Pharma Excipients
No Result
View All Result
  • Login
  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    Excipient Suppliers List
    BIOGRUND Logo
    Evonik Logo
    LI logo violet
    logo roquette
    ADM
    Armor Pharma
    Asahi KASEI
    Ashland
    BASF
    Beneo
    Budenheim
    Captisol
    Croda
    DFE Pharma
    Excipio Chemicals
    Fuji Chemical
    Gattefossé
    Gangwal
    IOI Oleo
    Ingredient Pharm
    JRS Pharma
    KLK Oleo
    KLK Oleo
    Lipoid
    Dr. Paul Lohmann
    Lubrizol Life Science Health
    Lubrizol Life Science Health
    MAGNESIA
    MAGNESIA
    MEGGLE Excipients & Technology
    MEGGLE
    Nagase Viita
    Nagase Viita
    Nordic Bioproducts
    Nordic Bioproducts
    Pfanstiehl
    Pfanstiehl
    pharm-a-spheres
    pharm-a-spheres
    PMC Isochem
    PMC Isochem
    Seppic
    Seppic
    ShinEtsu
    ShinEtsu
    Sigachi
    Sigachi
    SPI Pharma
    SPI Pharma
    Südzucker
    Südzucker
    Vikram Thermo
    Vikram Thermo
    Zerion Pharma
    Zerion Pharma
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission

No products in the cart.

  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    Excipient Suppliers List
    BIOGRUND Logo
    Evonik Logo
    LI logo violet
    logo roquette
    ADM
    Armor Pharma
    Asahi KASEI
    Ashland
    BASF
    Beneo
    Budenheim
    Captisol
    Croda
    DFE Pharma
    Excipio Chemicals
    Fuji Chemical
    Gattefossé
    Gangwal
    IOI Oleo
    Ingredient Pharm
    JRS Pharma
    KLK Oleo
    KLK Oleo
    Lipoid
    Dr. Paul Lohmann
    Lubrizol Life Science Health
    Lubrizol Life Science Health
    MAGNESIA
    MAGNESIA
    MEGGLE Excipients & Technology
    MEGGLE
    Nagase Viita
    Nagase Viita
    Nordic Bioproducts
    Nordic Bioproducts
    Pfanstiehl
    Pfanstiehl
    pharm-a-spheres
    pharm-a-spheres
    PMC Isochem
    PMC Isochem
    Seppic
    Seppic
    ShinEtsu
    ShinEtsu
    Sigachi
    Sigachi
    SPI Pharma
    SPI Pharma
    Südzucker
    Südzucker
    Vikram Thermo
    Vikram Thermo
    Zerion Pharma
    Zerion Pharma
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission
No Result
View All Result
Pharma Excipients
No Result
View All Result

Startseite » News » Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats

Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats

24. May 2024
Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats

Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats

Abstract

Liraglutide (LIRA) is a glucagon-like peptide-1 (GLP-1) receptor agonist renowned for its efficacy in treating type 2 diabetes mellitus (T2DM) and is typically administered via subcutaneous injections. Oral delivery, although more desirable for being painless and potentially enhancing patient adherence, is challenged by the peptide’s low bioavailability and vulnerability to digestive enzymes. This study aimed to develop LIRA-containing zein-based nanoparticles stabilized with eudragit RS100 and chitosan for oral use (Z-ERS-CS/LIRA). These nanoparticles demonstrated a spherical shape, with a mean diameter of 238.6 nm, a polydispersity index of 0.099, a zeta potential of +40.9 mV, and an encapsulation efficiency of 41%. In vitro release studies indicated a prolonged release, with up to 61% of LIRA released over 24 h. Notably, the nanoparticles showed considerable resistance and stability in simulated gastric and intestinal fluids, suggesting protection from pH and enzymatic degradation. Pharmacokinetic analysis revealed that orally administered Z-ERS-CS/LIRA paralleled the pharmacokinetic profile seen with subcutaneously delivered LIRA. Furthermore, in vivo tests on a diabetic rat model showed that Z-ERS-CS/LIRA significantly controlled glucose levels, comparable to the results observed with free LIRA. The findings underscore Z-ERS-CS/LIRA nanoparticles as a promising approach for oral LIRA delivery in T2DM management.

Introduction

It is estimated that the global incidence of diabetes mellitus (DM) in 2021 (latest global survey) will be 537 million people, representing 9.3% of adults aged between 20 and 79 years [1]. Projections indicate that this number is expected to increase to 783 million by 2045 [1,2]. It is worth noting that more than 90% of cases of diabetes mellitus correspond to type 2 [3,4,5]. Type 2 diabetes (T2D) represents a chronic metabolic condition characterized by insulin resistance and insufficient insulin production by pancreatic cells, associated with lifestyle factors such as inadequate diet and lack of physical activity [6].
The treatment of type 2 diabetes is approached comprehensively, incorporating strategies that aim to control blood glucose, improve insulin sensitivity and manage related risk factors [2]. A crucial initial intervention includes adopting a healthy lifestyle characterized by a balanced diet rich in complex carbohydrates, fiber, lean proteins and healthy fats, combined with regular physical activity [7].
In the context of the treatment of T2D, liraglutide (LIRA), a glucagon-like peptide-1 (GLP-1) receptor agonist, stands out as an effective option [8]. In addition to stimulating the release of insulin in response to high glucose, LIRA delays gastric emptying, promoting satiety and aiding weight loss [9]. These benefits contribute significantly to glycemic control and improved quality of life for patients [8,10]. The pharmacokinetic characteristics of LIRA allow for an extension of exposure for 24 h, meeting the need for glycemic control throughout the day with once-daily administration [10].

However, the use of LIRA faces challenges, especially with regard to adverse effects, such as nausea and diarrhea, in addition to causing liver and pancreatic problems [10,11,12]. There is also a need for administration by daily subcutaneous injection, which may impact treatment adherence [13]. Furthermore, oral forms would provide better adherence to treatment, however, as it is a protein, administration via this route is impossible due to the degradation of the molecule in gastric juice [10]

Pharmaceutical nanotechnology is an approach to improve the oral administration of molecules composed of proteins or peptides, overcoming absorption and gastrointestinal stability challenges [14,15]. The use of nanocarriers, such as nanoparticles (Nps) and liposomes, seeks to improve the bioavailability of these molecules, in addition to assisting in the pharmacokinetic and dynamic properties of the molecules, although it faces obstacles such as the mucosal barrier, enzymatic degradation and irregular absorption [16].
Within this context, zein emerges as a promising candidate in pharmaceutical nanotechnology. Zein, a protein derived from corn classified as prolamin, has distinct physicochemical characteristics with notable insolubility in water. However, its high solubility in organic solvents, such as ethanol, methanol and acetone, enables the formation of films and coatings from zein solutions [17]. This property has significant applications in coatings for pharmaceutical tablets, capsules and the formation of nanostructures for drug loading and targeting [18].
Zein demonstrates favorable compatibility with a variety of polymers, giving it versatility in blended formulations to meet specific requirements [19]. Additionally, its biodegradability, combined with renewable origin, contributes to its appeal in applications aimed at sustainable practices in the pharmaceutical industry and other areas [20]. Furthermore, zein exhibits satisfactory thermal stability at moderate temperatures, favoring formulation processes that involve controlled heating [20,21].

The use of zein in the formation of Nps serves as efficient vehicles for the controlled delivery of drugs, improving the solubility, bioavailability and stability of drugs, peptides or proteins in the gastrointestinal tract [20,22,23]. Through their solubility, the formation of nanoparticles occurs through self-assembly, promoting the encapsulation of various compounds, where the average diameter varies between 100 and 300 nm [22].

Eudragit RS100 (ERS100), a pH-sensitive synthetic polymer, is increasingly recognized for its application in drug formulation [24,25]. ERS100 is a favorable choice for producing zein nanoparticles owing to its notable resistance within the gastrointestinal tract and its efficacy in targeted drug delivery [25]. Additionally, chitosan (CS), a naturally occurring biodegradable polymer with low toxicity, is extensively utilized in nanotechnology, particularly for the encapsulation of biomolecules for oral administration, and its mucoadhesive properties and robust stability in the gastrointestinal environment make it an excellent stabilizer for zein Nps [26].
Within the scope of this work, we aimed to develop zein Nps for the encapsulation of LIRA, utilizing ERS100 and CS as stabilizers targeted for oral delivery. The performance of these Nps was assessed by analyzing their pharmacokinetic properties following oral administration in healthy rats, as well as their ability to regulate blood glucose levels in a T2D rat model.

Download the full article as PDF here: Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats

or read it here

Materials

Liraglutide (injection, 3.0 mg) was purchased from Saxenda© (Novo Nordisk, São Paulo, Brazil). Zein, low molecular mass chitosan (50–190 kDa, 75–85% deacetylated), streptozotocin and formic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). Eudragit© RS100 was obtained from Evonik (Berlin, Germany). Absolute ethanol was purchased from Synth® (São Paulo, Brazil). HPLC-grade acetic acid was obtained from Vetec Química Fina (Duque de Caxias, Brazil). Purified water was obtained using a Milli-Q Plus system (Millipore, Burlington, MA, USA) with a conductivity of 18 MΩ.

Ziebarth, J.; da Silva, L.M.; Lorenzett, A.K.P.; Figueiredo, I.D.; Carlstrom, P.F.; Cardoso, F.N.; de Freitas, A.L.F.; Baviera, A.M.; Mainardes, R.M. Oral Delivery of Liraglutide-Loaded Zein/Eudragit-Chitosan Nanoparticles Provides Pharmacokinetic and Glycemic Outcomes Comparable to Its Subcutaneous Injection in Rats. Pharmaceutics 2024, 16, 634. https://doi.org/10.3390/pharmaceutics16050634


Read also our introduction article on Chitosan here:

https://www.pharmaexcipients.com/wp-content/uploads/2023/05/CHITOSAN-video-version-4.mp4
Video: Chitosan as a natural excipient
Tags: excipientsformulation

Related Posts

Roquette Showcases Formulation Capabilities at AAPS 2025 PharmSci 360
News

Roquette Showcases Expanded Formulation Capabilities at AAPS 2025 PharmSci 360

7. November 2025
How Do Cryo-Milling and Lyophilization Affect the Properties of Solid Dispersions with Etodolac
BASF

How Do Cryo-Milling and Lyophilization Affect the Properties of Solid Dispersions with Etodolac?

7. November 2025
Archaeosomal nanocarriers improve pharmacokinetics and bioavailability of vancomycin after oral administration
Bioavailability enhancement

Archaeosomal nanocarriers improve pharmacokinetics and bioavailability of vancomycin after oral administration

6. November 2025
Next Post
Design and development of a chitosan-based nasal powder of dimethyl fumarate-cyclodextrin binary systems aimed at nose-to-brain administration

Design and development of a chitosan-based nasal powder of dimethyl fumarate-cyclodextrin binary systems aimed at nose-to-brain administration. A stability study

Cart

Shop Search

  • Search for excipients and samples
  • Product Inquiry
  • Newsletter Registration
  • Visit the Homepage

Top Pharma-Excipient Links

  • Pharmaceutical Excipients – Some Definition
  • Inactive ingredient search for approved drug products in the USA
  • Excipient Suppliers List
  • GRAS Substances (SCOGS) Database
  • DC Excipients List
  • Homepage

About | Privacy Policy | Cookie policy | Cookie Settings | Contact | Homepage
Copyright: PharmaExcipients AG

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission

About | Privacy Policy | Cookie policy | Cookie Settings | Contact | Homepage
Copyright: PharmaExcipients AG