A multifunctional mineral excipient

Orally disintegrating tablets (ODTs) are becoming increasingly important in the global pharmaceutical market for both prescription and over-the-counter medications because they can significantly improve patient compliance. They can be swallowed without the need for water, are generally smaller, and have good mouthfeel. Such properties make ODTs particularly convenient for children and the elderly, especially when a flavor is also incorporated into the formulation. In addition, they are the delivery format of choice for people who want to take their medicine “on the go” and are particularly helpful for patients who have difficulty swallowing–a complication associated with a number of age-related conditions, including stroke and Parkinson’s disease. 

ODTs can be manufactured using various different techniques, such as tablet molding, freeze drying, spray drying, or direct compression. The final form–tablet or granule–has to deliver the active ingredients rapidly, but depending on the technique used, it may be associated with low mechanical strength, high production costs, or inferior stability. From the perspectives of cost and simplicity, the preferred method of preparing ODTs is direct compression. However, the disintegration capacity of ODTs produced in this way is limited by the size and hardness of the resulting tablets (1, 2). The challenge, therefore, when compressing ODTs is ensuring a structure that enables fast disintegration without affecting the hardness of the tablets. Developing a dosage form with these properties requires an excipient that offers optimum cohesiveness for compaction. 


You might also like