of long-term implant failure in the form of aseptic loosening when ALABC is 

used prophylactically. 
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2. Final Remark 

The research work presented in this thesis led to the development of a mechanically compliant 

and biocompatible matrix to improve the delivery of antibiotics loaded into acrylic BCs. 

The ALABCs are widely used to prevent or treat the occurrence of bone infections in cemented 

arthroplasties, being considered as a more cost-effective procedure when compared to 

cementless implants. However, considering the challenge of treating device-associated 

infections, the number of formulations available in the market is significantly low. The response 

from the industry to medical needs is still too slow considering the rapid change in the infecting 

microbial profile and the emergence of multiresistant strains. The impact of prosthetic-infections 

is devastating, often leading to higher mortality, prolonged hospitalisations, frequent 

readmissions, and increased costs and overall healthcare burden. Clinicians’ awareness of the 

possible recourse of a versatile and quick platform to allow testing the feasibility of loading 

approved antibiotics in BC might be useful when deciding about a treatment approach on 

specific cases of bone-related infections. 

Future research on this field must aim at developing safe customisable acrylic BCs, almost on 

demand for each patient, “providing the right patient with the right drug at the right dose at the 

right time”.  
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“… it is preferable not to insist that  

we always know how and why something works.” 

David F. Williams  

in “On the nature of Biomaterials” 
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Highlights 

 

ª Levofloxacin and minocycline quantification in NaCl, PBS and Müeller-Hinton media. 

ª Simple, economic and fast HPLC methods, only differing in the wavelength setting. 

ª Validated methods with acceptable linearity, precision, accuracy and recovery. 

ª Rigorous stability studies of both antibiotics, including stability at 37ºC. 

ª Useful for antibiotics monitoring thru in vitro release and microbiological assays. 
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Abstract 

 

Monitoring of antibiotics in biomimetic biological media, during in vitro assays, as microbiological 

and drug release tests, is of paramount importance in drug-delivery-systems development. Simple 

and rapid high-performance liquid chromatography (HPLC) methods for levofloxacin and 

minocycline quantification in NaCl at 0.9%, PBS and Müeller-Hinton media were developed and 

validated. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin 

and minocycline quantification, the UV detection was set at 284 nm and at 273 nm, respectively. 

The separation of both antibiotics was achieved using a reversed-phase column (LiChrospher 100 

RP-18) and a mobile phase consisting of acetonitrile and water (15:85) and 0.6% (V/V) 

triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline 

was used and vice versa. The average calibration curves for both methods were linear (r = 0.99) 

over a concentrations range of 0.3 –16 µg/mL and 0.5 – 16 µg/mL for levofloxacin and 

minocycline quantification, respectively, with acceptable intra- and inter-day precision, accuracy 

and recovery. Levofloxacin revealed short-term and long-term stability in all media, except when it 

was submitted to more than one freeze-thaw cycle. Minocycline presented a more accentuated 

degradation profile over prolonged time courses, mainly in alkaline media. 

 

Keywords: Levofloxacin; minocycline; liquid chromatography; validation methods; physiological 

temperature stability, biological biomimetic media 
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1. Introduction 

With the emerging growth of resistance to antibiotics, a tremendous economic and social burden 

on the healthcare system has been imposed, leading to the need for new therapeutic approaches 

(Brooks and Brooks, 2014). The use of local drug-delivery-systems has been one of the most 

promising alternatives against bacterial antibiotic resistance mechanisms, promoting a correct 

drug dose delivery in the target site over extended periods, if necessary (Wu and Grainger, 2006). 

In order to find an ideal delivery system, a wide range of in vitro drug release and microbiological 

tests are primarily required. Such systems need careful evaluation of the effective dosage and 

drug release kinetics profiles, as well as the evaluation of the system matrix performance, into 

which the antibiotic is loaded, and an appropriate selection of the drug. As a first step in drug-

delivery-systems development, in vitro assays like drug release and microbiological testing are 

primordial. These assays allow the evaluation of the continuous bactericidal activity efficacy in 

vitro by calculating the ratio of maximum drug concentrations to the specific minimum inhibitory 

concentration (MIC) (Sousa et al., 2013; Watabe et al., 2010). Also, it is possible to obtain these 

values over time, which is important when monitoring drug concentrations to attain the optimal 

drug dosage regimens and to prevent bacterial resistance. 

Levofloxacin and minocycline are fluoroquinolone and tetracycline antibiotics, respectively, both 

with a broad spectrum of activity against Gram-positive and Gram-negative bacteria, being used 

to treat a variety of infections, including skin, respiratory tract, bone and soft tissues (Bertino and 

Fish, 2000; Brogden et al., 1975; Chopra and Roberts, 2001; Fish and Chow, 1997; Matos et al., 

2014; Noel, 2009; Senneville et al., 2007). As such, both are considered relevant antibiotics to be 

loaded in different drug-delivery-systems (Orti et al., 2000; Unsal and Akkaya, 1994; Zhang et al., 

2009). However, the actually available HPLC methods to quantify levofloxacin or minocycline, are 

mostly designed for the evaluation of samples in complex biological fluids, such as plasma, 

parotid saliva and urine (Colovic and Caccia, 2003; Djabarouti et al., 2004; Fang et al., 2010; 

Kamruzzaman et al., 2011; Masher, 1998; Neckel et al., 2002; Nguyen et al., 2004; Orti et al., 

2000; Watabe et al., 2010; Wrightson et al., 1998), which are not often used in vitro assessment 

assays.  

Moreover, to the best of our knowledge, the different HPLC techniques described for minocycline 

or levofloxacin quantification (Aoyagi et al., 2007; Hart et al., 2010; Kashi et al., 2012) do not 

endeavour to validate the analytical methodologies in biological biomimetic fluids with interest for 

in vitro assays. 

As so, the aim of this study was to develop simple and fully validated HPLC-UV methods for the 

quantification of these antibiotics in three aqueous biomimetic fluids often used in in vitro drug 

release and microbiological assays, namely NaCl at 0.9% (w/V) with Tween20® at 0.05% (V/V) 

(hereinafter referred as NaCl medium) a saline solution with pH 5, which mimics the acidic 
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environment in the infection site (Radovic-Moreno et al., 2012); phosphate buffered saline, PBS, a 

buffer solution with osmolarity, ion concentrations and pH 7.4 similar to human serum (Das and 

Dash, 2015) and Müeller-Hinton broth, a microbiological growth medium commonly used for 

antibiotic susceptibility testing, with pH 7.3 (Ochei and Kolhatkar, 2000). The procedures involved 

a unique mobile phase, easy and quick to prepare, required a minimum sample volume and the 

use of an internal standard, which allows enhanced precision (Wong, 1985). Special attention has 

been drawn to the stability of the antibiotics in different conditions and stages of analysis, 

according to international guidelines (GI-BMV-FDA, 2001; ICH Q2(R1), 2005). Furthermore, the 

stability of both antibiotics at 37ºC was studied, as it is the temperature typically used for in vitro 

studies, since it simulates the body temperature (Xian, 2009).  
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2. Experimental 

2.1. Chemicals and reagents 

Levofloxacin, HPLC-grade acetonitrile, PBS (pH 7.4) and polysorbate 20 (Tween 20®) were all 

obtained from Sigma-Aldrich (Spain). Minocycline hydrochloride was kindly provided by Atral-

Cipan (Castanheira do Ribatejo, Portugal). Sodium chloride was obtained from AppliChem 

ppliChem GmbH, Darmstadt, Germany). Orthophosphoric acid (analytical grade) and 

triethylamine were purchased from Panreac (Spain). Müeller-Hinton broth was obtained from 

Biokar (Biokar Diagnostics, France). The deionized water used for solutions and mobile phase 

preparation was obtained from a Millipore analytical deionization system (F9KN225218) and 

further filtered under vacuum (Vacuum pump V-700, Büchi) with 0.45 µm hydrophilic cellulose 

filters. All substances and solvents have been used without any further purification. 

 

2.2. Chromatographic conditions 

Both development and validation of the analytical methods were performed on HPLC system 

(Shimadzu system LC-6A, Shimadzu Corporation) with LiChrospher® 100 RP-18, 5 μm i.d. 

particle, 125-4 analytical column (LiChroCART®, Merck, Darmstadt, Germany). HPLC was 

equipped with an autosampler (Waters 717plus Autosampler) and a thermostatic column 

compartment (Dionex STH 585 Column Oven). The autosampler was programmed with an 

injection volume of 20 µL, a carousel temperature of 20°C and a time run of 5 min.  The mobile 

phase consisted in a mixture of acetonitrile and water with a volume ratio of 15:85, respectively, 

and 0.6% (V/V) triethylamine (TEA), adjusted to pH 3 with orthophosphoric acid (85-90%). The 

isocratic separation was performed at 1.2 mL/min constant flow-rate with column temperature 

maintained at 25°C. The detection wavelength was set at 284 nm for levofloxacin and at 273 nm 

for minocycline. The Class LC10 software (Shimadzu Corporation, Kyoto, Japan) was used to 

process the data acquisition. Samples under study were identified by chromatographic 

comparison with reference standards. 

 

2.3. Stock solutions 

Stock solutions of levofloxacin at an exactly-known concentration of  ~1000 µg/mL were prepared 

by dissolving with water an exactly-weighed amount of levofloxacin, ~25 mg, in a 25 mL 

volumetric flask.  Following, a 100 µg/mL working solution was prepared by water-dilution of the 

stock solution, in a 25 mL volumetric flask. This working solution was subdivided in 2 mL 

Eppendorf® tubes and each was stored protected from light at −20ºC for no longer than 3 weeks. 

Also, a stock and working solutions of minocycline were prepared and stored in the same way. 
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When minocycline was used as internal standard (IS), the concentration was the same as the 

working solution. When levofloxacin was used as the IS, the concentration used was 75 µg/mL 

prepared by appropriate dilution of the working solution with water. 

 

2.4. Calibration standard solutions 

The calibration standard solutions of levofloxacin and minocycline were prepared daily, diluting 

adequate volumes of each respective working solution with water. Water was the medium used to 

perform the linearity assay once it was the main matrix component of all media under study 

(earlier described on Introduction). 

For levofloxacin quantification, calibration curves were obtained using standard solutions at 

concentrations of 0.3 – 16 µg /mL (n=10). As for minocycline quantification, calibration curves 

were obtained with standards at concentrations of 0.5 – 16 µg/mL (n=9). 1 mL of each standard 

solution was spiked with 10 µL of the respective IS. 

Furthermore, three quality control standard solutions (hereinafter referred as QCW) (definition 

described in FDA guidelines ((GI-BMV-FDA, 2001)) and three calibrators (standards with 

concentrations equal to those of the calibration curves) were prepared at low, medium and high 

concentrations according with Table 1.  

 

Table 1. QC standard solutions and calibrators used for the linearity assay. 

 Calibrators QCW QCM
* 

Levofloxacin  

0.3 0.4 0.4 

4 5 5 

10 12 12 

Minocycline  

0.5 0.7 0.7 

4 5 5 

10 12 12 

*for Müeller-Hinton broth these concentrations are a result of a previous 1:2 dilution on acetonitrile 
due to the precipitation method procedure. 

 

2.5. Samples 

Both levofloxacin and minocycline samples were studied in NaCl, PBS and Müeller-Hinton broth 

media. For each antibiotic, assays carried either in NaCl or PBS media, samples were directly 

introduced (or previous diluted, when needed) in 1 mL autosampler vials and spiked with 10 µL of 

the respective IS. However, for assays carried in Müeller-Hinton broth, a specific protein 

precipitation method was necessary. Briefly, 1 mL of acetonitrile was added to 1 mL of Müeller-
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Hinton sample and poured into a 2 mL Eppendorf® tube, resulting in a mixture of 50:50 (V/V). 

After vortexing during 10 s and subsequently centrifugation for 10 min, at 4°C and 12000 rpm, 1 

mL of the obtained supernatant was transferred into an autosampler vial and spiked with 10 µL of 

the respective IS.  

Regarding the QC solutions for samples quantification (hereinafter referred as QCM), for NaCl and 

PBS media, they were prepared by simple dilution of the working solution. Yet, for the Müeller-

Hinton broth, QCM preparation was done by dilution of the working solution followed by the 

precipitation method, earlier described. 

 

2.6. Calculation procedure and assay validation 

Calibration curves, obtained by direct linear regression, relate the ratio of standard peak-area to 

the IS peak area (yy’) with the standard concentration (xx’). All the QC solutions, calibrators and 

unknown concentrations of the analytes of interest were calculated by interpolation of these daily 

calibration curves. 

The assay was validated in terms of linearity, precision, accuracy, recovery, limit of detection 

(LOD), lower limit of quantification (LLOD) and stability (short-term, long-term and freeze-thaw 

cycles) according to internationally accepted criteria described in FDA and ICH guidelines for 

bioanalytical methods validation (GI-BMV-FDA, 2001). Additionally, the stability of both antibiotics 

at 37ºC in the three media was evaluated over time until 10% degradation was observed. 

Experiments in NaCl and PBS were assessed up to a maximum of one month. For Müeller-

Hinton, the stability at 37ºC was performed just until two days, since this medium easily becomes 

contaminated when it is not in sterile conditions. 
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3. Results and Discussion 

3.1. Chromatographic methods development 

The proposed methods aimed at a simple levofloxacin and minocycline quantification in three 

relevant biomimetic media. Development of the analytical methods started by the selection of the 

mobile phase composition in order to separate both analytes. A simple mobile phase consisting in 

acetonitrile, deionized water and TEA at acidic pH was found to be optimal. The ideal working 

temperature of the column was found to be 25°C and the flow rate of 1.2 mL/min, resulting in a 

short run time of analyses of 5 min, except for Müeller-Hinton broth samples, for which the run 

time increased up to 13 min due to its inherent complexity. Using the mentioned chromatographic 

conditions, it was possible to compensate the high hydrophobicity effect of minocycline, which 

usually increases the retention time in most of the methods, making them morose and 

consequently more expensive (Jain et al., 2007).  

The selection of the maximum absorption wavelength of levofloxacin and minocycline was based 

on both UV–absorption spectrums. Levofloxacin featured a spectrum with absorption maximum in 

the range of 282-290 nm (Fig. 1A) and the minocycline spectrum showed absorption maxima at 

273 and 350 nm (Fig. 1B). Hence, for the levofloxacin quantification, the HPLC detection 

wavelength was set at 284 nm, whereas for minocycline quantification was set at 273 nm. Thus, 

due to the proximity, but sufficiently separated from the two maxima absorption wavelengths, it 

was possible to improve the sensitivity for the desired quantification and also use minocycline as 

IS for levofloxacin quantification and vice versa. 

 

 

Fig. 1 UV-absorption spectra of levofloxacin (A) and minocycline (B) with the respective molecular 
structure representation. The maxima absorption wavelengths are pointed out in each UV-spectra. 
 

As so, two methods only differing on the wavelength setting, were developed using a simple 

mobile phase, inexpensive and quick to prepare, an affordable and accessible column, featuring a 

short time run with a minor injection volume, very useful when sample amounts are sparse. 

Representative chromatograms obtained for levofloxacin and minocycline quantification in the 
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different media are shown in Fig. 2 and Fig. 3, respectively. On both figures, it is possible to 

observe completely separated peaks with symmetrical shape. Also, it is noticeable that matrix 

components do not interfere with the region of interest where the antibiotic peaks are detected. At 

284 nm for levofloxacin quantification, the observed retention times were 2.4 min and 3.7 min for 

IS and levofloxacin, respectively. At 273 nm for minocycline quantification, retention times were 

2.7 min and 4.1 min for minocycline and IS, respectively. 

 

 

Fig. 2 HPLC chromatograms at 284 nm of a levofloxacin (L) solution at 2 µg/mL and IS (minocycline, M) in 
H2O (A), NaCl (B), PBS (C) and Müeller-Hinton broth (D).  
 

 

Fig. 3 HPLC chromatograms at 273 nm of a minocycline (M) solution at 2 µg/mL and IS (levofloxacin, L) in 
H2O (A), NaCl (B), PBS (C) and Müeller-Hinton broth (D). 
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3.2. Calibration curves range and linearity 

The lowest standard on the calibration curve should be assumed as the LLOQ. For each 

antibiotic, LLOQ was assessed in water samples and was defined as the lowest concentration of 

the analyte that could be determined with an inter-day precision below 20% (bias within ±20%) 

((GI-BMV-FDA, 2001). LOD was the lowest concentration of analyte in a sample that could be 

detected, based on visual evaluation (ICH Q2(R1), 2005). 

The obtained values for LLOQ and LOD for both antibiotics are given in Table 2. To the best of 

our knowledge, there are no values described in literature for LLOQ or LOD of levofloxacin or 

minocycline in any of the media studied. However, similar results were described in other 

biological media. For example, HPLC-UV studies of levofloxacin in plasma, bronchoalveolar 

lavage (BAL) and bone tissues refer a LLOQ and LOD of 0.20 and 0.05 µg/mL for plasma 

samples, 0.4 and 0.1 µg/mL for BAL samples and 0.5 and 0.2 µg/mL for bone samples, 

respectively, using the same injection volume of 20 µL (Djabarouti et al., 2004). As for 

minocycline, HPLC-UV studies for quantification in human plasma and parotid saliva featured a 

LLOQ and LOD of 0.1 µg/mL and 0.05 µg/mL, respectively, using also 20 µL as the injection 

volume (Orti et al., 2000). 

 

Table 2. Analytical and statistical parameters for the average calibration curves. 

Parameter Levofloxacin Minocycline 

Calibration equation y = 6.072x – 1.221 y = 1.035x – 0.280 

Intercept -1.221 -0.280 

Slope 6.072 1.035 

Standard error of the intercept 0.803 0.126 

Standard error of the slope 0.115 0.017 

Correlation coefficient (r) 0.988 0.991 

Range (µg/mL) 0.3 – 16 0.5 – 16 

Number of points 10 9 

LOD (µg/mL) 0.03 0.05 

LLOQ (µg/mL) 0.3 0.5 

 

Both antibiotics under study present a broad-spectrum activity against Staphylococcus spp., 

which are the main microorganisms responsible for bone and joint infections (Bishburg, K. 

Bishburg, 2005; Zimmerli, 2014). The MIC of minocycline described in literature for methicillin-

resistant S. aureus (MRSA) range between 0.5 – 1 µg/mL (Goff and Dowzicky, 2007; Hoban et 

al., 2005; Waites et al., 2006). As for levofloxacin, the MIC values for methicillin-susceptible S. 

aureus (MSSA) range between 0.5 – 8 µg/mL (Goff and Dowzicky, 2007; Hoban et al., 2005; Horii 

et al., 2003; Waites et al., 2006).  
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Therefore, the calibration curves concentration range was chosen in accordance with those MICs 

values, that is, 0.3 – 16 µg/mL for levofloxacin quantification and 0.5 – 16 µg/mL for minocycline 

quantification, in order to be able to compare with the microbiological and in vitro drug release 

results of specific delivery systems with potential application for treatment of S. aureus infections. 

The proposed ranges should be evaluated in terms of their linear relationship. ICH defines 

linearity of an analytical procedure as its ability (within a given range) to obtain test results that 

are directly proportional to the concentration (amount) of analyte in the sample (ICH Q2(R1), 

2005). 

So, to assess the two methods linearity, it was assayed one calibration curve, in duplicate, during 

seven independent days (n=7). An average calibration curve was obtained (Table 2). 

Calibrators and QCW used for linearity assay were analysed at six concentrations (three 

concentrations each) in order to analyse if its concentrations did not span 80 – 120% of the 

expected concentration range (ICH Q2(R1), 2005). The accuracy of these calibrators and QCW 

(mean relative error (bias) between measured and nominal concentrations) did not exceed the 

nominal concentration value for all concentration levels (±15%) (GI-BMV-FDA, 2001).  

Linear regression was used to determine the slope and intercept of the average calibration curve. 

Analytical and statistical parameters of calibration are listed in Table 2. All statistical parameters 

of the equations were calculated through linear regression using Microsoft Excel 2010. 

Moreover, regarding the obtained limits of quantification and despite the advantage of the 

proposed methods of a low injection volume, both could be decreased with the increase of 

injection volume if needed.  

 

3.3. Precision, accuracy and recovery 

The precision, accuracy and recovery of both methods are given in Table 3 and in Table 4 for 

levofloxacin and minocycline, respectively. 

 

Precision and accuracy 

Precision and accuracy of the proposed HPLC analytical method, expressed in terms of the 

coefficient of variation (CV) and bias, respectively, were evaluated at four concentration levels in 

the range of the respective calibration curves: 0.4, 2, 5 and 12 µg/mL for levofloxacin and 0.7, 2, 5 

and 12 µg/mL for minocycline. Intra-day repeatability was evaluated through the analyses of five 

replicates for each concentration in the same day. The inter-day repeatability was determined 

assaying six replicates for each concentration in different days.  

In summary, precision and accuracy did not exceed the acceptable criteria: coefficients of 

variation lower than 15% and bias within ±15% (GI-BMV-FDA, 2001), demonstrating that methods 
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are reproducible, accurate and suitable for the quantitative determination of levofloxacin and 

minocycline in the different media. 

 

Table 3. Intra- and inter-day precision (CV%); accuracy (bias,%) and recovery (%) of levofloxacin method. 

Medium  
Theoretical 

Concentrations 
(µg/mL) 

Intra-day reproducibility 
(mean; n=5)  

Inter-day reproducibility 
(mean; n=6) 

Experimental 
concentration 

(µg/mL) 
CV 
(%) 

Bias 
(%)  

Experimental 
concentration 

(µg/mL) 
CV 
(%) 

Bias 
(%) 

Recovery 
(%) 

H2O          
0.4 0.41 8.93 2.04  0.43 6.68 6.35 106.35 
2.0 1.87 3.15 -6.56  1.79 5.05 -10.27 89.73 
5.0 4.62 6.78 -7.50  4.50 5.65 -10.27 89.73 
12 10.98 5.74 -8.53  10.68 5.09 -10.03 89.97 

NaCl         

0.4 0.45 1.54 13.70  0.45 1.44 13.03 113.03 

2.0 2.07 4.43 3.58  2.10 4.24 4.86 104.86 
5.0 4.92 8.15 -1.54  5.21 8.13 4.24 104.24 

12.0 11.05 8.26 -7.90  10.79 6.23 -10.09 89.91 

PBS         

0.4 0.44 3.99 12.34  0.45 2.65 12.04 112.04 

2.0 1.80 7.27 -10.01  2.00 14.57 0.09 100.09 
5.0 4.92 6.60 -1.51  4.97 6.50 -0.51 99.49 

12.0 11.09 1.22 -7.61  11.70 6.96 -2.53 97.47 

Müeller-Hinton         

0.3 0.34 2.31 12.66  0.31 9.87 -3.59 103.59 
2.0 1.85 0.89 -7.18  1.85 6.02 7.61 92.38 
5.0 4.92 10.13 -1.56  4.68 8.90 6.46 93.54 

12.0 11.39 4.17 -5.05  11.42 3.94 4.85 95.15 

 

 

Recovery 

Values of the extraction recovery for each antibiotic in all media were expressed as percent 

recovery obtained from the ratio of “mean of experimental concentration” to “theoretical 

concentration”, using six determinations for each concentration. Results showed that the recovery 

intra-day varied less than 13% for all media under study. 
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Table 4. Intra- and inter-day precision (CV%); accuracy (bias,%) and recovery (%) of minocycline 
method. 

Medium  
Theoretical 

Concentrations 
(µg/mL) 

Intra-day reproducibility 
(mean; n=5) 

 
Inter-day reproducibility 

(mean; n=6) 
Experimental 
concentration 

(µg/mL) 
CV 
(%) 

Bias 
(%)  

Experimental 
concentration 

(µg/mL) 
CV 
(%) 

Bias 
(%) 

Recovery 
(%) 

H2O          
0.7 0.74 5.65 6.19  0.69 9.14 -1.24 98.76 
2.0 1.88 4.73 -6.14  1.85 4.82 -7.25 92.75 
5.0 4.74 3.68 -5.26  4.75 11.77 -5.07 94.93 

12.0 12.62 4.83 5.16  103.45 8.49 3.79 103.79 

NaCl         

0.7 0.74 5.10 6.35  0.75 4.37 6.73 106.73 

2.0 2.07 3.87 3.32  2.01 8.65 0.63 100.63 
5.0 4.71 4.74 -5.83  4.85 8.83 -3.07 96.93 

12.0 11.74 3.79 -2.14  12.47 7.23 3.89 103.89 

PBS          

0.7 0.71 2.03 1.91  0.76 7.64 9.13 109.13 

2.0 2.08 14.53 4.18  2.06 9.42 3.03 103.03 
5.0 4.40 0.97 -11.90  4.68 6.53 -6.44 94.56 

12.0 10.97 4.25 -8.59  11.34 11.30 -5.47 94.53 

Müeller-Hinton          

0.7 0.76 2.43 9.00  0.76 3.31 -9.14 109.14 
2.0 2.14 3.86 6.90  2.05 5.25 2.61 102.61 
5.0 4.43 0.23 -11.48  4.38 1.50 -12.32 87.67 

12.0 10.72 3.66 -10.64  10.86 4.00 -9.49 90.51 

 

 

3.4. Stability 

Levofloxacin and minocycline stability was evaluated in water (stock solutions) and in the three 

tested biomimetic media, regarding short-term, long-term, freeze-thaw and 37ºC stability.  

Stock solutions stability  

The stock solutions stability in water was evaluated using two QCW at low and high 

concentrations, 0.4 and 12 µg/mL for levofloxacin quantification and 0.7 and 12 µg/mL for 

minocycline quantification, analysed three times each, all prepared from freshly stock solutions, 

and compared with the same solutions stored at room temperature during 6 h and over a period of 

one month at –20°C. The obtained results are given in Table 5 and showed that the levofloxacin 

stock solution presented good stability under these conditions, with losses lower than 8%. Also, 
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the minocycline stock solution stability was also satisfactory after one month frozen, however it is 

not recommended to use the same stock solution if stored at room temperature (20°C) for over a 

period of several hours. 

 

Table 5. Stability results of levofloxacin and minocycline stock solutions under different storage 
conditions. 

 Percent Recovery (mean ± SD) (n=3) 

Storage 
conditions Levofloxacin stock solution (H20)  Minocycline stock solution (H20) 

 QCW, 0.4 QCW, 12  QCW, 0.4 QCW, 12 

6 h, 20°C 97.89 ± 4.15 92.49 ± 3.76  91.52 ± 4.68 86.66 ± 2.00 

1 month, –20°C 99.80 ± 0.34 103.6 ± 1.40  92.00 ± 4.58 95.13 ±1.63 

 

 

Short-term and long-term stability 

Short-term and long-term stability of levofloxacin and minocycline in the different media were also 

evaluated using the same concentrations used for stock solutions stability, also with three 

replicates each. QCM samples were analysed immediately after preparation (used as reference 

values) and under different storage conditions. 

Short-term stability was assessed at three different conditions: 6 h at room temperature; overnight 

into the autosampler; and after storage at 4°C for 24 h. Long-term stability was evaluated at –

20°C for one month. Short-term and long-term results are presented in Table 6 and Table 7 for 

levofloxacin and minocycline, respectively. 

The short-term stability study of levofloxacin showed that there was no relevant degradation, with 

losses lower than 7% in all the evaluated media. As for long-term stability, an acceptable 

deterioration of the drug in NaCl and PBS (< 9%) was found. However, a more pronounced 

degradation in Müeller-Hinton media (~19%) was observed.  

The same study with minocycline revealed a decline in drug concentration, detected under 

various short-term storage conditions. It is possible to storage NaCl samples 6 h at room 

temperature and 24 h at 4°C, without special precautions. Still, in overnight measurements of 

NaCl samples, a loss in minocycline concentration averaging 20% was observed. Short-term 

stability results of PBS and Müeller-Hinton medium showed a significant degradation of the 

antibiotic (between 8% – 25%).  

Also, the stability at long term at –20°C revealed a substantial degradation of minocycline, mainly 

in PBS medium. 
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Table 6. Stability results of levofloxacin under various storage conditions. 

Storage conditions 

Percent Recovery (mean ± SD) (n=3) 

NaCl  PBS Müeller-Hinton 

QCM, 0.4 QCM, 12  QCM, 0.4 QCM, 12  QCM, 0.4 QCM, 12 

6 h, 20°C 96.19±6.94 99.32±0.59  99.57±3.87 95.95±3.63  100.10±3.41 97.87±2.69 

Overnight, 20°C 91.80±4.65 94.57±2.26  103.23±2.20 99.87±1.07  97.24±2.74 97.77±3.98 

24 h, 4°C 96.51±3.21 96.55±2.01  96.72±3.45 98.69±2.46  94.88±6.64 93.86±0.91 

Freeze–thaw 1st cycle  91.78±5.71 94.06±3.14  90.17±4.00 94.40±5.14  91.06±4.23 79.4±1.75 

Freeze–thaw 2nd cycle 85.86±8.25 84.50±2.56  87.43±2.51 80.96±7.20  95.27±9.61 69.95±7.88 

Freeze–thaw 3rd cycle 81.30±9.15 81.83±7.07  87.25±2.54 76.91±6.97  87.81±1.67 52.65±5.84 

1 month, –20°C 94.69±8.05 91.62±3.13  99.82±1.79 91.20±5.27  81.98±1.41 97.59±2.40 

 

 

Table 7. Stability results of minocycline under various storage conditions. 

	
   Percent Recovery (mean ±SD) (n=3) 

Storage conditions NaCl  PBS  Müeller-Hinton 

 QCM, 0.7 QCM, 12  QCM, 0.7 QCM, 12  QCM, 0.7 QCM, 12 

6h, 20°C 94.30±1.98 99.09±2.39  92.51±2.67 75.65±2.84  82.47±10.18 90.21±1.90 

Overnight, 20°C 80.90±8.24 88.90±4.24  83.72±2.65 64.54±3.47  81.98±6.52 88.58±4.59 

24h, 4°C 100.53±4.80 100.78±1.25  69.89±4.30 68.45±0.75  94.74±4.79 90.42±1.93 

Freeze–thaw 1st cycle  93.59±4.48 101.92±1.85  82.56±4.04 72.14±1.35  79.84±7.92 70.37±3.56 

Freeze–thaw 2nd cycle 89.15±0.29 101.38±4.11  73.81±6.31 70.67±5.32  70.89±1.50 67.79±4.42 

Freeze–thaw 3rd cycle 89.29±3.33 102.37±2.48  73.49±5.69 67.04±3.99  71.82±1.42 66.18±1.64 

1 month, –20°C 73.71±3.77 78.51±8.02  64.48±14.31 68.32±4.29  86.70±6.93 90.21±1.91 

 

 

Freeze-thaw stability 

The stability during three freeze-thaw cycles from –20 °C to room temperature was also 

determined. The correspondent levofloxacin results are shown in Table 6 and Table 7 shows the 

results of minocycline. 

For levofloxacin, after three freeze-thaws, a high degradation in NaCl and PBS was observed, 

indicating that it is not recommended to freeze samples more than once. After one freeze-thaw 

cycle with Müeller-Hinton samples, a high degradation of the antibiotic occurred, suggesting that 

samples should be analysed in a period no longer than 24 h. 

Freeze-thaw stability of minocycline revealed that at least three freeze-thaw cycles of NaCl 
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samples could be tolerated without losses higher than 11%. However, it is not recommended to 

freeze PBS and Müeller-Hinton samples. 

 

37ºC stability 

Additionally, the stability of levofloxacin and minocycline in the different media at 37ºC was also 

evaluated over time until 10% degradation was obtained. Acquaintance of this data is extremely 

important when monitoring antibiotics during in vitro studies, which normally proceed at 37ºC. 

Table 8 shows the maximum time stability of both antibiotics spiked in all media. 

Levofloxacin revealed good stability at all time periods analysed and in all media. However, 

minocycline remains stable just until 6 h in NaCl, 1 h in PBS and 24 h in Müeller-Hinton. These 

results suggest that the in vitro assays should be performed with fresh medium replacement at 

the end of each time period of the study, thus preventing further degradation. 

In sum, all the stability tests showed that minocycline is more unstable than levofloxacin. The 

degradation behaviour of minocycline is due to the fact that tetracyclines are easily degraded 

under conditions like alkaline pH, chelation and photodegradation (Halling-Sørensen, 2002). In 

fact, it was observed that minocycline showed less degradation when spiked in NaCl medium, 

certainly due to its more acidic pH. Degradation studies of minocycline developed by Jain et al. 

(2007) also suggest that this drug is more susceptible to alkaline than acidic degradation.  

Finally, it is recommended, for both antibiotic samples, that protection from external agents is 

guaranteed, keeping them stored at low temperature and darkened environment until the 

chromatographic analysis. It is not advisable to submit the samples to more than one freeze-thaw 

cycle. In case of using minocycline as IS, it should be added immediately before analysis. 

 

Table 8. Maximum time stability of levofloxacin and minocycline on the three relevant media at 37ºC. 

Medium 
Percent Recovery (mean ± SD) (n=3) 

Levofloxacin  Minocycline 
 QCM, 0.4 QCM, 12  QCM, 0.7 QCM, 12 
NaCl 4 weeks  6 h 
 98.84 ± 2.39 99.97 ± 3.90  98.00 ± 4.23 99.15 ± 2.99 
PBS 4 weeks  1 h 
 98.85 ± 2.21 91.21 ± 1.61  90.45 ± 3.02 91.12 ±1.33 
Müeller-Hinton 48 h  24 h 
 97.39 ± 3.48 97.30 ± 3.95  94.43 ± 6.69 97.29 ± 2.22 
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4. Conclusions 

In the present work, two similar HPLC-UV methods were developed and characterized to quantify 

minocycline or levofloxacin in three different relevant biomimetic media. These methods 

demonstrated to be simple, with the advantage of only differing in the wavelength setting, and with 

a performance satisfying the recruitments for good precision, accuracy and recovery according to 

international accepted criteria. Furthermore, levofloxacin showed acceptable short-term and long-

term stabilities in all media, except when it was submitted to more than one freeze-thaw cycle. 

Minocycline presented a more accentuated degradation profile over prolonged time courses, 

mainly in media with pH over 6 (PBS and Müeller-Hinton broth). Hence, to get reliable results, it is 

advisable to analyse samples with minocycline as quickly as possible. Overall, the proposed 

methods only require minor laboratory work and are considerably cost-effective for being a small 

time run and a mobile phase mainly water-based. 
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