Cellulase as an “active” excipient in prolonged-release HPMC matrices: a novel strategy towards zero-order release kinetics

Hydrophilic matrices are of utmost interest for oral prolonged release of drugs. However, they show decreasing release rate over time, mainly due to lengthening of the diffusional pathway across the gel formed upon glass-rubber transition of the polymer. Therefore, achievement of zero-order release kinetics, which could reflect in constant drug plasma levels, is still an open issue.

With the aim of improving the release performance of hydroxypropyl methylcellulose (HPMC) systems, the use of cellulolytic enzymes was proposed to aid erosion of the swollen matrix, thereby counteracting the release rate decrease particularly toward the end of the process. The effectiveness of this strategy was evaluated by studying the mass loss and drug tracer release from tableted matrices consisting of high-viscosity HPMC (Methocel®K4M), Acetaminophen and increasing amounts (0.5-10% on HPMC) of a cellulolytic product (Sternzym®C13030).

A faster erosion and progressive shift to linearity of the overall release profiles were observed as a function of the enzyme concentration. Release was markedly linear from matrices containing 5 and 10% Sternzym®C13030. In partially coated matrices with these cellulase concentrations, such results were in agreement with data of erosion and swelling front movement, which exhibited early and long-lasting synchronization.

Read the article here

Article information: Luca Palugan, Ilaria Filippin, Micol Cirilli, Saliha Moutaharrik, Lucia Zema, Matteo Cerea, Alessandra Maroni, Anastasia Foppoli, Andrea Gazzaniga, Cellulase as an “active” excipient in prolonged-release HPMC matrices: a novel strategy towards zero-order release kinetics, International Journal of Pharmaceutics, 2021. https://doi.org/10.1016/j.ijpharm.2021.121005.

You might also like