Pharma Excipients
No Result
View All Result
  • Login
  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    Excipient Suppliers List
    BIOGRUND Logo
    Evonik Logo
    LI logo violet
    logo roquette
    ADM
    Armor Pharma
    Asahi KASEI
    Ashland
    BASF
    Beneo
    Budenheim
    Captisol
    Croda
    DFE Pharma
    Excipio Chemicals
    Fuji Chemical
    Gattefossé
    Gangwal
    IOI Oleo
    Ingredient Pharm
    JRS Pharma
    KLK Oleo
    KLK Oleo
    Lipoid
    Dr. Paul Lohmann
    Lubrizol Life Science Health
    Lubrizol Life Science Health
    MAGNESIA
    MAGNESIA
    MEGGLE Excipients & Technology
    MEGGLE
    Nagase Viita
    Nagase Viita
    Nordic Bioproducts
    Nordic Bioproducts
    Pfanstiehl
    Pfanstiehl
    pharm-a-spheres
    pharm-a-spheres
    PMC Isochem
    PMC Isochem
    Seppic
    Seppic
    ShinEtsu
    ShinEtsu
    Sigachi
    Sigachi
    SPI Pharma
    SPI Pharma
    Südzucker
    Südzucker
    Vikram Thermo
    Vikram Thermo
    Zerion Pharma
    Zerion Pharma
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission

No products in the cart.

  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    Excipient Suppliers List
    BIOGRUND Logo
    Evonik Logo
    LI logo violet
    logo roquette
    ADM
    Armor Pharma
    Asahi KASEI
    Ashland
    BASF
    Beneo
    Budenheim
    Captisol
    Croda
    DFE Pharma
    Excipio Chemicals
    Fuji Chemical
    Gattefossé
    Gangwal
    IOI Oleo
    Ingredient Pharm
    JRS Pharma
    KLK Oleo
    KLK Oleo
    Lipoid
    Dr. Paul Lohmann
    Lubrizol Life Science Health
    Lubrizol Life Science Health
    MAGNESIA
    MAGNESIA
    MEGGLE Excipients & Technology
    MEGGLE
    Nagase Viita
    Nagase Viita
    Nordic Bioproducts
    Nordic Bioproducts
    Pfanstiehl
    Pfanstiehl
    pharm-a-spheres
    pharm-a-spheres
    PMC Isochem
    PMC Isochem
    Seppic
    Seppic
    ShinEtsu
    ShinEtsu
    Sigachi
    Sigachi
    SPI Pharma
    SPI Pharma
    Südzucker
    Südzucker
    Vikram Thermo
    Vikram Thermo
    Zerion Pharma
    Zerion Pharma
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission
No Result
View All Result
Pharma Excipients
No Result
View All Result

Startseite » News » Mixing efficiency of pharmaceutical powders in an intensive mixer with rotating mixing vessel

Mixing efficiency of pharmaceutical powders in an intensive mixer with rotating mixing vessel

26. March 2025
Mixing efficiency of pharmaceutical powders in an intensive mixer with rotating mixing vessel

Mixing efficiency of pharmaceutical powders in an intensive mixer with rotating mixing vessel

The mixing of ductile lubricant particles is known to have several negative effects on tablet properties, such as decreased hardness and delayed disintegration. This study investigated the usefulness of a mixing system using an intensive mixer with a rotating mixing vessel (EIRICH Intensive Mixer) for blending lubricants.

To confirm the suitability of lubricant-mixing conditions (rotor types, rotation speed, and mixing time), we mixed lactose/cornstarch with two types of lubricants (magnesium stearate and sodium stearyl fumarate), prepared tablets made from the mixtures, and evaluated their properties. Mixing with a star rotor suppressed the negative effects of lubricants on tablet properties more effectively than mixing with a microgranulation rotor (Z rotor). To verify the usefulness of this mixing system in direct tableting, the formulations for direct compression with SuperTab®14SD or SmartEx® as excipients and acetaminophen (AAP) (10%) as an active pharmaceutical ingredient were used. The results confirmed the effectiveness of lubrication for tableting by evaluating the ratio of lower punch pressure to upper punch pressure and the uniform dispersion of AAP using near-infrared (NIR) spectroscopy. Finally, the process of mixing lubricants collectively with the active pharmaceutical ingredient and other ingredients was evaluated. The results showed that this mixing system using an intensive mixer effectively mixed all the ingredients in the formulation. This study clarified the usefulness of an intensive mixer in blending lubricants for pharmaceutical formulations.

Introduction

Tablets are the most popular vehicle for oral dosage due to their convenient administration and relatively low manufacturing costs [1]. Usually, tablet manufacturing involves the mixing of APIs and pharmaceutical additives such as fillers, disintegrants, lubricants, and so on. Direct compression, where blended formulation powders are fed directly to a tablet machine, is the simplest method of manufacturing tablets, as it does not require intermediate processes such as granulation, extrusion, or spray drying [2]. The use of lubricants in the formulations is necessary for ensuring the stable production of pharmaceutical tablets.

Lubricants reduce the friction between the die wall and powder bed during tableting and tablet ejection [3], [4]. It is common that a lubricant is mixed separately from other ingredients in a relatively short time just before feeding the tablet machine, because mixing ductile lubricant particles has several negative effects on tablet properties, such as decreased hardness and delayed disintegration [3]. Magnesium stearate (Mg-St) is the most frequently used lubricant due to its excellent lubrication properties and low cost, despite its negative effects.

Several papers have reported on the ductile properties of Mg-St during mixing using different types of mixers, such as a V-type mixer and a high-shear mixer [3], [5], [6], [7]. To avoid the negative effects of Mg-St on tablet properties, several trials have been reported. For example, sodium stearyl fumarate (SSF) was used instead of Mg-St as a lubricant [8]. Wang et al. reviewed that SSF shows less interference with tablet strength and has a less negative effect on tablet dissolution compared to Mg-St [9].

To achieve direct compression, novel types of excipients were designed. Excipients with favorable flow and compression properties were developed [10]. Spray-dried lactose, a lactose form created over 50 years ago, is designed specifically for direct compression [10], [11]. Recently, many excipients for the direct compression method for orally disintegrating tablets (ODTs) have been developed [12], [13]. Co-processed excipients (CPE) for ODT manufacturing serve various functions, such as promoting rapid disintegration and enhancing the compaction properties of powders. CPEs containing fillers, binders, disintegrants, and other additives are granulated [10], [12], [14].

The mixing process of pharmaceuticals depends on the mixer types, mixing conditions, and powder formulation [5], [15]. Generally, V-type mixers and high-shear mixers are used. With V-type mixers, the mixing powders including APIs need relatively long mixing times. Conversely, utilizing a high-shear mixer with a stationary mixing vessel and a concentric rotor tool typically mixes ingredients uniformly in a short time and with good dispersion of the lubricant. One of the defects of a high-shear mixer is to induce the excessive spread of lubricant during mixing. An intensive mixer with a rotating mixing vessel and an eccentrically mounted mixing tool is expected to moderate mixing behaviors compared to high-shear mixers and V-type mixers when blending lubricants. The tilt of a rotating mixing vessel adds a rolling effect to the material flow. Different types of rotors with different shapes can optimize shear introduction into the mix [16]. The EIRICH Intensive Mixer has long been used primarily for processing inorganic materials [16], and it has recently found application in the battery industry [17]. However, few applications of this mixer in the pharmaceutical industry have been reported [18].

The purpose of this study was to clarify the suitability of this intensive mixer to blend pharmaceutical powders. A standard formulation, consisting of a lactose/cornstarch mixture [19] with lubricants, was mixed under various conditions, then compacted into tablets for evaluating mixing properties. Formulations containing excipients for direct compression and a model API (acetaminophen) were also used to evaluate the uniformity of the mixing. The results were used to investigate the possibility of one-step mixing (collective mixing of APIs, fillers, lubricants, and other additives) using an intensive mixer to reduce the number of mixing steps in the conventional method, which is typically more than two steps.

Continue reading on mixing efficiency of pharmaceutical powders

Materials

Lactose (Pharmatose®200M, DFE Pharma, Goch, Germany; D50: 40 μm) and corn starch (Nippon Cornstarch, Tokyo; D50: 20 μm) were used as fillers after passing through a 710 μm screen. As direct tableting fillers, co-processed mannitol (SmartEx®, Shin-Etsu Chemical, Tokyo; D50: 55 μm) and spray-dried lactose (SuperTab®14SD, DFE Pharma, Goch; D50: 130 μm) were used without sieving. Magnesium stearate (Mg-St, Mallinckrodt Pharma, Tokyo; D50: 6.0-14.0 μm; mp: 120-130°C) and sodium stearyl fumarate (SSF).

Hana Kato, Yoshiko Takeuchi, Hirofumi Takeuchi,
Mixing efficiency of pharmaceutical powders in an intensive mixer with rotating mixing vessel (EIRICH Intensive Mixer),
Journal of Drug Delivery Science and Technology, 2025, 106845, ISSN 1773-2247,
https://doi.org/10.1016/j.jddst.2025.106845.

 

Tags: excipientsformulation

Related Posts

Novel Nano-Technologies to Enhance Drug Solubility, Dissolution and Bioavailability of Poorly Water- Soluble Drugs
BASF

Novel Nano-Technologies to Enhance Drug Solubility, Dissolution and Bioavailability of Poorly Water-Soluble Drugs

8. November 2025
Excipients at AAPS 2025
Asahi Kasei

Excipients at AAPS 2025: Comprehensive Overview of Innovation in Formulation and Drug Delivery

8. November 2025
Roquette Showcases Formulation Capabilities at AAPS 2025 PharmSci 360
News

Roquette Showcases Expanded Formulation Capabilities at AAPS 2025 PharmSci 360

7. November 2025
Next Post
A fluidised bed particle engineering approach for simultaneous encapsulation and granulation of an API-based ionic liquid

A fluidised bed particle engineering approach for simultaneous encapsulation and granulation of an API-based ionic liquid

Cart

Shop Search

  • Search for excipients and samples
  • Product Inquiry
  • Newsletter Registration
  • Visit the Homepage

Top Pharma-Excipient Links

  • Pharmaceutical Excipients – Some Definition
  • Inactive ingredient search for approved drug products in the USA
  • Excipient Suppliers List
  • GRAS Substances (SCOGS) Database
  • DC Excipients List
  • Homepage

About | Privacy Policy | Cookie policy | Cookie Settings | Contact | Homepage
Copyright: PharmaExcipients AG

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Shop
  • News
    • Specials
      • Excipients for CBD
      • Excipients & 3D Printing
      • Infographics – The overview
      • GMP-certified excipient production sites
      • The Future of TiO2
      • Excipients in the COVID-19 Vaccines
      • BASF PVP-Iodine
      • RegXcellence™
      • BASF Parenteral Excipients
    • World Days – The overview
  • Excipient basics
    • Excipient Solutions for CBD
    • Inorganic Chemicals
      • Calcium Carbonate
      • Calcium Phosphates
      • Calcium Sulfate
      • Halites
      • Metallic Oxides
      • Silica
    • Organic Chemicals
      • Actual Sugars
      • Artificial Sweeteners
      • Carbohydrates
      • Cellulose
      • Cellulose Esters
      • Cellulose Ethers
      • CMC and Croscarmellose Sodium
      • Converted Starch
      • Dried Starch
      • Microcrystalline Cellulose
      • Modified Starch
      • Starch
      • Sugars
      • Sugar Alcohols
    • Petrochemicals
      • Acrylic Polymers
      • Glycols
      • Mineral Hydrocarbons
      • Mineral Oils
      • Mineral Waxes
      • Petrolatum
      • Polyethylene Glycol (PEG)
      • Povidones
      • Propylene Glycol
      • Other Petrochemical Excipients
    • Oleochemicals
      • Fatty Alcohols
      • Glycerin
      • Mineral Stearates
      • Pharmaceutical Oils
      • Other Oleochemical Excipients
    • Proteins
  • Applications
    • 3D Printing – Drug Carrier
      • 3D Printing
      • Binder
      • Coating
      • Colour / Color
      • Coating Systems and Additives
      • Controlled Release Excipient
      • DC excipient
      • Disintegrant / Superdisintergrant
      • Drug Carrier
    • Emulsifier – Glidant
      • Emulsifier
      • Excipient for Inhalation
      • Filler
      • Film former
      • Flavour / Flavor
      • Glidant
    • Lubricant – Preservative
      • Lubricant
      • Nanotechnology
      • Orally Dissolving Technology Excipient
      • Pellet
      • Plasticizer
      • Preservative
    • Solubilizer – Viscocity Agent
      • Solubilizer
      • Speciality Excipient
      • Surfactants
      • Suspension Agent
      • Sustained Release Agent
      • Sweeteners
      • Taste Masking
      • Topical Excipient
      • Viscocity Agent
  • Sources
    • EINECS Numbers
    • Excipient DMF List
    • Excipient cGMP Certification Organisations
    • FDA Inactive Ingredient List
    • FDA GRAS Substances (SCOGS) Database
    • Excipient E-Numbers
    • Whitepapers / Publications
    • Contract Development|Contract Manufacturing
  • Suppliers
    • A-B
      • ADM
      • ARMOR PHARMA
      • Ceolus™ & Celphere™
      • Ashland
      • BASF
      • Beneo – galenIQ
      • Biogrund
      • Budenheim
    • C-G
      • Captisol
      • Croda
      • Cyclolab
      • DFE Pharma
      • DuPont Pharma Solutions
      • Evonik
      • Fuji Chemical Industries
      • Gattefossé
      • Gangwal Healthcare
    • I-O
      • ingredientpharm
      • IOI Oleochemical
      • JRS Pharma
      • Kerry
      • KLK Oleo Life Sciences
      • Lactalis Ingredients Pharma
      • Lipoid
      • Dr. Paul Lohmann
      • Lubrizol
      • Magnesia
      • MEGGLE Excipients
      • Nagase Viita – Pharmaceutical Ingredients
      • Nordic Bioproducts Group
    • P-Z
      • Pfanstiehl
      • pharm-a-spheres
      • Pharma Line
      • PMC Isochem
      • Roquette Pharma
      • Seppic
      • Shin-Etsu
      • Sigachi Group
      • Südzucker AG
      • VIKRAM THERMO
      • Zerion Pharma
      • ZoomLab® – Your Virtual Pharma Assistant
  • Inquiries
    • Product Inquiry
    • Tailored Tableting Excipients
      • Tailored Film Coating
  • Events
    • Overview Pharmaceutical Webinars
    • CPhI 2024 Milan
    • CPhI China 2024
    • ExciPerience – The great excipient event!
  • More
    • Handbook of Pharmaceutical Excipients – 9th Edition
    • Jobs
      • Job Submission

About | Privacy Policy | Cookie policy | Cookie Settings | Contact | Homepage
Copyright: PharmaExcipients AG