3D printed medicines: A new branch of digital healthcare

 

Three-dimensional printing (3DP) is a highly disruptive technology with the potential to change the way pharmaceuticals are designed, prescribed and produced. Owing to its low cost, diversity, portability and simplicity, fused deposition modeling (FDM) is well suited to a multitude of pharmaceutical applications in digital health. Favourably, through the combination of digital and genomic technologies, FDM enables the remote fabrication of drug delivery systems from 3D models having unique shapes, sizes and dosages, enabling greater control over the release characteristics and hence bioavailability of medications. In turn, this system could accelerate the digital healthcare revolution, enabling medicines to be tailored to the individual needs of each patient on demand. To date, a variety of FDM 3D printed medical products (e.g. implants) have been commercialised for clinical use. However, within pharmaceuticals, certain regulatory hurdles still remain. This article reviews the current state-of-the-art in FDM technology for medical and pharmaceutical research, including its use for personalised treatments and interconnection within digital health networks. The outstanding challenges are also discussed, with a focus on the future developments that are required to facilitate its integration within pharmacies and hospitals.

Continue on Science Direct

 

Also of interest: 3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges

Overview graphic with some excamples of 3D printed medicines for example tablets and capsules
3D printed Medicine as a new branch of digital healthcare

 

You might also like