A Fast and Non-destructive Terahertz Dissolution Assay for Immediate Release Tablets

There is a clear need for a robust process analytical technology tool that can be used for on-line/in-line prediction of dissolution and disintegration characteristics of pharmaceutical tablets during manufacture. Tablet porosity is a reliable and fundamental critical quality attribute which controls key mass transport mechanisms that govern disintegration and dissolution behavior. A measurement protocol was developed to measure the total porosity of a large number of tablets in transmission without the need for any sample preparation. By using this fast and non-destructive terahertz spectroscopy method it is possible to predict the disintegration and dissolution of drug from a tablet in less than a second per sample without the need of a chemometric model. The validity of the terahertz porosity method was established across a range of immediate release (IR) formulations of ibuprofen and indomethacin tablets of varying geometries as well as with and without debossing. Excellent correlation was observed between the measured terahertz porosity, dissolution characteristics (time to release 50% drug content) and disintegration time for all samples. These promising results and considering the robustness of the terahertz method pave the way for a fully automated at-line/on-line porosity sensor for real time release testing of IR tablets dissolution. Continue A Fast and Non-destructive Terahertz Dissolution Assay for Immediate Release Tablets 

See also: Terahertz-Based Porosity Measurement of Pharmaceutical Tablets: a Tutorial 
Download the full article here:
Terahertz-Based Porosity Measurement of Pharmaceutical Tablets- a Tutorial

Bawuah, P., Markl, D., Farrell, D. et al. Terahertz-Based Porosity Measurement of Pharmaceutical Tablets: a Tutorial. J Infrared Milli Terahz Waves 41, 450–469 (2020). https://doi.org/10.1007/s10762-019-00659-0

Porosity, one of the important quality attributes of pharmaceutical tablets, directly affects the mechanical properties, the mass transport and hence tablet disintegration, dissolution and ultimately the bioavailability of an orally administered drug. The ability to accurately and quickly monitor the porosity of tablets during manufacture or during the manufacturing process will enable a greater assurance of product quality. This tutorial systematically outlines the steps involved in the terahertz-based measurement method that can be used to quantify the porosity of a tablet within seconds in a non-destructive and non-invasive manner. The terahertz-based porosity measurement can be performed using one of the three main methods, which are (i) the zero-porosity approximation (ZPA); (ii) the traditional Bruggeman effective medium approximation (TB-EMA); and (iii) the anisotropic Bruggeman effective medium approximation (AB-EMA). By using a set of batches of flat-faced and biconvex tablets as a case study, the three main methods are compared and contrasted. Overall, frequency-domain signal processing coupled with the AB-EMA method was found to be most suitable approach in terms of accuracy and robustness when predicting the porosity of tablets over a range of complexities and geometries. This tutorial aims to concisely outline all the necessary steps, precautions and unique advantages associated with the terahertz-based porosity measurement method.

You might also like