Effects of Drug-Polymer Interactions on Tablet Properties During the Development of Abuse-Deterrent Dosage Forms

The objective of the present study is to understand the effects of drug-PEO interactions during the thermal treatment of polyethylene oxide (PEO)-based, directly compressed, abuse-deterrent formulations (ADFs). The drugs studied were dextromethorphan HBr monohydrate, ketoprofen, promethazine HCl, and anhydrous theophylline. Thermal treatment above the melting point of PEO resulted in tablets with higher crushing strength (> 500 N). It was observed that drug-PEO interactions during thermal treatment (80°C) led to solubilization of the incorporated drug.

Drugs with higher solubility in the molten PEO, when added at higher weight fractions, interfered with the process of tablet densification which led to an increase in tablet dimensions and created defects in the fused matrix. These changes resulted in the formation of a more porous matrix. Thermal treatment led to a decrease in PEO crystallinity. The decreased crystallinity led to differences in the hydration and dissolution properties of the PEO.

The change in dissolution properties of PEO accompanied with the dimensional and microstructural changes resulted in a greater drug release for some of the studied drugs.

In conclusion, although thermal treatment above the melting point of PEO is an efficient manufacturing process in imparting crush-resistant features, drug-PEO interactions during the thermal treatment and the impact of thermal treatment on the properties of formulation components may impact tablet properties and lead to potential performance differences. Continue on abuse-deterrent formulations

You might also like